In the overhead view of the figure below, the image of the stone seen by observer 1 is at C. Where does observer 2 see the image, at A, at B, at C, at D, at E, or not at all?
Question 2VFjvHBngqHfUmpcRSF9wZptrKj/tusN/xad7miaV7QRJhMJNnKkPaEbr11A1KpNAbi3Ww+30BSKTk3mCY8igzL42P/PppjadJ15QCSCo18DulMGtG6Bg7iXCjoJQIeVsuqe1vMpXHk9V8gGovCFwigqNuuENTnhCupo2fNaoCs2HI/idNEYvSdadgpjbq6erBt23ZEImGsW3cTS4bprG00Q3u/FBeUFj5kxev3+7gs0zBZquRVzwjUaTFDh8/nx/wFASxcNJ+lRFKpF0itTvXSvAgqHnSeP4mOE29j3qqNHCptRFHio0CqSxWkAAAgAElEQVSgqhGoXhWoyyTU/S6DAUh2t6OndS+6Wo6go7kZu/e+g/5kBr5gCD6/Hz6ysvRqkC1yT6dUN7bHlV2MSynXNqbY750pi/lp9EKIvNhSlDSqrEdFoZBHKplE05w5uPPOO7F48Xxk8znkCvnL8s1RvEq3re6z6CGybCHR0wuP5oUvEoVVyGEwmcUdn/iP8GjB0etRyWctiqhKLgfA8a0/R9/ZfYgtWAJLp0WBLUG5ix1b6ie1sgJZUnjv1XIMT7yqikQihad/9QwSgwk2fCHCJCOm0v6vP8DkR6RG5EeESEZR5O7S0FjPgQ9IJe4e7nPpMz3bVtG648WWKuk7us5SDOjJHFKZPDZ96g+g+vyOI/9w3YZbsngVCFQfAlVKgHauNgpN5cZGibcfQ9fJfbjYegLtZ0+jpaMXA6ksvKoHPp8PEq3wh5PmDBorPBGaFhvNkGp0+fIluON9d3DanWw2a0+GTsxKe8Ieqjx9NvU8Bnt6EZs1C5ZHgawb6O3uwYaP/g7C9fOHLq6Sd6QqpLER7zyDA8/9ALPnzoPuUZn8RvpqMn6miZaWZmhqAIFgkA1iDEPHpUs9OHzoGO/vkqqa1i7kKkHfeRRb+ULSXzaTYWvfUDDIUj1Z/hJRLlg4F3dsuh0NDY3I5XOsFeBFz7j6gUjcAlmlxs+3YO5ND2Lp7Y+w0ZUsCQIcF4TioopHoCpVoLRnR5FX6OhtO44Lx3Yg1dOOztZmHD99AT2ZDK/oI2GazChVDRHmGH4DM2CIUP1I9iTJwu/3o7m5FW1tHSwNrl6ziiXE0sbSyPpKlHkgC1nzQFIVmLqtipWNHDKJeHUSoCSzpNS6+wUEoyFYqo/z1rL0NYqQT24Kvb392LP7FYTDESiKxPt8tD/o9wfYkpfUktRJtPfn8WggKZHIk+4l1ScZ05CRE1l7+gMBJsnz5y7gQls79+O6dWtBFr1EoLzHp8goFItczsgupc/2iLBgGgYiDY3oOL4D81bfDm+odrTLxTmBQFUiUF0ESEtw2wATyd7zOLv7NSTjzVCh4uDBozhztpUdy2OxOqgWuSjYqqSRI2OkFDXy+/fks6MaJcmhtqaW1WqbN7+Kvr4e3H33XdD1omtbcUX1SB1HSVdpkpZIpUu6P45OU52SAhmTXDr5FgZ7L6Bu4RJ2bZCtkbKfDSNh5vcFsPyGFTh6+DiCgSBLXj6fBMUJgcYLFFY/2/fYn21VNp+RwJa5zK0l9baMmppakIXv1i1v4OLFDtx//31MqBc7bIf6hQsWwKt5hy1wqASbofl/yQ7BplDEof44Lhx+Eze877Er+l+cEAhUKwLVQ4AO+ZEHePOezWg/tBWROj/yWgSbX3oN/f1xNk6QOLi0DgpO5swlPDaGTEZm6FAhznKqZlgmu0XUa/XYt+8AG0ts2rSR1Wxu7VmaoTnYMBAgqYXbDSiqwkG1LS2K2OzF7uUV/1oiKY5DXsTZQzsRromCiI+jBgzfNHXQoHvINYFcIHbt2sNqSwpQbktfdBfpna+ErrSAGvGd2398B1nqmgZUrxe19XU4faoZA/0JfPDhh7Fzxx60trZg/vx5eP+996Bp3hxkc3b+QKkUmsEeEDRuJcNEODoLnaf3Y8GGB+DVKP2S/bRSXa6spjgjEKh4BKpqD5BiZx585V+RbD+KOTcsQvO5i3j1N1vY2IFUVzQp0L9KOWhyKxZ1ZNJJPPHEJ1BbV+f4Bl4u2ZLqLZfLIJ1IcWSRzGASCzY8jKW3PlApUIyrHcQJJKh1HN+FkzufR9P8eSiYnITqivtprJC0TYGpX938Ok6dPIO6utoh690r7rj2EzQmKSFyYnAQmubjwAgkXRb0PKtE77nnHqy7eTX3raFfqaonQxmKWhNva8aiTY9jwdq77P1saqw4BAJVjEAV6LgcSjMK2P/yT5HtOo4FK1bh8JFzeOmZV6B5PYgQ+Tl7fEQa5f43fDxrqpd8KnDo0OGS4cXw76mtJKl4Nc3GgXwajSLmLLlx+GWV/56TB1PsagOth3ciFg1y5JyxKIIc0mm/btvWbThx/ARqa2tYBGeJa5LGEIHOY5HESNNCLBpj4iKLX4oEEw1HEAqEsGXLVmx5fRtgyRyObUgXYHcblUGETXvaF88cYMtRXubNUKOuyh9sooUzBYGKJkC2gzNZmYmz72xGsvM4mpbeiJ173sHWV19HOBaB5vPbqira+BlrtpspvTXOergETpfT6j8UjqC1pQ39AwMstQxXf9G1FBeUVGeq349Q3SxofhWdrUfG+bTKuIyyK1D/d53ci2KiG75IDXSL/O2GJCrCjfb86JX2/Q4fPMZWnnV1DSw6DostMCmgcN84JEhlk2pb8/s4KS6lrkom02xAQ3u+hw8exfPPvoBMJgefkxWE6mn/kflpEZ5QDXLxDiR6LtiibgVpOyYFcFFI1SFQ0QRIfEZJSwvpJDpPvoO58xdg58692PnmW4jVxtjknJyWhyaKyntPiwCPqiKTzeLo0aO2sYUjoZCVIrWdLBHpYBz0IrRAGD3nTl42+Vf6L4NC1xWNIjoOv47aGGV0H10VTqREVpi9fX3Y89YehKORUlLi6RhHRMDkdE9ZIahfDdNky9L6hnpc7OzEU089jfb2TvgDZMHs/LxpP5Gi/agqPIqJrtajzlqvQlZ8lT44RfumDIGKJkDbb09C4tI5aDDx9r7j2LVrB+rqI7Y6kOMtOmqmSVJbudLXjHklYjNNRCMRHD16DH19fUx4RHo9PT3YvXsPSzX0mTPTWQZ8wSAKg91IDcSdgTc6GUzZqJzmgql19EPoPrUHqVQfPKEYk/9YfUhY7d+3D4V8Hj6vRghPq9qcBDfyB9S8XnsvjxpgWWzEVSzoePaZ5/DWnre5n71ezf4ZUIg700QwFEBfx2nOYuEa60wz3OJxAoEZg0BFEyCp/+iQYGDvgYPY9dZbqK2rh0LZ12nxy2rPCl8Fk4pTljjKi1E0sWvHHjbPJ3808ik7cfIMTh0/Bj2XgiRZMBUPZNXDqtN4+xlnoPIMO2MG7VRUxDJ1tB3agWBNHSSV3AdskqEA5eRLR6+kWvT7fBxz9UzzGYRCYZaap1137oxddwzTK6tITQOBUACBUAg7d+7Gr375LDo7LsGv+UH5SMicR/HXoDgQRybR6wYFmgo4RZkCgbJAoKLdIEzZwyv7I0cP4sCxY2hsnMur4lKczbLoosmpJLk7RGJRNJ89i2PHjuGW9bewKo+igvTF48hlGpHv70U4NgvwheD1SRjoPIEFa+6AYVHeQwOQKjOpDvFJ55n9yCUHMHvpUuTTaQSCISRTKWzftpUDTVP+xvkL5mPlipU4fuIUirqBUNhjW33OIAGZ1LAUI7auvo7VtL9+5hncddf7cMv6dcgX8lA8KmeySPV1Ikh9LQ6BQBUjUKEESJafEudwO7JvJ5764ffRWF/PFnLs7E0zXhWagJMMQOG29r61F0tvuMHOWOBVkS6YCDXMhSfZj0T/JcQaVWj+KNK9XTD0PCyPNtKwsKJ+MrQgOn/kTcxqrEXb+YvY+uoruGXDrWhvb0fz6TOIRGLIpHvR0X4RB945yK4lkVCUU1txRJcZokmwjTrtfWzqoFgkikKxgDfeeAOSbOHmdTcjT3u8HgmD3W2YtfTmiupH0RiBwEQRqDgVKE1mFGuROK6jrQU/+vPvIqiYULQwDFuvVZXkRwODVMIUmiuZyOLkidOIxmKIxiJIJQaRTWfhD0eh+XxIJgbg8QdRyKWRS8Z5IYGSg/VEh9jMvZ4sKenobj4APdWNVMHAqy9vRjZbwI7tO9De1o6GxkZofg3BcIilKrreYgd1W43OMWJnyGKKqjF839KAydnpo7EabNu6A+db21mNK/l8SPR2zNyOETUTCEwTAhVHgER8iqIikxzAj/7sO5BzvQiEw2wtR2LMdFjqzeRn0AKBJvSWlhaoHhULFy5EMpFANpPmRYMvGIZRyEGGCdPUkYp3TdNQnO7HkI6AdodNXDi+Ez5/GJtfewOFYh7R2hrEamoQolyPlCORUhvRH7lBWCZUzcsOBDO5n926Ub0pKwXll9z8+qsYiA8iHK1HLt6JQrp/ukEXzxMIzCgEKo8AOWSVhX/5wZ+h89wxBOrnguRBGUXOpj18hVwN72mPr9ROnvIBr+pFIpHgv2XLlrEvGVmEkmWhrPrArvF6nveS0gOXeMCywcWMGrrXWxnWg2Pg/DEUEu04fa4T7R1dCJMLhOHkQnRcIVz8iA0pTx9ncnAytrvfzeRXIu6Az498Lo8tr70GWdWg6Bn0dTZfL4jifoFAWSNQGQRI+ds4hxv1hYytzz2Jfa8/j9rZs3mlTnnaJIm2O2eQtcIUDht39U+vJAFwVG+azGU76zip7ThEWiaDWCyENWtWoe38eZimBEUCVK8P+UIRmldGPtHHNa2kEHHDoe849jYM3cDBw0fYVUQ2bWtJthAeERyBfAOJAF2/yeHlzOT3RM7kRB+riaGtox07tm+DP9qA+PlTdt9aRVic5X4mt0LUTSAw+QhUhBGM7c9k/3+h5Th++eMfoK6uhuU+2q+pDtobfXBkMhn4/D6etIkQbQ9oCthsuzYU9SLWrFmDRGI3zracxQ1LlyAQibG0nNNzyGZSoxdcAWfjF89hMN6MtvY4x0Gtr6dYnnakl5GDhknENNhhkBzRGT3b6qQskKD60yIxFmvA/n0nIBk6Vq4twtILAFuGki9jWTRFVFIgMGkIVAYBkuqOFHd6Hj/727+AYiag+mrsEF9V+KtmonOGCE16MqFDqZ1Kw8Y2lSdzeZIQaXLcuHEjDuzfz5Fi5jTNYaFRUTzQ8zm+qxLnxo5jb8IsFnDsRAsiwYAdD9ZZJBAmww/6TNIfy4dOmqGR1wy/fqa9t7UCZCRjorYugiNHTqOl+TyiTRuw9p5H7BRYM63Soj4CgSlGoDJUoM7U/vqzT+LMEQpkXA9YFNmkOg+auu0FAcVBpeDedpgzIkE6bxR1+DQvfD4Nhk5WsyYT3/oNGxAKBWEZpDY1YZLa2Ciw6pjKqYSDFgR0JHs7kOo9g7a2PiSTCXj9Wik4wljExosJN7xYmYFBbSr9yUCkthZ5Xcc//MUfYvvLT7PGt8yaJKorELhuBCpCAqRJvberDb/55U9QW1vHbg62dmrIJ+q6kSq3AiQ7swHlN+TZjQMj242gTOKzY7PY+KVYpIDPsFPsKArCIYqDaUuF/AUBSSuJiuC/oSURpTxKDCRx5PhphDjzA6k+bXzG+p8yRdhuD3YEsqveMFZB7/l5Wx0aiNZASSfw5Pf/b8xZtALLVq59z2smKiAQmE4EKkQCBF56+ocoJLvg87vJPqc3PmNpdT18pf1eveetPolVemwFShO7M7kTjxm6jnlz516x51MymnFGIN0ikcQzQh04nQN0Mp/F7ZFkZJPd6G87iqPHmpErGFC8tKd3lfFC2d0pEDVZ1br/3qv+vc7nupiStasv4IMsGdj6zD+7p8WrQKBqEChfAmSJxlZndZxvxr4tv2ErN32YeXrV9OLIhtIE6ViAKqrHlgBliSdviv+paSqH9XIzHowkby6OSI8CCmg+mzvHyI4w8tEz+bOrxu0+sx9nThxHS1s7wmE/JNMmtdHqbu+d2ZoEwktxcuuNdm25nHP7m5QDMGVEIzU4fWAX4t0XuAmumrhc2iPqKRC4VgTKVgXK6ipnP+b153+GQi4DJdoA3bXiu1ZEKuA+muAo6g2ZvvsomDOrMW0JJ51JY/HihaitrUWhkB+1te4EaRSLCNaTNW3lhI4rZgbRfmQHWtp7oPkCoCHkanlLYvJoqPCAs1gFysGnh24a7eqyOufVvOgf6MLBPdtx/6Ofs6XhsmqBqKxA4NoQKFsCZLNGSOjr6cDhXZsRiUXA0h9o/6p8Bdtr68bL7yJjFzJsIeK6LCecabLP29o1a5xNrMvvcz/RHqBCeRRzecypm8enadJnInQvKtPX5n0vo7+vC6l0AYGAkyqI+X301rkWtYQJcV5JpUztL3fVMKvGyVcU8GuaQ4Cf5TaWafeKagsEJoRA2TIFebLRlHVg5xtIDfRC0/yQLNsdYkIIVODFJMHpxSKTGLs/mHbYr0wqhSVLFmHe/LkoFsm688qD1ISKbEGnRMGmBzVNi20VqKVfeXEZnLHneINr2tN2Er2th1GwvCgW85zIlrB6t4P3+2hP1SEL+myT4rvf925lzpjvqAlO+wOhMM6fPoTO8y10cmjTeMZUVlREIDD5CJSxBGhz98Hdb8Dn8/Hq3J6cxI+XpLWioUOjZKgOHCTBFHUdt2681YmawyYhV4woXZZZaiz0X0S4vhHh+rkcMpryyZXrQZ6Q5Pjd+tZziEbCOHm2zfZ7o/08En9oumcV55UtdEcTGckwljItvfiOd9WYXlnSDD7jZIvP9/bg0J7tmLNwqUOCM7jOomoCgUlAoGwlQFql9nW2o7PlBIIBf8kinRa07h5Wtb6S+pMmdlVVWXJRZBn5XI7PkfM7zeC0WBjtkIkQLCCdTGHWqk2QKIwcGdSUqVqZWkmGK10n9yEz0AktFEM8PgjFyZR+tTFCGNE1tIBgP0qZDGZsGelq95bN9yzVAgHNgzOH3h5tWIhzAoGKRKCMCRC4cOY4MhmazLysyaEJp1oP11qRMNALBXgoGbCLhwXous4TeWJgEOQbaEsxV6JFsUD1ZAqavwGNyzbwBXZIzPLEluQ7MubpOPI6grVzoRsmUskkVIWG/lgoDMOFgwfYl/KiYQxJcdgdZfmWtg8UXwC93eeQTSXKsg2i0gKBiSJQvipQAC1njoIEE8sJTcXr8gqdoMbTsUSCJKkU9CJ8Pj9Mx7eNkqLKigKS7gYSCX4PxwF+ZLmSZKF/YBA3bLgfquIOj7HkxZF3z7zPRNu9baeQTsZRv2AZcpk07/+Rkc9Yas/hreBFFalK6SRxJkXVcS+ooLFGnpCyqiKRjGOwPw5/KOK2UrwKBCoWAXeGK8sGXrzQzNmtafVaOlypp3SiOt7QZE5O62T8QlawqseZ4CWgUCjC61U5UTClQSrpi0dCI8koZhNQND9mr75z5Ldl+ZlGRtfZt6D5QqDIbtlsli1hvZrKEvHVGsVGRLT/RypQ+kfji3wi6XXYsLtaOTP+e9OCKgPpXBbpxOCMr66ooEBgMhAoWxVooZBDX3c7PN4AB72eDDDKuQzen7KAQr7AcT1pgiYBxaIUPrrBOexI6kkmBllKHN5WC5Qxw+Cg2cn4AOat2AjNG4SbMX34teXx3kl8TOrPfAap7nPwRaKQTIBCvxkU0mzMXdARLWQQ7aS4roqdJMCKSw9FAX+gwDIsZJIiUe6IUSA+VigCZUuA6eQAUgN9kCmVC9spVmgPjaNZLP1JEgqFAlt4kvELOb/TXl8+nwdFg6EUPorHg2QqxfuBJf9AnsxJEaCgkE/AkFXMX30XP7V8FZ9DoKUGulDMZ9nohcxXiPwMMvQZrsocuvyKd7aNqKP2dPdOK0nyK7WYWqqwjjefz5TOijcCgUpGoGwJMJNMQS/k4ZHIx620K1PJfTVm20gyoTx2uXwOfn8AFjut2ZdTvj+vqrI0SKSXzxeYFC8rjMzgZRmJgTjmLFsLLRiBaZVzHkViKJu+s8kBbhsZBLGKWNdhmgaricczalyuY836eG64DNjy+mBvaVqcLLm8ai5qKxC4NgTKlgBTiQGYBiUotZOTXlvzK+eudCoNr8fLhivMf2T5WSTLT1vyI+MYcocgi0hSk7rqPEJAgg5DT8MwVMxfe28FyNPEVLbsVixkuYX0idSWpmHxV0yIE+h+UiW7ZDiB28rmUgsy+zkSRtmcmwSZcKxw1i+bHhIVnQoEZgwB8lbLBH5rhXyG9ysgl7Udz3X1Kak+6Y/Ueh7VA83v4/ifhCVN8IV8nn0BXetF2hfUTQOUDmk4ASqSglT/AOoXLoc/2siXy+T/V7ZTPrutM7Y2ATqWwkSBZDA1AZ9GVwXK8VRZsKxMGqSfniTbVsQJNyj2dY1OcbNAYOYjMGPYY6LGm+zszTob2yKPiKBaD1JfkuqTnbWdbAWkEjVMA37VX1rEE0KEE303HG+ycMznday+qTIsP0mmJeKi1V0xNQiPMgaZc6rDq40bIlM7qfDIhBiVNObI/YXao6gqBs6fgJFPQtLCZEXljJXKJP5qnTNEu20EppAA7YmDZl97j46XzyXc+3t60HexFclkEplMCtl0Anna01MU1MRqsXT1etTNmc/X8+qUDRfYVI3PkY+by38kqAyXaEoPqfA3wydgSmFj71NRyh4ZuVzOjgU6LIM5EQJJdaQKZUmIekaRkOvvRrRxMWKNix2VV3lPdkxpzqZdpr8XHq8PMHXIoOFOIwcwHT3xVaXcyxzhCb/SeqKixhz3uGXx78/IJdB77jgaV9xe4b8g0bxqR2CKCNBeTTIx8ZRhT6i0Kk/2x7Hn9Wfw4s//CZaeh2EU2D9Npgmcr2VqgyfUgNvv+xA+9vmvIxip5b0+ysdGZEr7Wh6PCsmjcLJzOlfZOzSjD9NRSZ/d1CyQ87vm85UmbLpWtwwoHgUUDo3IkwnUMpFIDmL1hk8wPdp7Z+VNgFR7kvkMI4tsog/+IAVK1yFZMiSFYnqShOiMJUZodHzpLOFGhMkjjMKgOclox76jPL+hBRG5QZDEF6qpQWfLIcxacduE1MXl2XJR62pGYEoIkKaW4ZPzuZbTOLLzVZw+uAe9ly6hr78LwaCGQCQASfLxloxkee1+kCwYkgEjn8fO536EMwd24tb3fwQ333E/5i9dUfLh1nwaR/MntR/td9EEJQ57wiZfN5rXVa/tDkG4UH8QVl6vxlFiiAxl2UIxlYASno2GRSsrQvpzBhHTWiYxCKOYhsdTD0lW7Mlc1yGbgEzZLhxie7dxw0sBygJPxEfLL3fh8G43leF37u+Vxki0phapvg4k4x0I19rpsMqwSaLKAoGrIjCJBEjeeJSOyFYT5XNp7N/5BvZueR7njr/DwZh9fg2qX8PsOkqyqrD7Nd/Bk5FDYOS/BgUeNYiGphCyA5fw4k+/j5ef+iEe+8p/xAce/yw3KhyOQVG8kChCh8f2X7pqa6vkAgp8TZkgZDJ4dDb7aIIzdAM1kQh8moa8WYTskZAeHMDcm+6HonptiZDJssyBoqEkAfl0AlYxBdmKIj0wiIFCHqmCBZUlYHl8tjC0T2hZ8Pv8tIrg9y5ZlDlKl1ff+flRvkN/MATVyqO79ZggwMtREp8qDIFJJECb/FKJfuza/Cy2b34e3ReaEdAUBMMRhGPR0gRrr7xpjnJVbe4roeuetVV03kAEjaEICvkcfvUP/x3zFy/BqnWbEIzWQdZCkMwULKgV1i0Tbw6rM0misSxQhu+S9DfM2oXUorV1dfCoKvR8kaOiFGUP5i6/lR9YORO7zYDBWD3k0Cz09Q7AWzsfS25Zj3mWhr173oZuFeGBWhqBYyLuDE2Jg2ePeVX5f0Gqc4MyiFDQBA+8Xg/ibWewdMMHnCVt+TdRtEAgMBKBSSPAVGIQb77ya2x78WeId51HNBTE7Ma6UqBqUq1c60G3ejUfNDWD55/8e6y8aSOTajRWg0R3AhppT6vYCnQ4rkRiXq93SCHs4kKRT0wTDY0NrM5TZA+S8T6EGxYiEG0YXkT5v+fAABa0UC02PPa7MHXd3kcG0NfVBVnxAhZFO6G90PJv7mS0gDUEpsELJ03ToAa8SHZ2IZvogT/SOBmPEGUIBGYcAtdJgC6pybh4/gx+9jd/ioY6H2bNnQPT8MA085AsCjtFjyHjleGS3viwcCUbIsFoLIzWo3tx7MBurFl/F+pnz0Vv+2n4guGS4/P4Sq28q1yc7JbxbpXz1sbcPZPJZNg9ghTN+UwSi259pOLAYA0DRbexDPgDkdJeH2GgBbzwqBqsQh6SOvHxWHFgOQ3i8WFa0DQf/JoPJPEqRgqDvRcFAVZqp4t28ZbdNcNAky5NpHScOfYO/JEockUFZk6nsLqARYYHCpvnX438uKxRDAzoPvfPVBT4FGDr87/iZzYtWQGzQCt5l4ivuSllf6OLEeNMXUKLDUrk5xyErz8QxP5DBzGQTEIvJuHXAqhfdAsvTtzrKuGVWs2efxLtDdt70jTB0xEIheH3hWCY+YprNzfwGv+j8Hm6qbOWwCpmAFlDkSIH8e/rGgsVtwkEZjgC1yUBUrZwOp750V/jpV/8ALWN9TCLCgaTGUQiMhTOJzfkEjGklxsdFZq8XSK88goLsgFWZZ04uAO9F89h1dr1eEUi/SfdJ0jwSswuPxPQNMTjKfR2XoRfNTB3+T1sFUqZINgE/vLLK/KTLKvwhSOI91nQHAOXimzoBBtFayVdz6Nx8VJkdQvF5iMwFQ2RetsXd4LFicsFAmWBwMQJ0LI9qIisTKOAn/3gT7DthadQ3zAHqizB9AGy4kM6mUYoHGKfM/bsI+vOMVWgEjKZNDvh0v5DaVvGtmUoASmZEmc2kIq9ePnpf8Fnvv4HCMVmwyhkoaha6TrxZjQEJOh6EZJpQFY0LN34EJpuvINlZ86nOCQsjnZzRZ2rr2/A+WZSzbtyYUU175oaQ45ExUwRS2+6F7c+9nn0tB5HMFaLsCDAa8JT3FQeCEw4FihJC3Tk0kn87fe+hW3P/xKNs+ZA8cglk3vyNQsEA0hnKMCywQlE7cAbJWq7DB3iRc3rRS6XRzaTBV1Lf2S0MdxKgaJ3kKQXidVi3+vPo6e7G8vX3Y5sqp+dnIeY87Liq/sDxe8yKTqMhN6+Xtzx0Efxga/8Vyy8+T6oXp/ttjKB2JiVAGZd4xxY7Cs54eFfCc0ftQ0mb1pYiDXUQVH9mL18A8IcGWjUy8VJgUBFIDBhCVCXVHY6ePHJf8Ch3VvQNG8e5+OzVZCOGGFZbE1GdEf558LhEKekIYs7UnGOPOgcRScJh8NIp9NIpdNMoLSHxVcPu4eu9Sf/0qMAABwhSURBVHp9SFop/OYXf491GzZi3/bnEJZMLps384ddP/JZVffZSVyeyaYRjTXhw1/8tiMtk8q42giARpOEmqaFduAESvl05XCsuiHCDbZ0NoCpm7PAab+NVXWCIVpdLQhMmAD5BsvCiYN7EYsG2dCC0hJReDLbE9AhOXJd8Ho5ZVEqSSQYtlWgY6hBKd0MRXSh67KZDJKDCQQCAajakIO2S56U0DRaE8Y7215AU9NizJp3AwqJXqiUHLdK44KONWBJipZlBYmBATz8xBOI1NShaBmoTgNIe1Kfs2AJFI+XNQzuPvZY+FXLeZPyRvr8qJ0tIr9US5+Ldl6LCGAZvHdy06a7EO8bQD6bZeKSKZ8YZRqgyCyOBSLZiPoDfo68Qfnqhi+2XTIrdQJJe5yl22LiI/LLZrPIpNIllSirRplmJXgkH4IBP7a99BQCvhD0gk6pAUtWqaVyq/2NIiFfKEJVgHmNAZZ8uK84+3e1gWNLvA1NTQhF6tg/kBC4YixWESzUdvpdUo7ISN1sRKI1TuuraFO4ivpbNPVyBCYsAVKecPr3kc98A0bRwu7Xn0Vfdzc0nxehSIxLHz6hGGR+HwwgmUwhm8vC7/eXajD8utJJJ14/RSsJqR4mwcFkAj5yhCcDGSJZojlD4RVrJjeAtrN90GQTpkXZ0HlGG15c9b53FhSDg4O447bboObiMItkMEREWJ0HtTsaq0dD0yK0nTmIsKrxgm2ssVgNKNGyIF/U0dC0EF7ykXRcR6qh7aKN1Y3AhAmQpQdDBzwKPvaVb+GhT3wRh/buxBv/9q9oO3UAdQ0NHErJXT/SxELqzVAgwPuBuqpyklY6P6ZVKCdes1WioUCQQ3ZlczkUCwVWqzIRyjlYVhE+bxBWaA4yA53w5LLwBWhyd59e3Z1LeQJ7471YuGgR1q1di4KsQaIoKIQQz3LVh5M77pasugWnj+xBJBqz947HUM1X+ghyiV/XDcxZtMxuLgevqLb94UrvadG+0RCY8CinYLkURotM52kOJanvzgc/jO/+5Y/xyBP/HvF4L4p6kZ/l/rhYKlMoaasf+WzOtgp9N5IipyRHJUrSnserIhwJswRIee4omomdwNODYngBHnji32HD/R9BX38CslHk8snycczpnSruWEfydY7VacVYRNB+KhkgJRKI+CJ44JF7kU72ITZnOWTZw3a8bpDs0QZFpZ6jbrfd4oE1t90BxePhPWp2A7G/rNSmj9Eu/iHY2gBLwuKlK+zrxvzhjFGMOC0QKFMEJiwBcjtH8Z9SPCoe//LvIxQO4+kf/iXq6mfZflbOj4nIkIgsl88hT5LcMOOWq2HnEimrRT0epFMppFNFmOG5uOX29+MjD92LrpvX4tT+3Yh3n0Gsrp73It37Ri2fOZYc6MGqWbrG5/NXxH6QJEvI5inXoolHHn8QAUVHl6Rh4ZpbS+qtapzjuM38n4WlK9ZiwYr1uNh8CNEoBWpnwXjUoVKpJ0noJS2MXiwgEI5izmJHAhx76VipUIh2VSkCE5YAx8KJduZIWnvwE1/Fpgc/gYH+XigjI+hbFu/l8Q+PpK5hYc7G855Ud2QpGgwGOdiVWkiio6UFFzq6MLuhHp/8yjeQ0j0oZNJ8HblEjFUu2axSeqBUMslR8CkGIs2NY11fLudJ7WkUi0gnU3jgwYcwZ+5cdLe2Y/n6D8IbrLMJkFNOVaXIA5ARF/Wz4sWDj32eNRImipxwuVz6eLLqSaRPi8RcNos5c+ejbtZcZxVQjcujsWY2cb6SEZg0AmSycebUR7/4TXiCdTDyadY4uT9YirxBaXpUylZwLb8xCpVGq1ZFhjcUgF/Korv5AF56+UVkMgls3HQX7n/sC+juS3AgbpMyn5K20zR5H5LVnhapByXeVySfQ9pPDLp+itdSp5kyOkjlSxOaYWKgfxB3v+8urL5pOTpbT6J+6XrMX3MHqz5dkndVgTOl+tNVD9vtwe7o9Xfdj2Xr70Iq3g+ZIhyN4ac6XXWb9udIZE1NBJjBsvXvc9TDIjrOtPeDeOB7hsCkESBNqER0dNQ2zMa62+7GYCLJ52iV6f6Zw967567llTw4DFmCqvThxO43sGfnflDZH/30FzB/3d3o6e6DSo7OjlTHFePqScgV8siQRWogAK+mMUGaPAEO1fNa6vSe3kMNlID+/gGsWrMWN999E/ounIYWqMeN93+CcVAsSlnsXMiv1f0fTfUf/dy/R870wjQdyXBYPNr3tD8n6Xfybm2g3td1Ex5vCOvvfKC6B4NofVUiMIkEeDl+626/G0XK9E6T7gRVneO6HgZM2Q8NAfiyF/Da5qdx6mwr7+d8+ivfhLdmCeJ9STshAj+fKRp6sYhcJotIKOxkBp+i+k1Fm9+lTFJ9JhIJNDY24sEH7kW2vxeDWQ/WfPC3oahBe2+zSi0dLx+ZQ59I4lu++lZsvOeD6I8PsB+p68c6rjH4Lv1RDveTQVsykcaytRswb5FjADMEj3gnEKh4BKaMAJfeeAuisTomnKlQt5Eak6QZUmh6PAayXafx8r89g0s9PVixaiUe+fw3kfM1IjkwyOotWZY4LilZkIZCIVajshr2GkiBHfLZaMJWO9oxcCRWP9pq1ukZN7S6dy1XcwXax5Jw70P3QJEKSLR34ab7P4VgzWyuDO2dTkU/TE9Lp+opts7+Q5/9BlQthGKhCBonNKoq9qCmsQU0IBl55It53Pvo5yq2uaJhAoF3Q0D53ve+9713u+Bav/P5gzi6bwf6Otvh8/umwLqSCNAC5TGz4IWMLHp7elE0NdywbCkWLlyEnBzAudazKAxe4sDP5Evo9ap2iDYij+s6SOUr81RZKBaRzWbY/YPCv9HJ6y19vFVjSQMSyNl906aNWH3jDehoPoXZ6x7EwrX3jLeYqr2O8AtHoshmUzi4bxci4cAUjNWZBq8FWZExMNCPJTdtwuNf+F3bYnumVVPURyAwxQhcmxvE1SpF5CJJWLb6Fpw5tMf+cdmbT1e7c4LfO1KgZDIFeswE3tr+EmrravGBBx7A4x/9CDSfhlef/v+Q7mpBNBxxkqGaIFeBCR0cVNq+hwxNCsUCpxeibBekSiLi86gem/zYyV+ecoGL9i3pIN/I+poYNqy7CV0X2uBrXIplmz4EwwRGGuJOqM1VcDGrPGUZD33iS3h7+0vIpnrhC0ZLknXFQeCszPRCAUVTxqOf/4azT0/poaZMIVRxMIoGVQYCUzri12y8B6rihVUsgMw3WWU3WbgRybqpfqhMS0Uhm4fR04zNL/wKb+zaA80r49EPP4IvfvO7iC7ZiP6BBIx8jh356d4hVaadfomjoxB5OY7xrmqTrjWKBshcnAJ7p1IpFPMFeBQPq1NDkTC8Po0zXnCOOWKdCfLrtcCigOLyyMimM7h5w60w9TwKBRM3Pfg5yJIHMjfoWkqujnvcfTpqbSgUxWOf+zoGExlIzsJiUsfrewxpyRiGraiB3p4e3PvhJ7DsxvVcM8JCHAKBakNgSlSgFIOF9tdidQ04euAdXLp4jtWgk6kXpB8s/agp00GhUEQ6k4Ely4gFNEj5JE60nEfRG8PCeXOwdMlCrF2/CYlsAaeO7IdC2RB8Pruvnd89/f6pzlQmZZvQDQOFQgG5PJFKAYah80pZVVX4fBpbjyoeBZJsBwHnCWYaR4/bfpL+KN3UPXfdhu6LF7Hqvk+jZvZiromY1K7eIYQRDwHLwrwlq3DuzHG0t5xEIGgbDrk4X72k8riCxmsifglNi2/El/7gzzksoV1zQYDl0YOilpOJgGTRzD3JBxVJqiVFUXDknT34q//yNcyqD0JFCK5v3vU80p7YLRi6yVIZqQLJn48S8RJ5eaw8ClBQ8M3G2vd9APc/+EEsaJoFQ/Jg16vP49f/+D+RSfYhErMj37Mwyb6CTiYLp3JUfwqXRa9kHMHPHekrNlFV6vU0fNi9hDEZtgz0D2D9hg1YuaQRscUbsPLO32K7GLGgHwbWON6aFD5OltDZ1oL/8e3Pwa+SzyoFbp/0n8c4ajP5l9B4ofFLPn9ZHfju//MjzFt64+Q/SJQoECgjBKZEAqTJ1/6TMKtpHnKpBI7t3YZAmLJF6A48RCjjQIrUkTQNOT5sFFibUrfksjkU83moqpdX65RQl7lckmBYElTJhFrM4uyJEzh5vgM5SGisq8GKNRtwaTCNi+fOwMok4A1SnkITqqIyiVL+Qdo3JJUmSXsu+ZV0mlznUgNLp8fRkkm9hCYz05LY8GblgkbUz1uC1Q98FpA8bBw0PnAntUplXphtVBWO1SLgC+OtN15EKBJiK2PX0tZeeJVPM/n3UHJvtyMEDSQy+PJ3/htW3XIH/17KrU3lg76oaTkgMDVGMMOc4gmET33tO0jEe/D2lufQ2EThluigyBtXZ0DH1pMJzzDtDN4UYo2iyZDhCf2AyQ6UVvCOXwTvxZkSBTpOAfkkPvqBh9CTN/DUU0+xs/zCxcvxX//mZ/jJ//oeWo7uRd3sOfDIModEYzUoE6678ndeS2xtG/jYkgHrTJ32TPMLEb2eh1xMI1DfhJX3fQaQNQ7ufEUIummuWjk+zu5eezy+/9EncOTQHhzf/RIaZzVB5y6f5D3saQTJlBVAz6Kntxuf/J0/wm33PGxLtqUxPY2VEY8SCMwgBKZEBXpZ+xyLUEMv4J/+8r9g72v/hobZ9WxwJlFS1qv9CDlupUNyBmU3l9mC017d0qRE1mtDUWjcZ5MKtqvrIj71te/ig5/8Cp/u7OzE+fPncfvtt7ELQz6XxpP/+0+w47UXUFcXhd/vhWE6e0JuQTPyldSfMro7O3HbfY/g07/7R/AHa2Fw0AETMie7vfriYkY2bYZUqr+vF//z219CNtGBYLTWyR5fXpi6ak/az+651I2P/fY38eHP/a6t1HUCVLxnKowZ0s+iGtWNwNQTIP3cmAQpXbuJX/zdn+PVZ/8ZjQ0xyFoQlkE0aMIaiwiHCWAOl7oaqRJ3uqoeepQpA7Klo6vjEu597Ev43O/9HxwDk2I9kt+ee7iTA31+9dc/xjP/8nfwGGnU1jba6YJo1V+aJFypz717el/d9nECKlmBKSlI9V5E3eyl+Pb/+imCwbAzQVswJTtEQHlN1dOL59WeZlo6W9GePnYQf/1HX0VYk6AGIqw9sD0/J4AuDVrWiEzPbmJpXJsSTJlU5BkM9MTx6Be+hY98/huwHWcokKCr4ZhAW64GnPheIFBmCEzJHuDlGDj7ZXRSkrBm4908mRzYswOKnuHsEJy9bqzfoWudad9u/2ydIuknTOpPPniTXwGsPDo7L+H2D3wSX/r9/4ufKfN3Q+RnV8V+IN29dNXNWLP+NpxrbUVbyyl4PBY0Lz3Yme7o0rEI2n76lP1PE1ppUpNkDl482NcNLTYbv/fHf4va+tmwTIOtUUmsJvl1LCinrJIVVzCNFRP1jXM4S/qu138Dn2JC9ng5qDqr3R2jkndrOi9c3LWTExxhKvfc+HlUIQuQFQn57AASAxl86qv/GQ9/+mt8XkIRQwHBxUh5t/4T31U+AtMgAV4OIq1AaXo59PabePL7f4Z091lEGufCoyisznTXpXTX2D9PumrYtxY5fMvIZFLo7x/E+x/9Aj77jf/MLhKXP/3KT7RApyDaiizBNIrY8ptfYvOvf4JEVwvCoRh8/oDtIDzscW4pbi3cOg+/ZLRz7n3uq3uN+7l0vyvqul/wq4V8NovB/n40Ll6F3/nDP+f4jTqriAHlPSLoy6pYIR9MFpPIapL+ZGzb/Bye/Kv/E7GgBi0chWkQq9mNdfvMHQv2ksw+y/+bFufAJCMtymc5FcfwZ9NWOPmnJgZ7UDRU/Pa3/hgb7/8Qj3GJIyPQWk6ZimqIMgUCZYfAtBIga4NAXoK0b6eA9lme/9FfYPe2zfAqJiLRKBSFoqmQXEcZBiVI9k22FpVVmDStkJ8hlUE/ZgnQC4gP9EOWw/itL30L9z3+Ge4IKmNc8hBLWcTM9tWZZD+7S+za/Bw6287CAxP+UABenw+SbPv+kTqX/3gmJGmR/AgpI6I7N7pTI1vUOAPDFQfsj/w0xxCImuHkrrB9C2myMnUUclnkcnnkDAu1s+bhjvs+goc+/kUEgmEnt53Eas/L5duyG4czqsLOkGNRyh2r7+x8HT/96++hkO5HTV0MChmW2CPZlrggw2TfVB6dPCp4LFhAKp2CruuI1sR4XI9rTE4YEdIUKPBAR19fNwINi/C17/x33LB6HWfqtJ37aawovEM84eLFDQKBCkRgWgnwMvyGSTknD76Fl371E5w6/BYUIwu/P8SO87JHJk0UTzC8siaCsWRelUtWEcVCHqlUGnlTwsr178cnv/QtzF86eVHt9UIWJw/uxcE929FyfD/i3e3Qc0kYFoU+80BVJFiql0mRfPLsPUZiZZLIbHUkfyCydg6aFKnp9h9ZtZp2vkJdh6nrKBi2D6UqS1C0AGob52HestVYvX4Tm66HI67vou3X5ZYrXqcGAZsMbazJR/DX//R9HN+/nRddWiAAzedl7QG5g9Jyi/QbkrOo4QUYuatQjsbEIMLhMLvWlFSVk1BlVz1OY8/Uc+ju6sLKDffjy9/+E9Q0zLJdg4iqhYZgEtAWRVQaAu8pAZLTOklUri/5meMHsGfrSzh7cA/i3Rdg6VlYFNKLrpFJxjE4f5lpSpzBOxitx9LVt+CuDzyKNbfagZ9JilJ4Irq+riKiItpylUX5QgHdnefRdvYk4u2t6LnUhXhfLwqpXhTzOeiGDqOow6RXw+RXIjeaQN1cc+xMTxIkrcKpTV4PZJX8D73w+sKI1s5FTW0NamY1oWHuIjQtWILaxiZow1RnwydPMaldXx+P527Ce4hkbKn+7LGD2L99M04feRv93e1IZ9MwKNmzpcOryFC8PtZkUBAFUnvqRZ2lQNJwXO0Yq09pHF3OYbZ+g8qjxVcmlUAyncV9H/ttPPHl34fk+sU6Dxyr3KvVR3wvEKhkBN4zArQlIYq7aYt4kjzkklgs5NB+rhnnz55CT1szEoP9KBZ13osLBkKY1TALTTesxLxlNyJW2+D0j8WWkERZw4w9r73veOIb7mIxTKV5WakmCrk88vk89GKOA2STussgic50pDvHUIflA5miy6hQVZocNaiaD4FAAIpytf0h24qCcHMPMam5SEztq7vooMwjJNGTbE8HSXbdnRfQ03EO3R1t6OnqQGqgB8nMILLpNPKpBFL9fbzAoewLFIbsWg77qUR4RIKOYZZDiJZeRE9fH0K1s/H5r38XN9/1kP0ITgZNyzehKbgWzMU91YHAe0aA1QGvaGU1IpDLpNB27iz2bXkBu155GsFwkIM2jAeL0SROPkcqdstAqp/2uiV4NT8SyQQkj4aN9z2KR7/wTdTWN47nEeIagYBAwEGg7AjQXY0L6UeM4ZmCgKuebDmyBz/+mz9DPN6DTLwLXo+CmoYmqF6FtQHsfVcyIHU0CqMqFhyZz96AZPV/PpfBQDKDUGwWLL0AfyiMFWvW466HP4YlK29mKOi3IX4XM2VUiHqUAwJlQ4Au8RGo4kdeDkOruupIXJXNJnH2+GFcamtGe+tZtJw+hp7Os5DNIoIBPzxaCB6PrZYk1xuW7OhG2jN2PhfyWWRzBjyyiVgsxjZUvb19CMZq8cGPfwl3Pvwp3nMOBPzw+sMOyOzLM6a7TnX1hGitQGD8CJQNAY6/SeJKgcDMQCCTzeHMkT04uHsbWo4dQLqvC9l8BqZJ+9keeDUvB3NXPJTJxMuqzeis+dh4z0dxsfUodr78a+RMHXc++Dg+9OmvomHWvJnRMFELgUCFICAIsEI6UjRjZiDgaipGaikKuQx6LrZhMDlgR+5RfJxXUtN8UP1++DUf55jUfKFSQ5qP7oNuGVi59nY+Z1kG+8ayy80kWDqXHiTeCASqFAFBgFXa8aLZU4eAuxfHZGi7hbL16HifSK48MgVlLxmN2v6vtDNIwRZEwLvxIimuEwi8OwKCAN8dH/GtQEAgIBAQCFQoAqU1ZoW2TzRLICAQEAgIBAQCoyIgCHBUWMRJgYBAQCAgEKh0BAQBVnoPi/YJBAQCAgGBwKgICAIcFRZxUiAgEBAICAQqHQFBgJXew6J9AgGBgEBAIDAqAoIAR4VFnBQICAQEAgKBSkdAEGCl97Bon0BAICAQEAiMioAgwFFhudaT7Ko8ys10XhwCAYGAQEAgMJMQGErCN5NqVaZ1sbMCSIj3dePsuXPQ/H7ceONaeCDBMgxAUgCZ8oaPmgKgTFstqj1RBHiZZFoc+9O9t/1CO7z+IBrra9xT4lUgIBCYYgQEAU4iwJJk4Z//37/Ctv1ncMem23HkwBYcOt2L//anf4F7br3RToljSSMye09iBURRZYEALX8kmGhrOYw3t+/Dm1u247k39+Pvfvo0HhcEWBZ9KCpZGQgIApzEfjy4+Rf407/6CV7cshXLm2KA/il8+O7b8Mnf+iL279+KufVhOCneJvGpoqhyQ8CO6amgtm4h3nd3GOeO70LXuTbODFFubRH1FQiUMwJiD3ASe+/QO29D9tTZ5Eflevz4zOd/C90X3sHeE2f5SSbEfuAkQl6WRbEEKAGhaC0WL70Bd965CfCo8IByBYpDICAQmC4EBAFOItLr77gbF0+8jsc/+TX873/8MXJ5HYVCHpQJXPXYUAvAJxHwMi5q+C5wPl/kxLe0OywOgYBAYPoQEPPxJGK99t7H8PyLT2PF0hiWLVsKn7eIX//rzzB79d249cbloHxu9CcOgYBAQCAgEHjvERB7gJPYB6Zl4b6HP85/VOzf/PE38VprEc++8o+YHfXBskxIslhzTCLkoiiBgEBAIHDNCAgCvGboRrnRMlGABK8k45f/8D/w9y8ewItbd+CBm5bwxdJQhtNRbhanBAJif1iMAYHAdCIgCHAS0TYkFV4J+Pk//wAv7O7AK1u2oimkTeITRFGVjYDYA6zs/hWtm2kICAKcxB5RJWD7sz/Gj1/Zix/+4PuYpUlIp1IoAvB7NaiqAkkiN3gx0U0i7GVZlGkBsjMMvJrCRjBe1f45GqYJWbJgawzEWCnLDhaVLgsEBAFOYjd1NO/Fl7/6DVwsBPG+m7YiY6ZgFj2oW7IeLz73cyxtDEHicDHC3H0SYS/ToizoRR09Pd14Z+8hoNCPLVtexdr5H0FtbR3vF1PDJMF/Zdq/otrlgIAgwEnspfNtl/DQxz4Ff7AGhl6AoVgwBvtwssdEKBaBJOmAJSCfRMjLtiiS/lKpBH7zb89gwAjiu3/4n5C+dAZbtu7Axz/+GGTJ1haUbQNFxQUCZYCAZFkiNslU99PJE0ewZMUaqKTWgszqrql+pih/piPgGrxcKeKRNTEryq/8aqY3StRPIFBWCAgCnLbusmCJOKDThrZ4kEBAICAQuBoCQh93NYQm4fshIZtW/WJZPwmQiiIEAgIBgcB1IyAI8LohvHoBZPkpDoGAQEAgIBCYWQiIsCQzqz9EbQQCAgGBgEBgmhAQBDhNQIvHCAQEAgIBgcDMQkAQ4MzqD1EbgYBAQCAgEJgmBAQBThPQ4jECAYGAQEAgMLMQEAQ4s/pD1EYgIBAQCAgEpgkBQYDTBLR4jEBAICAQEAjMLAT+f7fIywOJa6VbAAAAAElFTkSuQmCC />
1.at point A
2.at point B
3.at point C
4.at point D
5.at point E
6.not at all"