This topic contains a solution. Click here to go to the answer

Author Question: Suppose XL > XC in the figure below and, with both switches open, a piece of iron is slipped into ... (Read 41 times)

mrsjacobs44

  • Hero Member
  • *****
  • Posts: 500
Suppose XL > XC in the figure below and, with both switches open, a piece of iron is slipped into the inductor. During this process, what happens to the brightness of the bulb?
 
Question 2

n/IArDaDuCn5KEU1o19ls657Ev5c1mYIsJs5gNK3NkOtb4DcJxYNZy6idOceDFw8n2UupwX01mdbZ/YNShZedfoMSvd9AtnpgOr2Im/t2+j39EqIJtpsRspCa98Ww1xH9E9nhas3g7KNW+Od8Jy9iOJ3d2PAygWgvLSt1W42DH7KEegyBMJA4K3LqmsUpVBEytBBSPnhIIz9/tdRfS4PxUdOoOT0WVReuoK8CyVoPFCPxsZSyCaJJT+VLA7EJiUgZXg2Bi8eiMx7RyBt5B2IDUQxY5qWauSooy3+/MfUOv4971MjAau3qByAbNeBAAAgAElEQVQl770PMcYCWZWhCSpK31iP/gvnQhNEiG0QOPseBG7kpWs2Q62qhDkxEaLNioajR1G97zBSHpnMFiSN5F3XIURJyUH7CkTU5+aicsduyA4HRFWELOgoXL0GfZfNhxh82ryuOn/LEegOBCJG4OTGxezjOmWM02GSTEgdPoi9RgdGqnj9eOOPf8B3nnsO48aNxfoNa+FMTIRsNUG8LpMz6U2kGjHXctHIZs/puzu+MpHpM6hXF2x9B42F+ZBjEgBNgRDjxLX9h1Hz+UkkjhoNnRmiW5OBUlwB/rprKH57B0SnAxoogZ4IwePBlTUbGYE3e168oRFSDugo2rId9aXlsMc5IXpVKE4nrh06iurjx5E89p5AKf6PI9D9CLRiTQyTUAL9VEhjoifW1vVk2WKC7nSgXlPRKMuIy8qE2W67gbxJIhKUtWWscTbFPQyTtLyZKEDAr/hRvHYzTIIEkyBAsZlh1jX46mqRv3orM22QYtDWQVcK39uNhi8uw2SSIJvMEM0SZLsNFTs/RH3u5dbM503NiQK5p7qRv2E7LCZSEnSoiTGg3bxqTT0zqzQV5iccgShAIHIEHurgAgHcJV2HyhJghlqRl+tNCBD5Xjt0BK7DJ6BZLDBlpeCuf/ke/KIG2WZF6ZadcFeWsYTWNxt3wVubIGsqfA2NGPB/nkafiRPgURXoRWUoWLP1JlUN3bx870G4j55mphJTvxzc+e/fh1dUYLLLhgwV5Tdpg1/iCHQtAt1P4F07Xt5bBxAg74ygi2bwfweaab0K7bhkujVQ9NYmeBQvFHcjUidOwIBvfQ0xg+5kGcsbr1xExdadLdY8aH8uyRPMU111/DRqPzoG1W6CJT4emc98BdlL5zI3V9VmQemG7fC53UwOCrUQ6LZJLjLTFazaAlVxwe3xI33KFAz8u5WIHToEXiioz7uKss07jfqa1pRJPdgABXpjsbOYvS/4aXj+B+cg7PiHRzzeSjchwAm8m4DvSd1GjDzoqYsxnoD6gmIUv7cHZqsdZpsV6Ytms6zlmYtnQ/UokGQdeWveDricGushTC7aHcnaIM+RTfDW1wIuN/pMmYCY5CQkT3kI8QP6wgSg5vRJlL+/x4Ce8XdLpq29nIuq9/dCsskwOZzIWjSDle2/ZB4klwZZBnLXbIGmUgZ1emZoWV/QVcPsItItKWhRD99Mc/IOH5a9pSVO4L1lJiM4jqDdmf4Hz8PSnSBAkmS2jatsy1Z4C0qge91w3DseiRPuZV1kLpoFe3oWdJMV1Qc/w7VDhwNd07InuZCKEEUBvopKlG3dDskqQpfMSF+5lJWzJCQidf4C+NyNgGZ4tBDtksvi9Sp46bqt8JWVQvEJSHroASSOpaBoQPrCObBnZEMyCaj7+AiqPvqY+ZKzBfWgNCz4FlnLNUjMat62rT5QpV3/wo59u3rnhaMVgYh5oUTrgLlcHUOAIvvt3LkTb731Fux2e8caub4Wue5pAMWumbz3GGxOKzwuF4YumQtZNsMPwN5vAFJnTEbuX/7GCDd31SYkTXiAEatI5hPBcP2jxcv6y/mglHrxI0YhfepDLBI8kXzGioW49Ic/Q/X6UPrhx6g7fQ5xw++EShvAKDiaKLDAWSUbtwE2GX5NR86yuRBEmfXjyM5C4uzJyP3j6zCrCgpWvY2khycyf3LSs1nCE0FA+f6DuPh/f4VrqUnY5RDgbn3P0fUotPqeCDuocXs8HgwfPhzPP/98eG+grfbMP+xJCHAC70mz1U2yBrXuU6dO4Y033gi7FGkAHrWmQ5d1OLJzkDlnKiNOMnvQkfnkfBSuWQ8dPpS8uxeuHxbCnJkFMlmQHk2RC/PXboZMJfxeZC6eCbnZTSZhxFCkTLoP5Vv2wNvoQvG6rYgffifbp6ApGiRRQvHu/ag+ew4WmJDULxvps6axvoM+4xnL56L4jQ0QBA0lOz7EkPwCOHKymQmIZFAVP8786y9R+dFeiJCwGtdQYYgflr+TJk3CCy+8EJa2eCO9BwFO4L1nLiM+EqvVymJs9+/fH4888gjrL6gldrRzRQDS/TqkfZ/Cc+kyhn53MRzpGcbCZMAKkfTg/Ui4ZywqjxyEnleA4o3bMei5p6HCCOVQ/dkR1H70GWSzCUJcItIWzW4hDjWTtWIZSrd9CJNZQMnGdzDgu9+AJT4RmmxYq8vf2ADR54dL96HfnJkg00vwIC075YH7kXjvOJR9fBBSQQFK12/FoOefgUQXRQGVhw7D9dlnsMbGQHDG4e9mLka1ZPims2G00yRON0166jlz5gwOHjyImJiYoDj8P0egCQFO4E1Q8JNQEKAsN9nZ2fjd734XSvGQy9RcvAz3lTwkTXqQeXI0d/dmm8CWzUXZ4QOQbBLy12zDgP/zd4DZxJYK89dsgdJQC1USkD1tNuIG9m8RQ5y4M236FMQNG4yai2dQc/EcKrftQtaTSyEJAmq++AJlez+EaJNhNVuQuWJeS7k1QJYtyFw+B2UffQTFpqNo3Tvo++zXIVos7Ckgf9UWuHxuCD4ZA5Y8jp//4ect2+jgu1dffRX79u3rYG1erbcj0O2LmMHH8+Y2P+ZdEHBd4+eGq1x340A/hKC2HUxVFs4fR/zggUifPgVmq5k5eDRfAiQCzpw/A3FZGdAlGQ0njqPsw0Ns8dNdXoqSd3fDbLVCMZuRtXThDWKRk4rZaUfK4scguhUIko68tesNlz8AxWu2wlNZCcWnInn8w4gfNbxFG5pA1nggdf4M2AfksJgq106dQeWegywuS0NBESq2vw/ZboXZakO/J26UoUWD7Xjj9XqbSgfx7+7vQjj7p8EFx9U0UH4SMgLdTuBBSelx0WKxsLdE5vwVXRjQxATnJzhnXfWfCNyZnorkx2dCbPCzDV/5b65l3Ze8+wH8F/KZL3nKsOFImjqeLX6yJFABAckzhNrIWTwPtj7p0E0WVBw4jpqTp6ErfhRu3g7RaoWkikhfOY8237dwUCGvEmrA1icFmbMeg9RQD81Xj7y31jLtu3TLVnhKCyH4NCSNG4OECcFgEeFDSJblpgXM3vTbIIQkSfoy/V34ILstWup2EwrdfYm8r127xjwczGYzIqHh3RazGaFB0hyZTCYcOXKke35o5OstCsheuQxX/7YWouJD1Qd70HDhCkq27AZkDT6fhsxljzMNWFV16JTJL4CHseEHiB08FAmPTkLjmg3QtHoUb90GX1kFGr64wIJY2YblIH3mVIO8g5WZt7fItEQyt2SuXILLf30TJp+Gqv0HcO3cWZS8swOyaIHqF5C6YjYE2TDtNGui0zNTUlKCtWvXMvx70++DbkY0Hvr90zk/2odAtxO4qqpsAi9duoQnnniifdLz0l2KAGng9OrqHxolMtN1CX3uHYmEh8ahbudeeOskfPrCj+E9fgqaxQx7QiLSFxi2awr5+iV90xojEbDxyYAnF6N0wxYoFrCYJxUffAxJFqA0+JExdzascfHMjdDEuMQgFIrBQ5EvSYtPHHM3+ky4DxU7PoTYIOLzZ/8Z9edzIUom2DL7IGP2TFbuhrtAJ2fq3LlzWLZsWSdbid7qtEBOigKF8OVH6Ah0O4HHx8fjjjvugMPhYFLTJHY1QYQO1+1bkh5zq6urUVBQ0OU2S5a9ifapS8DApXNx5P3doDzFtXs/gmCWoHt8SH9kKpz9splsLOhZi6kic5TxQdLD4xE7aiRqjx+DmleCuiu50C2A3CcOmUvnBGoRVbfUBoPv6H/f5YtQtmM/rIKImsOfQ7Ra4PF4kTVrGuxpKZRZgsUNbyFCJ97Q74G8UIYMGdLl2HdC7HZXra+vR1JSUrvr3c4Vup3A586di+nTp3PSjvJvIZm5yPPke9/7XpdLKlAWHoG2p0tIfnwG7BQf5WouLBYbVE2BapaRuWQh03wZ9RqhxVuVUzRbkbZ0Aao++RQWuwDNbIVa04D0OQ8iYdgw1gbtp2RRs4Ks3awlaj995gzEDB0Eb+4VyBY7NFWDbHcgc/kiVl9TVeZb3qxap05JqRkxYgTWrVvHfif0vjceZEoJauJciQtthrudwMnmTS9+RD8CwaekrpaUfszBVGnW+ARkzZ2JKz/7L6gOG1DrRdx9o5Ey+T4mFvvh34Lg0hc+htxXfgtvbSUkwQmIEjJXzmc6N9nLSeMP2EFuGColKjHHOZEzfxZO/efLsNgsLPhW2oRJSBk3lm1Aovyv12vwNzTUzg9oDYL7grcTtNugeNR4odwGWPf4IdJ6RXcdzZN3ZCyfDSk+HpLPD82vIWfRXIi0iSdAmzfT3kh3jc/ORsqMqdAbfNDdbsTeNRgZ0yYyzqZ+mOLdivZNYydLuEJ+5UsfhzMuiW3+MfmAtJXzAJny+ZDNvY3KnQCvt2rdnYCEVw3kSeBAcAR6DgI6kDBiOJKnPAxfXT1MfdORNn8G03xDGgRLoA1kPrEIsDmhueuRsXAOTLFxBnHfohG2mKkD8cOGIf6RB6HU18E2MAcZcx+9RU1+mSMQfgS4Bh5+THmLEUSANGjy085ZuQBe3Yv0xybDmZ0DlUK5tmX3aC4PeTrQppz7xyF+zDAIdiuylgQXL5sXbP2c+pYp8iAE9H1yMVTdh7THH4U9sU/rFfinHIEIItDtNvAIjo033QsRIOMEkXifRx5C7IixSJ09g2nOFJkwJBWaNolpOkSTjMzZj0CItSN2yCC0ne34OhDZJjPjs8wpExE3ZjzS5s0KFCLJwm8+uU4C/pYj0IQAJ/AmKPjJrRDQReOBTYmAjfdWfQevkxVeVHWIzliM/vmLiL3PiNlN+VdDoU6ycMsCmB07c+F8JD54P2uaciVT/VDaCMoi2OwY9euX4Lh7GBRdZ+0Gr/H/HIGuQIATeFeg3BP7CMTaJne64KKcrGuIB5CgULZ3I4880zl1SlAm3hDDJBLDpnsHJRvWdA0ZMyYzcwgFFWdeKiEpwLSx3sikY++fDUf/bKiaBk0QWdae9sqcMuEB+KlfVYMuN19qbW9LvDxHoP0IcBt4+zG7LWqougaVSEkQ4PV4cf53ryP1tTX4b2cGvna2DPsfWoDLr/weSmMjIz8iwVBM0J0Fj3l5iCLLXE9tUcxw8lFnm3dCUZ8pyYIgQg56m9D+INZexyWjXZuyTE8AoQjQ8X54TY7A9QhwDfx6RPj7AAIiy8zurqrE5099B0Xbt0KCH4mxSdD9HpQe2ImKA7tQsGMPxv31N7Cmp7HMNO0zQnCwOQIcgc4gwAm8M+j14rqUeUZTgbPP/RjF2zdCjumDfk8+gczp05ipoGj3HhT9aT0qd72HE9/+Psav/SP0gC92L4aFD40jEFUIcAKPqumIHmEEQUL53r0oXb8FojURd/7yRdzxzb9vEjBl5lQk3DUSn//jCyjeth3Fu/cga+ZjTdf5CUeAIxB5BLgNPPIY98geyJpbtnsffP4qJE2ciMHf/DpbrPOpOqAYvtT9/n4pEqdPBFQXKt77sEeOkwvNEejJCHAC78mzF2HZfcXFUOFDwt3DwAI8ka+J4IMuajBphrU7ccQItr3cU1IUYWl48xwBjsD1CHACvx4R/r4JAckeC3Kuc5WWMgcT9mURKbkCQH7TdLjLqqDBD9GW0FSPn3AEOAJdgwAn8K7BuUf2En//GJgRi9K9u1Bx4gQk5n5nZYG5JQG4dv4CKt7byUg+adzIHjlGLjRHoCcjwAm8J89eBGWnHY/Zcx6DefQIqEXFOP3ksyjasQOe+ka4G1wo3bMXnzz1NNx5ubDeNRLpy2ZHUBreNEeAI9AaAtwLpTVUeuhnRsoDw7bRWFgMS3wiRIcJEHTQ1pX2HIIGmBMTMOblF3Fw2TdRffozfLro67AOHcLyR7oufAGloQxSYhbG/vKncKSktKd5XpYjwBEIAwJcAw8DiNHSBO3oLv/sBD79hxew6/5pKN74LsgdUGBRqtsppQBomo74KRMx5e2/IWX6PMiqGXXHPkXtscPQdBlJ0+Zi/OY3kDbzYfhCjQbYTjF4cY4AR6BtBNqnlrXdDr8SBQjQ9vDibbuQ/+pvAMGE3HXrkP7UXJhI+27nLm9KVSbpAtO2Y8ePw4Qdq1D56TG4zl9m8QCtg/sj+d5RLBu7V9cgUXgR2s/ezn6iADYuAkegxyLACbzHTt11guuAKgD9V85F/p/+DLX2Guo/OoyaI0eRfJ+Rbuy6Gjd9KwsCVJEIXICuahQwBKnjxgL0anZQHG6KR6KJUltpJJuV5qccAY5AOBHgJpRwotmdbZHyq+mIGzIEFKdaalThdtei+M2tHZJKECXIghFhUJRESgjf6iEJEkSBylKSA35wBDgCXYkA/811JdoR7Ivs35TVm/5nPrEUfosFFosdZdt2wFtaHMGeedMcAY5AdyHACby7kI9Av4JkmKD7PPwAUseMhKoqqCrKRdHmHUZvOkV8JYrnB0eAI9AbEOAE3htmMZBJhswZdMhmC7KWz4fgVWE2mXH1ra1QfF6WhUanEIP84AhwBHoFApzAe8U03jiI5EWzYO07ELIko+GzY6j4cD9Tz/XgHvgbq/BPOAIcgR6GACfwHjZhoYrrSE1D8rzp8Ls98Gn1KHhjA9vKo4ttLUeG2jIvxxHgCEQLApzAo2UmIiBH9vLZsFpjIFtsKN29H9cuXoXAZzwCSPMmOQLdgwD/OXcP7hHvlZYqk8eOgXPSA5A9GjxllShcu6lNd8CIC8Q74AhwBMKOACfwsEMaHQ1S1naIEnKeWAAvJf+1mlC6cROUhsboEJBLwRHgCHQaAU7gnYYwWhvQQbvbs2dMgWVYf5YxvfbcBRTs+IAJTLsrNe5RGK2Tx+XiCISEACfwkGDqgYVoZ6aqwxSfgAGzZwIeD0y6iqK/rYWia9AlEQKj+B44Ni4yR4AjwBDgBN5LvwgiviTo7BVLIfdJhmKx49r+Q6g5fpJte1dBAWj5wRHgCPRUBDiB99SZu4XcAoUFlIzpdd45BOlTHobqccPbWIeCNVtYbSNU1S0a4pc5AhyBqEWAE3jUTk3nBWMkHtilmfHEXJhEEyxmC4rf3glXeTlE7lPYeZB5CxyBbkSAE3g3gt9VXdNiZtIjkxAzejRUVYNyIRelb2/nobu7agJ4PxyBCCHACTxCwEZTs7quw2yxI3vRHCiKD7DoyFuzGYqiGGJqOqgMPzgCHIGehQAn8J41Xx2SVgosVWYsngVnWiYEk4yaIydw7eAnrD1KBMGKcA7vEL68EkeguxDgBN5dyHdhvxRCVlN1OHKykTxrOvweBaLLi4I31zIpNIF8DnkutC6cEt4VRyAsCHACDwuM0d2Ixjy+KTM90P8riyBZ7IBNRMHOXajLLTSCXJEKzjk8uieSS8cRuA4BTuDXAdIb30qCCDngUphw31gk3zcOos8LX1EZijZuZbwtsGQPvXH0fEwcgd6LACfw3ju3rY5MkCRkPLkAflWCxWRB6erNUBpdLKO8wLf1tIoZ/5AjEK0IcAKP1pmJoFzJs6fBPmQAKLZs1dlTqNy5n2nhPN1aBEHnTXMEIoAAJ/AIgBrVTeo6nEnJyJz7CBSfD4IK5K5dx3RvgeeVj+qp48JxBK5HgBP49Yj0+vdGCKvs5UtgiouHxSTj2p5DuHb6bK8fOR8gR6C3IcAJvLfN6C3GowuAquuIGzkCiZPHwevzwHutAuWrjfgot6jOL3MEOAJRhAAn8CiajC4RRdchBTwGs1asBCQJsNhRsPkduK7VMFOKSskg+MER4AhEPQKcwKN+isIvYHDjZeqMhxE3bAQkTUPNxcuoeHtnwKWQO4SHH3XeIkcg/AhwAg8/plHeogA/OX1rOqx2BzIXzYPP74Es6ChctwG6qvJdmVE+g1w8jkAQAU7gQSRuk/+kW8sURjagZGctnglLWgokq4zSjz9F1ZFjbFc9D4tym3wh+DB7NAKcwHv09HVAeAHMWVAIxD6JGTQAGY9Mg+LyAXUNuLpqs2FG6UDTvApHgCPQtQhwAu9avKOyt6wnFkG32WCySijbuh0NxUVRKScXiiPAEWiJACfwlnjcZu90qACSJ45H0ph74NN1+ApKULJhB8OBzChGnHBuULnNvhh8uD0EAU7gPWSiIiWmoOsQzWZkLZ0LyatBs4ooXLsFitdjREbR+Qb7SGHP2+UIdBYBTuCdRbAH19chQNCMnZkZ82fCnNMXsiig6thRVO85yGzlVAa0+4cfHAGOQNQhwAk86qak4wLp0Jh7IAIbcTzuWlTXu9pskGiZuJmyqdnT0pA1exY0lw+iouLyqk1MA1cEIdhcm+3wCxwBjkD3IMAJvHtwj0Cvhm+3xkweRM0Kvr10Dp7/j7/etC9RBKSAgp3zxHzIsVaYLGaU79mLaxeusGs8Wc9NIeQXOQLdhgAn8G6DPtwdCxAgQZVoH46AfW+/gb9s24/S3C8MW3YI3cWPG4W4hyZB8fuhlFaiZPV6SGBRZ0OozYtwBDgCXY0AJ/CuRjyC/ZH2LUOEv+4qXvy3fwclUau+VoT6EEObEPFnr1gElqveLqFk4xZ4auoiKDFvmiPAEegMApzAO4NeFNUlRz8FCtuE88b/voYGJQZpThMK80tRVeMPSVJqI2PmNMQOvQOUyb7qwhWUv/dBSHV5IY4AR6DrEeAE3vWYR6RHMmObJRMKzx7CugO5+PkrL8FhVVFXXoiyitoQ+tShaRrMcTHIWTgLqkuDRVVR8NZGaLQ4yg+OAEcg6hDgBB51U9IZgXT84mf/hSnLv4YpD90N0dEHja5KXC4qCaFRysdjrGZmLJ8LIbUPZKuMqgMHUXvsc6M+JT4mlxV+cAQ4AlGBACfwqJiGjguhawo0jVmtcezdv+JshR3fXvYIdJiQ7HBA93pw5UIu60DTfTd3CQx8G2KHDEHmIw/B51Gh1DUgb9VmVl9XdSg67d3kB0eAIxANCHACj4ZZ6IQMuiBCECSo/jr8x+vr8dyP/gVOARAcqRje18ks4+VFl1kPTMOmULJtHOTHQjo4vfquWAhRskCwy6jYvAveynIKYwiJ+xS2gR7/mCPQ9QhwAu96zMPYI23dEZjb4IY//QbnSvxINXtw+ONDOHLkCBrhhCSIOH01P2DFFsE2+7QhQXPzSJ+pDyNh9DBImgrXlcso3rDNMLAI5FjID44ARyAaEJCjQQguQ8cQ0HQBogC4qi7j9b9uwKD0gXjl5V9AVxWYzGYUl9TBIplQnnsJNaqORIkIvG0TSDDELEkjm83IXjIHlRQfnOKjrN6CrK9/BbKJf2U6Nlu8Fkcg/AjwX2P4Me2yFoOPT7/92YvIHr8Sf3zley363vHWK5j95PNorKxEVbUXiclWttmnRaE23pDfSfLCx2H71evQqkpRefQUKj/6GOlTHmqjBv+YI8AR6GoEghzQ1f3y/sKBgACUnNqP1TvP4h++/+wNLWb27QuHXUJ5ZSWKikqN6yEGphJ1wJnTF8lzpsDnckNwe1H0xqob+uAfcAQ4At2HACfw7sO+gz1rIFeS4FLkf/3sP3H/nG9iZKoNTR8GWk5O6YfUWDvctSXIL6lgnwo3MaE0F4gy05MW3n/5fEiOGAg2GcUfHETVydNQG91NRUkOTQWMTPZBqZou8xOOAEcggghwAo8guBFpWhdBW+bJU+TYvnXY8lk5vvvsExRX8IbuUtJS0D8rGVBcuJqXH7hu+HrfUPiGD1TKe4y4CQ8g9dGp0Pwe6LXX8MnCJ7Bv4iwcmP0Urv55NVTFDxYwRTGiGt7QDP+AI8ARiBgCnMAjBm2EGqaclqKEhpqr+NYz38WIGcswKM0ecP5r2acYmwlHfCIj9/Ofn2QXBUpoHMIhQjSiFDbWQ/V6oFFYWbcLvst5qDp2BPnvrMexr/0DDix7Gt7qaggmajfUm0MIAvAiHAGOwC0R4IuYt4Qougr43TXYuPbPeOVXf8CnZ4owLPkQXnv9z5g8eTIG9+/HhNW8tdj5/h4cOvwxPjh4nH22+c0/44UMG2ZNmYnJD4y85aAoEBaZak7+87+jbPu7QEwcMmbPQsrMqTBDQOH7+1C8cRMqNq7FaasV9/z1fyBI/Ot0S2B5AY5AGBHgv7gwgtkVTfm9HpSVVWHuE9/Ed9L7oLK8GHlX81HX4IHO7NYiFF8jCvOvQLLE4Ze/fg1mq4CGijrkVxSj/FqtYWwJbIlv7jrYXH5RFFB+8DDy/rwemtmM4T/8Jwz9wT+xLD1ULn3lQnwxZhgufP/fUbJ2A8qeWoqMRx9u3gQ/5whwBCKMACfwCAMc7ubt8Wn4zvdfarVZTfNBgwliTAa+8cwLrZahD8labuy5bLMIu1Dyzm4o7jIkTJmBIT/4DvtM0TXIqgBNFjD0uW+i4r09KNixDYXb93ACvzmc/CpHIOwIhGYQDXu3vMEOI0Cas2pk31GhQaFTTTe0b1GCLGiQNR9Lk9a0s5KCULFN9WCRBUO1VHuKCiDBh9R77gaFulJVWqnUWBo2UVeZxTv2vlEwUav5hR0eUmsV2ZIsjY1JfuMCbWt1mn8WTMVM9YPnza/f6pzqGHVvVZJf5wh0HwJcA+8+7DvWM8UiCexml4hCiY1ZfBIBbDLZ++B29wBVB4oZkx24Z4fA4rLVwZJCeCsCSR0o7gpL2eaHpomQJUCvrIMGP0SLtWPjaaMWS+spAKqqs+EJtOW0HQfF3NLIjM+2LuntXl/VVaJvAaokwGQ8srSjd16UI9A1CHANvGtw7pG9xI0eCRUxKN/7AeouXIJJFCFKAhTJDFmSUZdfiOKdewA4kHjP3WEdIznLCBTphW5OIXrONBeA6km6BonZ+ttH/tSORtZ+QYTopeccfnAEohMBTuDROS/dLhVFTMlcNAMJQ++CJ/8yTj75DEo//hSqqkFUNFR/+jk+/erTcF/6Ao6+A5GyfFZYZA6aO1xlZfji969DFztInyJQ8Jc1qDp6rEn7bo8hRpAEuIsLceFXrzXVD8sAeSMcgTAiwAk8jGD2pqYEXcvATIEAABA5SURBVIU1ORUjX/4RTLFJqDxyAJ/MXoGDU+bj0NR5+GjWIlTt/QCyIwGjf/ETOLJyDO+WToBAtnzKCkRHxf5PcObFl+EtLA2ZQMnmH7T764qKL155DXnrtxre6YFkFLQJKpSDjFCVH+zHhZd/DXdBsbGGQPb/0KqH0gUvwxHoNAKcwDsNYe9sgHiK7MjJj0/H+HV/g+P+hyE2+uD77CgaDx9myY5TRk/EmLWvIXPJHIhqyDzbNmC0SYmFq9VRunEz3GW5KN/6gUHAbddq9cq1A5+g/uw5VG//AL76OrbwKmiAqIVmTqHxF63fgcaqKyjZuI31Ieki9JvEU29VEP4hRyCCCHACjyC4PblpgVZKBR2CriFl+iRM278Jlc8sx3/7GvHhgExM2PgGHti/AemzpkNRSPNVmrTfDo2bac9k8wZqTp9B6YeH4JDsyF+3DprfyDh0q3YNe7lB0JdXbYAm+OA6fx7F7xg3AYUWNSlKVwhH7YlTqDp4AGZzAvLXbwH537M7Cc9IFAJ6vEhXIcAJvKuQ7mH90BdDp3U8wciDKZssqBvSH9uVOuzJiEXW7EdgdsaCIozLkgBBDhTu6DgFsO36VL1g0zag7Bps9gRUffoZKvYfYq2qutq2CUMHFNVwbawvyEPJzj0QnQ4QaReuXs/ix1BGIkqA0dah6jpUCgADIH/Nevhr62C3x6LmxElU7t1vOPsQKPzgCEQJAvzbGCUTEXViMG9F2u5DKdsM0pN8fiamo5lCzDYEMTfFYErkjo6EMguJ8NbVonTTTmgOE3xmGfAoKHhzI7NBU3yWti0Y5G5oyFm+8T0oBSWQTBbIDgeq93+MmuOfMw1aCBB0W1LSDlRXdRWKt+yCZLOzG4Dm86L0zbeNKh3wiGmrL/45R6CzCHAC7yyCvH5YECC9l/zUy3Z8gIZz52E2W1gCZYvDicode1Cfe4kRtNYGg1OYc0EU4ff4UbjmXUhmiZl06DO1thb5qzYw93nhJl4tgm7sTy17dydcl65CNJlBFhez3YGy3R+h7uIllgEpLAPmjXAEwoAAJ/AwgMibCB8Cxavfhl/ws5grgqJDtQCNFaUoWvcu68QIpNtaf/SsAFR9dBDXTh6DFmMG1SeTCWnSBe9uh6u86qY+5aTAa5qCklVboEk6ZCjQRB2iJKOxsgiF67cGZDDMSvottPnWpOSfcQTCiQAn8HCiydvqMAJk/Kg5cx6l+w/BarLAHJ+E/n+3DJJHBcwySjfsgN/daIS4baUXqk8OiFfXbIKgeCE3+JC18HH0GTkSoibCffEqit7ZcdMYMETg1cdOouLwUZgtFlhS+mDAt5+C4BeMvKDr34W/wcV6pyeGgMWmFWn4RxyBrkGAE3jX4Mx7CQGBolWbodRUQ3NpiH3gXtz50g9gyerLtOa6E6dRuvvATVtpvJqH6p17IFgc0CUrBvzgWaQvnQuv3w2TbELpqg3Q1baTOlPjxas2Q6utg+pywz7pQQz5wfMw5WRC0mW4Tp9H5a69bBmUbhg6Z/Cbzge/GHkEOIFHHuNe10Nws0znB0buh0Yr/poaFG/eDrNVht8kIm3RTOblkjJnGjS3F4rgRtEbm1hhowrbmcOyBgXlKVz3DnxFJfD7fYh7cAzihgxF8uNTYctIgmqWUH34M1R//ClrQ2PBUnSoFLQqYAqpL6tE4bb3Wfo40vqzF85i9u+seY9BcylQBQ9yV9GCKhlmhBvcJjUK4KIFYo11EpzgmDrZDK/eyxHgBN7LJzgSw5OkYLCszrZOnidGGyXbd6H24mVGigl3DUXmtMnsQvbyObAmJMFsklH64X7UnL1gVAj4jRPR0d4ct8eNos3bIFrMgO5D5rL5TFOOycxC6owpEF0+aC4f8gIeLcFog4y7A3eRsm274Mm9Cl3TEH/3cKRNmsD6Sl8+D3JiIkxmEyr3HkDd6VNsY1DT3Ye0cYqcKIhQRTAzT2d/WEGPGovFYoyX/+UItIIAj0bYCij8o9YRILIURRG1tbXYuXPnDRpo67Xa/pRpv6Aoijosv38DVlmHy6/gjoVzITntzHc7btRIJEycgKqt70FxV6FkzSbE/+QHRmpmQYDIyFdE1e79aDhxApoZsGUORM7MR1kMXbpBZC1fjqurt8Om+lG+/QM0FubBmdUXfgq9S4EKJRGKqqFo7XqYBBkev4KsRfMhW+2sjfjhdyF5yoMo2/QO9MYa5L+1FcN/SlmNAncfZk4B3Jev4urv/gq9fwaKB2axaIZflmgbh9auBLE+ffp0k3tka+X4Z7c3ApzAb+/5b9foKU4JvS5evIhZs8IRvEqHKmgYrJnwn/ZUOK0i7HIyMhY/bkQBpxuGIGLAivkofe99mCUJuW9vQ7/vfhOm+ASIGu3fN1z/Sldthl9VIPglZM14HJaUZFAcQfJNSXjwfiSOHYXawwehFBegdMN2DPrHb7Ft9QL1JAioPnQU1Z98ClgkOOL7IG3JHIYNmVpoe3/mEwtQ+vYOCFYdBVt34I7vPQc5Mc5IME03EgCf/+AlFG14E4IUg+eFehRAgRwg+Y6aREwmE5PD7zd88Ns1Ybxwr0eAE3ivn+LwDdButyMlJQUxMTGd1r4NqXSQ3ThdsMBU5kZDTRXSv7oQMUMGMQKXRMMQkfLYNDjv6gvv+ctwn7uEsp0fot/S+dDJ+VsUUXPpAor37oPZZoUumJGzbC5rXmK0CmZ+yVj6OGr2HYBsEZC/fjv6fetrEC0WNg7SkgvWr4fq8jK6TZk+FTE5mawNSiBNNvfUqZPhGDEYnnNfwHvhPArf24V+KxdBVVXIsozqU+dRsXcfbHHJUEUZOQnxICdycyCIVkdngUwpjY2NiI+PN2QN2pw62iCv16sQ4ATeq6YzMoMh7ZFey5cvx7x585gZJRw9kQlFoABRUOA69Anqz11Gv6cWMndAtt8mYEiWY+zIWDAfl378c5gFGQVvrUffJXOgiQZFl659B/7SKsiyiPjHHkLcuOE3iJc1byZyf/Ea3OV5qDt6EqX7DiDr0anQBRGe0lJUbPsAZrKfawLSV85vUZ/ktDjtyFowH6f/7f/CKssoems9+q2Yz8ibbgBFazZBr6qBzwqkPzITb7/+8k19zlt0cIs39NRDNwn6TyasoH38FtX45dsAAU7gt8Ekh2OIRBpOp5O9wtHeDW3MmQ3MAdgufXLovs543G/xQuT99k/QGxpRfeAAqo6eQNLYMfA1NCB/0zswWWUofg19l86DIEjGTSDQCZnJHWnpSJ77KC69+lu2QafwrU2MwKlI8cadaMjLg2iWEH/fPUh5cHwL8YI3k8xl83Dxd79nboYVhw+h7pPPEXf/aHiqa1Gy+R2Idhmq5kPmV5ciqU9yizbC8YYInB8cgeYIdHaxvHlb/LyXIkDkHSmtj8wTzC0wcEL+Lcxy0ozAyWMkdugAJE+ZBI+vEXpNI/LWbWEcX7HnIOrPfs52TsYOGYD0mY8ZdmmjVTYjwaZyls2BxZkAk82C6h0foi63kC2GXt2wAbLFBEVRkLN4LvM2aT6VFOWFvMedA/sideokaG4P1FoVl9auY8UqduxCw+XL7GkidthIpD86qXn1sJ1z7TtsUPaahjiB95qp7JkDIXJlBBs4CZJt89FQHG8i0H4rFsACG2Azo+LtXfDVVKFiw7tGUmeXgpQ5M2BNjAOVb94Omcp9APqMG42EB+6H5FLhrqhE+bs7UHvqJOo/OQFREhGXlYWMhbMND5eAayHJQbk1hYD2O3D5QsDqgNUqo+ydD+ApL0Pelh2sjOZWkD1vFsxOR+Cu1HwU/JwjEH4EOIGHH1PeYpgRYDkYNKDPtImIHz2KIpTAW1qE0//6c1R8cggmsw1CQjzSly0wehaCidmCb3WIqgpNlNF3xXy4RAGS3YzCtWtx6af/w+KGqy4fkh+fAnt6BkAbclosFhpxyimwVeKUiYgdPRI+eKCUl+HsP/8HGo6chFUyQUxLQtrS2WEePW+OI9A2ApzA28aGX4kSBEibpi+qbLEhlQjSo0AwmZD35iZ4Kqugen1IfXAC+owaZkjcSgZ78mihdrJmTUPckP5QRQ11p75A6bY9MNHW+xgL0pcsYfWvD1jIagpGfclsRs7ix+H3qdDN5L2yFd6GaigeD9ImT0DC4CFssZFn7omSL08vF4MTeC+f4F4xPMbgzFLOtrc7MnOgKn5IkggZEmRVQubyuU1mE/IMN7zDA6MP2PDZTSA+HqnzZ8BU74MmmyDS4mejFyljxiL5gXsNy7l4/Tb5QGsBuwxt83dk9IXsViDaJKaxC6IF6cvns/rXm3B6xRzwQUQlApzAo3JauFDNEaDt7pQthyjckZONpJnToDbUMcJWXF7Y7xqIlFlTm1e56XnWisUQk2Jh8hNRK1A0BWmLFzA3RAoRq1Js8RYmlJbNxWRkIW3Go/BTjBZS1xs1mEfdhZRpDzPvF5YXiAzv/OAIRBgBTuARBpg333kEiEuba9RZK+dAtDohaD74FDfS586ENSY2pI4oEFXSnXcgfsoE+BsboPn9sOVkIXX+9Kb6N6NeWtuk631XzoVss0FQAcVXj5yFs2Gx2dnWflG+WQtN3fATjkCnEeAE3mkIeQORRoCsz1Jgyzz1lTz+XqSMvQ9KfR1MSQnIXmaYLkJx/aCEPqTJkxZOKXr0Oi8yZ09HTFoKGwalVJOajDE3jowWVMkbO+mBMYi7fwz8dfUwZSYjO7D1njR39qPiHH4jePyTsCPACTzskPIGI4qADphkCzKWz4NHrUOfhx9E3PA7WYjXUPrVITICzpg+Fc5hQ6HJEjJXBLxXQmpAZ9EKRcmMjJVLICkNyJg8HbH9+4VSm5fhCIQVAU7gYYWTNxZ5BIzFzPT50+FMG4yM+TOZRi2q9Pmt1V6WO1PTYbbZ0WfmNMSNGYaksaPQ0vGw7VGQdk69MC3+8WkwZw1G6uIZ7L0hWdt1+RWOQLgRkF588cUXw90ob48jEDkEKAAWYHI6IThikPzoREixMZB00fA1vEXHAi2GBhYprfF94LhzMOKG3QWREjywhctb3AQCdakUZby3JKeiz8TxEB0OVv0WtW8hHb/MEWgfAoLe0TiX7euHl+YIhAUB8hJRyI5NyYbJXw8SWzgk7ZdCz96KQJmWHMjAQ/ZqsmmTh4uJdOhQCLzZKGh3KLVHGX1ok48kNV9qbVaQn3IEIoQAD2YVIWB5s5FCgEhXh5mYV5IRXJQUhLbz1TeXhEwlRPL0ooQOFPbKyC/U/p8CxVFkmenpZqJTu+1vo7ls/Jwj0F4EuAbeXsR4eY4AR4AjECUI8EXMKJkILgZHgCPAEWgvApzA24sYL88R4AhwBKIEAU7gUTIRXAyOAEeAI9BeBDiBtxcxXp4jwBHgCEQJApzAo2QiuBgcAY4AR6C9CHACby9ivDxHgCPAEYgSBDiBR8lEcDE4AhwBjkB7EeAE3l7EeHmOAEeAIxAlCHACj5KJ4GJwBDgCHIH2IsAJvL2I8fIcAY4ARyBKEOAEHiUTwcXgCHAEOALtRYATeHsR4+U5AhwBjkCUIPD/AL86cUs+eLWYAAAAAElFTkSuQmCC />
  1.It increases.
  2.It decreases.
  3.It doesnt change."



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

zacnyjessica

  • Sr. Member
  • ****
  • Posts: 345
Answer to Question 1



Answer to Question 2

2




mrsjacobs44

  • Member
  • Posts: 500
Reply 2 on: Jul 28, 2018
Thanks for the timely response, appreciate it


rleezy04

  • Member
  • Posts: 322
Reply 3 on: Yesterday
Excellent

 

Did you know?

An identified risk factor for osteoporosis is the intake of excessive amounts of vitamin A. Dietary intake of approximately double the recommended daily amount of vitamin A, by women, has been shown to reduce bone mineral density and increase the chances for hip fractures compared with women who consumed the recommended daily amount (or less) of vitamin A.

Did you know?

The FDA recognizes 118 routes of administration.

Did you know?

There are immediate benefits of chiropractic adjustments that are visible via magnetic resonance imaging (MRI). It shows that spinal manipulation therapy is effective in decreasing pain and increasing the gaps between the vertebrae, reducing pressure that leads to pain.

Did you know?

Of the estimated 2 million heroin users in the United States, 600,000–800,000 are considered hardcore addicts. Heroin addiction is considered to be one of the hardest addictions to recover from.

Did you know?

There used to be a metric calendar, as well as metric clocks. The metric calendar, or "French Republican Calendar" divided the year into 12 months, but each month was divided into three 10-day weeks. Each day had 10 decimal hours. Each hour had 100 decimal minutes. Due to lack of popularity, the metric clocks and calendars were ended in 1795, three years after they had been first marketed.

For a complete list of videos, visit our video library