fMlmPqJ3kmcyXROhdhQ
5IWkYLgOnrhjMda+W4dtnzbinU+O4q7lM9HWFctp+SM388S8COnqfmJ6JCEeNCdEmZBqpoAH5OLHKnrkPvBCrpkng3r7aY8pZNTY7m2sEyGrvQnZjLLkxDlDQCDuuJg7uRKrFk/GK6/vwbqPjuKhm5bAMVy9A/JAghblrJoDzviigu5HP6eVs94CoDsjfw+iLHSWtEovvpv8nXDsqIPrF0/EqmUz8da6Pfh/b+zC7dfOgqH3lCo+XKCj/3WzhpQA9GkTIgatxVaTD1bNKRHkizlHgHSqRz+yU5S3Vwsr5uygmdtcpBCwAhbvkq8NAAAdE0lEQVRWXzsXCAEf7jyJk2cuIKDjyeX3M+xW0VlqhkdAcvs8OHcPAVM5sKUJaQXwxN1XAhUBvPPxMXy05xjKw8Hi9PPw+UI3CU4uLX0SD7qdrHV00ZsLz1LPSF4PvsII9ImAjl5K1nQSSG1TzlwW/X1B+iyQT44sBJRAPBrB8sVTMGrSaDQ1tGJL/WmMCtIGa0nV18hqQx+18SxvJND+REkfN6V7Sm9Im/BXykJ26RZb1PfR/iyGi1gkipuXTsc1S2sgz3fhl+t3w6Qosomo38WEUTdfSEOs0+y5LM3FJEBF0dbM+UtRwDT8jVSIOQozJozG9QsmA53t2LSjAQDt3cJ6afifT3HXwJUKFUETX71zEVAq8IfNh7H1cAtCJQakvxt3cUPUZ+vTJB6spftEj0/mLwL8zsqbZyeFiQpDYtWVs4BwEB/sOoXzzR0w0tReedNQrmheItARdXDPilm4YuEkRJpa8NwfdiBglQK0v0s2LFp5iUrqSvfZdT2acblmpvP8xxgMqQxo32bPwdkT5cvlMrWI977qRY0UBs2wd8+ys1yP1L4taOcWF1FHYVntFJSNqkDDiTPYcfIsSgI0l56f/dGTSqp9dt5NNHVjJLZnz1dM8rXe0gWqRoXxp3fUgkLr/m5TPepIPq1QUekYT5jT+7dP4nF50kyV/eU58hlGYDAIZC6JmecwmHpzmkEioAQMGULEVpg1owJz50yFvGBj265GBGlLVj4YgWFHQKGjy8b9Ny7BjPkT0XLyPH771qcoDwZpr5Fhr91IrECaxGMkVp3rxAgMBgFWBINBbbjSaKuUcmFLiapQENcuHA8IFx/uOY0u187P1bTDBSaXmwMElOYWtmNhRlUQj6yer8NP/Oub9Tja1I5Q0N88jgc8PcFPSTz0qhitp1lZ9wSNvw81AiSmblZGD3qzOeWvxB/qdnB5A0XAWyLq6CCGQpm4bl41EBbYeewsTjV3IWiZ0CtE0ljCN9Cyh+J+b3VLhiX1UM8pFXqGxXDyvhCgaWAKsikRi8XxxVXzUDVzHM4cbsYL7+1DRciE0lNgAb1KtK8cCuWcDntAsqj3wUpNtJIHENNoJObD6TsTkEKRj7xqh6dTSZ3SmlrPJyOzBiRCplNuLNOZQTlEqSkKIj2qmGNj4axpqBhXiebT53DgeDOmV9cgakc1+cjKS3xI2pR4WWWzLMJI40R5U8Zez8lmEZxXKgQcdDoG5kwZj0dW1eLH/7IZz6zfgS/dMR+lJSZcm0LZZ0eDparFcF7rJh66EqmJBxPk4XxSXDYjwAikjUDclphSXYa5UyuBLomdh5pgkZNwnlo70m4435gHCBDRU7BjLh67fRHKp5XhQN0ZvPzHY6gIB0BB1mXqd3EetDF7VWTikT0sOaccIZDdsZunIHJUVc42hwiQ3i4PG1hyxQQgrrD7UBMcl6ZhaO+d/Dn8uvqf/D7Kn2fXX01pumX+7Co8cNNcIG7j2dc+RXu7g4BhAqKfCYb+Mi+g630iQR2BOgV1Z/rP0Ju+MEcpoOeeN02hnTZp8YJewKDnDn11PfAm6L2zlAFhSP2yIq8wHi0PHMfhTGEaFmqnlwFBA/tPtqItEkPYLAUcB46RHxvGUTRemufz/svOrAh1DYqnRnl6LGzw/WQ4n2++l+1SAFnXxVfuuBLPb6jHjl3HsXHbETx44xyc7yRfkEJ+Lp4+Jb7Qn9d3n8Tj8odPGfp05PKrfIYRyBUCWuyylDl1eT0Prr/4SrqQFUGWgBtB2di2i7nTJwPlATScbsGZCzHMmlCCqCsTL/MRVNkkVSFyoLIcWEqTGO3noYU8O2wmSf35dHIEpKEQiwhcs2AsVl83B6+t/RQ/f30H7lk+FwHTARGTBDNMnkkeX0nXesdmjDx+yFz1gSGgqbPmGYZnni/o0cfAsMmXux3HxdTq0agcU4rOtiiON7UgZAnoDTLypRFZrqcW6QR/1haPLOfP2aWPgCUNuIjBNEP4xt0LYYwOYvP2E3h31wmUloahCn5tS3pYJSUepKSVoaBXAvGgMD00+a7sI6Ctdr75mAMQZx/g/MrRhUTlqBJMnVgOtEdx7OwFCCuQWDGQ7nhr+NvcbXnLQlU0odb71iTmW7KQJ2cxOAS8wY2B9oiLG66cjpuXzYC8EMUv3tgGRymY5LogC5UeetPi2qLTT1fsZ6rFT02f/vfBPRBOxQiMHAR8eWaZHjnPJL2aONJFZXkIk8ePwS77CE41teuF1qTQiZTkz0GjuSyP6GheUos0y/VwyYFKuCRI6SAYLMHj9yzF2388iPVbjmPH/lNYOXssmmNmYqqt0J5T+vKc1OJx6YNLP8NL0/EvRmAkIuArfZbrkfh0UtfJQJlhY2JlBWBZONXUAVLyniJLU52lLmAIrrLcDQHIw1SE/2wFuiI27rp2BpYumYrY6Wb84o09QNCCNCUMlU8kOftQJrV4aNVMKwBobYuQ+jPrDD377eEcCw4BCvjl+WR48pfZKEFBQihDmzxpeMhzrvklMBQLwZEWZowr1UudTrZE4TqODjBnaPrhK/6R265u59Is+hjpPkL9hFZqaUvKyMdh5D6h7NTMdV2MLSvBV9csxV9uP4qX3qnHXzxwFWonV6EdcRgyX4hyeniQpvalr78ZkqTEg4rSmSSm11mM0wOf78ouAn6c0ezJn989sltPzm1oEDBJEIwAxo8m4gGca+uC49KCFnrpDk0dMi2FmpD9vcMoV+9PbwuQaSU5feYICAOdEYX7V8zB/6qdgsOfnMCzG/bjH76xAp1xjybnicimj0WaDSosypU+PHxn0SKQZs8oWnxGeMPJRC0lxlRU6C3IIzEHXdE4hJlyDDXCG8XVK0gEJBB3bUwZXYo/XX2lJsrPbdiNutPtKA2Qn0fxHpf0VjJDg8w/hrczBm1uo0cY2iR40YhSvHBxy4caAT3RIhSkIUCOW92dVQdh6r823v30r4ChDChYWr6FlJDCzJtRcv8tLY47aGqMlFZpmQACJuKxOOyYA7NMwNVBufIBh0RQRpog6jHdMhiLjU5DPqWG4QXZo0h7fiCxfICiQOtIGofenVK66Ii5+MKqhfjZi9vRcPg0/m3jPnz3SysQdQrNz4OmxL0pEtpfKdVxCfGQkDBheNtxKRcBYSGoFGxhQWhnmG61nypPvsYIZA0BJSyE9AvFREDGL0bES9NWTXQZFLJUAA4UTNeAZRiQwoFAAKaSF8lM1mrNGeUKAZeenTJQalna8tEZtRFVJkwTsOz8CJ2uSYISkMJFULoQ0tVwUe3T5NMJmRYg7xYoFyb1E0PAVSYML0pVrh4B55suAgKwTBPKVZhTXY4vranFkz9qwq9e3oov37oYkypLEbO9Z59uliP5PtLVAQBBSERdLZm6uop2A+9FRC4hHjTrRIJPHrfSdfDcu3/EO5+UwiVBTk1gRjIeXLc8RoCoLg3imjujKDUMBDThkFCGtmH03zK9wlDTD4TDBj45ehT/8zevAUQ4tCNe/1nwHSMHAYoMaQaCaGyKonycBTNk4NevvIuqUoEueomPnKomr0kiwqgrJY6dbUYoEPLulRJC7+mRPKl/xQu7DgQCCl3xGH669g2UB4mUBaBUnuDgN6aAP30bbTBgoLU1DrPSRJdt4x9/+xqqx5bCcQpnME9WDtMQOHr6LG5YMDvlUxWK6Ih/kHWDRoVKYu+JMzh5phmmaenf7mDsgH6+/MkIDBIBIsqSyIZUmDSuEgunTYIyHLItwxBm/7nSKggiL8pGc1sUu4+dhO3SKi0ynvhqof9s+I6RgYBBlgIDoAiRgTBZZ0Nwo52QypuO68+bfmS0wqsFrdApC4awaNY0jCoJahkXhmbU/VZTG6ANCdeOY9fhszjf1arTGMrSlpR+M+AbhggBnwrTJK8F23FRWlaCmN0FVztFD1E1hqgYPTUOA3OmVGN6dRX6snZQVS4lHt1hwjzP/yGqKxfDCAwQAeLKfodOL2myDpBear6LEWAEGAFGIFsIXEY8spUx58MIMAKMACPACDACjEBvBHg5bW9E+DcjwAgwAowAI8AI5AwBJh45g5YzZgQYAUaAEWAEGIHeCDDx6I0I/2YEGAFGgBFgBBiBnCHAxCNn0HLGjAAjwAgwAowAI9AbASYevRHh34wAI8AIMAKMACOQMwSYeOQMWs6YEWAEGAFGgBFgBHojwMSjNyL8mxFgBBgBRoARYARyhgATj5xByxkzAowAI8AIMAKMQG8EmHj0RoR/MwKMACPACDACjEDOEGDikTNoOWNGgBFgBBgBRoAR6I0AE4/eiPBvRoARYAQYAUaAEcgZAkw8cgYtZ8wIMAKMACPACDACvRFg4tEbEf7NCDACjAAjwAgwAjlDgIlHzqDljBkBRoARYAQYAUagNwJMPHojwr8ZAUaAEWAEGAFGIGcIMPHIGbScMSPACDACjAAjwAj0RoCJR29E+DcjwAgwAowAI8AI5AyBLBMPBfovo0NB56HzyTCrjOrBiRmBBAJaqjOURQWp/8u0e/BDYQSygYCnqSUp2wwOBaWkp/MzyieDKnDSvEQgu8RDAQIiAcQgJZGSKwElKf0g88jLR8GVHqkIkEwLX6wHKZOUhyQlzWI9Uh9zcdVLkUQapLAzODw9HVduQl9nkBUnLSoErKy2VgicaDuMtXWvoy12AaYI9K+mhdCsmeohTGDl9FVYOXUFIAVcoWBm1jOy2jzOrDgRcGQEb9a9gZ0X9hInhgUTURVD3InDEmFYoSCCDqCk1NdJpbtCAoLMdwLTKmfgvrmfQ4VRAmnQeYOlujhFacS0moj0nsbteO3I24ghgpAMwGPFyatIachuR/+HgmHcMW8NFo6eB0spKFNCwEyemK8wAj0QyCrxiDgR/OSDn+L981sQtsoQIEseKd+Uh4I2bgjAkS4+Pr4dVbf9FywYt5ioSMqUfJERGAoEXq1fj/+77ccwQhKmDBInxhhjHGZXz0Bz+2HsPXkKIZMUt2d2Jqkl0kwWDgMG7EMuIvEovv6ZJwCZ6ShzKFrMZRQ6Ao0dp/DD9/8RJ6ONCFkWBFmZE2Y9Is40FaNVNw0M6XvC/izhQkgBx3Ww99whPHn7f0ZVaCKIdvDBCKSLQFaJx9muszjYfhSV4TEIqxCIAJPQ9neQoGu2bQm0xltx4MwhTTwMsktftHH3lw1fZwRygsDupj0wAhZGm+VQhoTjmPizld/DDVPm4oP9z+DJbc8gZJTBEt7MOVWiWw0rIBqKYP+5OtjSRsAIJlR49x05qTNnyghcjoAi2qDtEgfPH8a5+AVUhSthatJxcWKbpmBs4dBEDIKuCdcg9azn0bVck+RKpXCmswGnWs6gauJEb9rm8gL5DCPQJwJZJR5UgmkKkJVZE46Eo2ifJfc46ZMTEm6DJldEdl1PehTFXxmBASNgCsBQnrIlShGHjRjNuQCwggFIukgST3PdCcrRk26TRc9kmR4w7pwg+wj4cklTJqae5iYycqk7nSEcCMez2kVUHAHQlLlW5t3DSCkoPU2Es67O/lMq/ByzTjx6jPUgEtYK8nyOu3E9leKTDENYCFshGL0sGvSTx4KFL3j51EKS4+4/aUCKGFrtVt0EVzrojHXAtQKwhETQCiNgBC7R5J6Is1Tn0zMv9LqSl1G3TPfQuFI6aHEjqAxOQIURQrt7Fu12FCVWWOtqbfnQFj1W1IUuI7lsXwri4Y3iNMXVzDh1NUiIiWDoKRNleENEckVyXUQUMLNyARZV12JqWTWk7ML+kzvx0bmdcEhhU7oEcxaUlv68MeRF+1/q4vlqwSLgUVWajiMZy/TwFWe/+VBReqavV5mCxodkAvFyCJhVuGf2o1gyYRba2s9g09G30Bg9BytUqufN6S6qu6Goq3l5pV2HfivJN+QjAr7VgQSMJCJjCy85d6YDhFAwyFKXkO2eSagmSsVgG2V4eM7XcOvsZaguGY3G9uN468Br2HDsbThG8BJnf5P8lbTu1nMv2rG6Z578vbgQ8HzpE7yBBmu+kuwDhqTEwxNkbxlhWkJ9Ua3qb1IqOEqiNDAaX17673D3jGtgGheV+Gfnr8GzH/8Yvz3wFoxQCcjZnzpi3IzBMeO6quTwlNDVfVSdTxULAj1f1NkgH2nj5osrKXaa49b/a8N0t1heOe12LKshC4d33DBzOf7uw+/jcFsrQlZQpyGzdMyKQsIBENBEJN0+5efLn4WDAIkVTcrRDB25bia8OAfVQJJL7SOXBvXQdyb85jT38OWaaiFsOG4Qjy//czw4c4XWxW1dnaipmoM186/DB0c2ooPSJnQ4UR3XlHCs7jdFWv58g2okJ8oLBMihXssVMQA9aEte7aTEwxNmL6HWv/qf5BnRFWLuUkrPH5Rk1JDocl1MHjUNyo3hzbo3saf1IK694nO4vroGt8+6CeuPvI0OSaV5AhxwAwgpcsCjVYdpFJq6Snw17xG4uEhPv/wzFInBEBc/DSnb7uITzMFQNjbtewUnohbuXbgGkyrn4YnFf4L/9t6PtAMepaVVACEniCASBEWPBvL+wXADMkBAK14aWJEc0V+3YA00U29w1lNfJ8tBF5Eox6LYBfqgExIRJ4ra6rvxAJEO6eA3n/4dXjq4HStq7sSFCzvRLFwIy0BAL0H0UloygIAMdWfj9xPvBP9bbAh4EpWQaTIk+CLWBxBJicepjgZsPfUhaOpDC1Q/Zm7TsHC+65xnXhYChkEvDIGo045/3vJfMcqWON7egPMqhg5jgiYeQgQQpEA2eg7dq51lmth7ZieClkKnimhn0z7qzaeKAAHSxyZZGYQD5Rq4ruYmjAtPGHTLaXnr28fWoyPeph3jUmVE6piUuQkTTZ2NCJohT04TTqX+m2LXiY14cus/oU0GYIXH4uH5KzG/+mrUlI3CwWgEIWHBMi20xs7jD/UvQ1peELFUZshU9eJr+Y+A0JYGG64SmFU1F4urrxp0o0gt15+pw+4LnyCoV0z1nZXHbRRMSfIosK/lgPZF8nzsJKQwsGTqtdo4fqGtHhvrt6ATDjbtXwsRgPZd0lZpvbyWZhpNKBHHR8ffQkPHbthKQqgUb5q+q8VnCwgBWoUqpYtyqwLXzbwRYVQkbV1S4uG6NqKdbbCMgDYz+2u8k+VkGSbi0S4YBk1+k880macFqIBoRxzXX3ErvllzA2aER8GyEiyZVgp4cyzd2RqKgjNF0RWNwnVsxEVnJsOB7nz5S34iYMJAPBCFZYdh0bq+DI94pAPRGBGPpKKvS9BkGAKWtuJ50yuXFJ2ITxNxOiCsEoyWQEPLUQArYQXDGBUqh4yQ7HqHUg7a4h0IxU24iqZc+ChWBGgwR7azOOIwYgkTxADB0FMsicGgr6ulmdCrSfIS5ONBlMGwEIt1+dxZ+9cZ0sKYsrBO2RpvQStiKMEoHbvGt593c259F+l3EzEnimiXC9eNphGzKUnF+HRBIEAxjqJGBJYK9UtCk2rfqaNm4sElT6QdRoNGhkfaDmNDw3ue6dCVkIYNBKvwV8u/h+snz9aEZG/TbpjWWMwbW94NNnUiz+KoEEMMCycuxb1zH/RCTFOYPD6KGAGlFRqNpkhpZnIYwsDqeZ9L2LbTyYksHgb2tDTgYMsRBAzqLiSpFw9DePWis1KTbu8Wmr/XbiEKsJWNipIxuK/2Cygxwl70x4tZ8LeiRMDTeTRdMdjDJx/zJi7C3Am1aWRDQcHIGm1h87HNeK9hK6hPEPXR05gJ0aZBpvfnnSdLIS2d9WrsFUPnaBywfPYqXDn2am/PFoqjwEfRIkCxXZRB0cYtmIkFIsnASEo8aMRnmaTo02XkAqZpdkfdJctHLA4smnqVRzpkB37xwQ/xi4MbcOPsb+Jvb/yKFnYS1Z5TLeQabbkhXSydJ5MeH8WMgJ5r0QLt+VikK499Y2b65KDvy32cFZ5y1tOBIrFS5aKvB402bTcCqQIo0fY9oiY0Zx5PpPOIiCVDCKNE+y11z4X2URqfKnwE6P3u+2SQovYkemByTbpRD9i0vyf5eaSjJ72+RAUSkaBPrXsTjoCdXTEN/uhgKUZJgZN2K0KhEoREAA4cbSmhaSI6vHQuQq5FOwAkfPTSqUPhP99ibaHe3iRBXr3VIskHikmJh5bKtElHAmrtr0ErrJQWRikUSowqfVHBwcHWI4AqwRWV0/U5PdcpHSiayNdlJbqjXrKYGFz241tSrA+5eNrtq2VfVWfa8oEpeCqNHKb9Q/tm0J4ViZHqlDHzMbtiMs66o7G85jp9W1PzQRzvupCI50GSTbE/FFxhw0CQ1jMMtGf5xfNnASBwuQRefiadZtLL3zv8z/5TOTSgBOD0sCRTapoK3H76I3x+7rWoHD0PDy5+GOsOfYjrFzyI2UHgxx/9GO2uREBbQ/xyiGJ7ZMOT6fTr4efAnwWGQLcIdH/ps4EpiEef96d/UhkwhUJT/ACiAMLGGHxz2V/ijmgnbppxo86numoBVk1egRdPfAzLKvGmW3zGlH5JfGehI5Bahoeg9d5yWhrsOXA1eSgPevPhM6qvwj/c+VO02jYmlFcBysXLB15Bsy1RSqtpE/MtPc3Uw96cIUCMi0gPgWzR6fRK63FXYiktySftKFRqBnHg1Ea8fGQJPjfzJtyz8HH9Rylk7BgmllThfOdZWEbQm0IkbX2Jrmap7oEuf+1naJV14uErWBrhBYMhnDy3G7/c+hweWvBZ1Ey4CjVQ2HZkA9rMatw0dQ5apK0j4vns3SPxl0g0P0RGYFgR0PY4PdVCytZAUJYhHm9GQ8sh1LccQm3lckweVYXmjpN4Ze+/4rVjW1FCAcT8WnePTP0T/MkIDC8CtHmnni7R8yQSyjQg4gae++hHaGzah4WTFqEqVIEzrQ1449CrONh1FmYwSAFIvHQXpXt4G8Kl5yUCWSUe3pwjzVmS1zYgXAtBSKyv+y0+Of4+xleOhRvtwNHmA0BwLNbVjcGh5kMI0SoX2qdFCB1kyU7MI7Js56VMFVylSZYp4JPeWFYpBKxOPPvxP+M56aBD2qgMv4gJ5aPR1n4OjbFGvTOzRzo8Zz5S8rSSRS9d1B2j4CDiBuUDAioRE0cAQWlB6tVVtK+sgCHJ6dQE7T77+uHfY/2R12AZFmzH1u4j4UAYhi0gTVf7OZEfqQs3kQetY0wZtiEf0OE6DiECWSUeVWVVmBSehD2tdahAORzThUOBZ4LA0eh+HDzh6iBjFBMB9ilsO3ccISsMU0a1iwdttRxQ5aipqvHMeN1DxiFEhItiBHohMKtyNjYd2oioAZhuCHGKrKtowbgXr6YpdhgnIq52vguYATgqojWxkmTEBqLxOGZVzISpl6Z73ky9iuCfjMDQIED+SqaByWOmokxU4LxzDiWogKQNDv3QBqapV2LRaizQpp9CoMPu8laXuURUDDiOg8mhKZhYMSnhjEfVZ4U9NA8x/0sRSk9CZ68he8/swfN1z6Mj1gIL3uqU1LnTPhakx6lDACtrbsU9V9wFg9a605YvqRPzVUYg5wi02x347Y7nUNeyE7S5odARSMl0kfwgo50X6sPF5DHT8NjixzG2ZBxsKO2glzwlX2EEcoSAFtmLsaw3HduEdQdeQ1TEEJDB9GgDCbYEAoEA7l1wH5ZPWgEXNij+khjwirEctZOzHfEIZJd49DAjO2TG6/E7FRJ6TxalYJoJA4yWba+DMPFIhRxfG0oEaMND2nclreA2JPsJHU8Bm+hQroI0E+buoaw4l8UIaAH0/vECgV10ayVLc7ojvMt0tQu4pgOTopayLxPLWZoIZJd4pFko38YIMAKMACPACDACxYkAGxSK87lzqxkBRoARYAQYgWFBgInHsMDOhTICjAAjwAgwAsWJABOP4nzu3GpGgBFgBBgBRmBYEGDiMSywc6GMACPACDACjEBxIsDEozifO7eaEWAEGAFGgBEYFgSYeAwL7FwoI8AIMAKMACNQnAj8fypTNdJmWf9cAAAAAElFTkSuQmCC />
1.Path (a)
2.Path (b)
3.Path (c)"
Question 2If beam 1 is the incoming beam in the figure below, which of the other four beams are due to refraction?