Author Question: Suppose XL > XC. If switch A is closed in the figure below, what happens to the phase angle? ... (Read 45 times)

EAugust

  • Hero Member
  • *****
  • Posts: 550
Suppose XL > XC. If switch A is closed in the figure below, what happens to the phase angle?
 
Question 2

etMIaARGOgKRaFTZVYRU1FyVM16LZiCeWMlESi0NyYwl3qr+tmdO6N9/I2ART2Sprd1FW3sX42rGMHv2bKLhiJoD8/Nj/3OOZF/Nq26akGVz+aLTmTd9Ms+uXc/r729jW30T5YUxqitKKS8uIBgysQKW8jQTPUOercVVuDueorMvQeuubjq64mQNj+kTq7l4zizmzpiiFmqUu7FKjimz9tBvBycVmXsNCMQEHc3HAAAgAElEQVQihAoK6elqxFHFuPJ2FX9yzop+SIqgE8XpdVQAj2kZmEp9lNQJMqkfejMdj1Qiy9xrSon3eTz3H/UkWkxWfncH53xqHPOuLCNUniYjGouqRy0alEmqO8vrS3fxwm86SO1yIWhw4WfHM29JuQpCMqRu8O71UZFZDF0m8c40hmURLfHXVg8toT5CI6ARGM4IRKNRFXeSSCZ2aypqqUmWmGzxDEuQTmWxiux+pJKb6FTH5KlfUqiYdHRl2LqjjkQyxUmnnMTMk05WXmSO56r3ocbB8CzwbDzDr3ZSWVbCxy5dzEUL5/H2Bx+yYdt2tje08v6OJjw37WdKluUzCWhUtiAwLYtgwGZceQkLTprMydMmM23cWL/Mu0T/iRnBkLnZd1Me6j5IewckFYE5b4y3g2FC4yrpe38TXsLBiJqqPkl+GU7VhEfAkFoCYIrH1h59YMByixHfy3okPJezb6siEDB49j/bSXSEeebf6/ngmQ4mLy6iZEKAmB3CSbq01ifY/Fo39RuSWGmPYNTk/D8QQomSTKYxxQUs90DiU2AK0y1QHmg9zeLibFJQPXSBPwPurD5QI6ARGFIERDORhI3FxcX09PaotiV2RTYhllAoSDyRoCeRphJXOQHlBZCJWaVHkWKDnk1Tcyd19a3qoXXhvAWMr9kzR4h78lHZZPJUz79S6lAWtXwbdkVJAZeeOY9LFs2lvbOb5rZdNHT30JdIqsqPtmkQCtgUxGKUFRdTXRKjtKjIdzbYLaj/MC3P/8oqnlfSdv8+dDsHJBW5RJ4YxPuqesYk3n3xabpbPIpPNiXWfzdt5N2L/UlbzsvvSSv99wcguFzU9Ygnk8y/tZCyCUGe/q9m2t6DureT1L0TJxgRFy9ZU3TJxCUpWwbsICWnmVx+5xgmnR0kkU1hZ2QJLpfiQAZIngSMKK7pYGYdOur6CFWUE6uqHIBg+hCNgEZgJCBQXl5G7c5a5RocDktiR38OCodDSgvp7unFcSv8CU51SNxxZVnFVktjO+vqaW7uoKy0nDlz5lBSUnJsut1vovd393whfRANKh9IuSdm/8Ci+efk2xjqxboDX/eApJIXRXGCAZUnT6GjN0lnPVTONFRw4u4VpQO3P+hfTCdIvM9iwlkZPjllAu8+E2fDy210bQ2S7HQglVWeDLFKl8pJJZx0TiGnXlZEuNIl0WtiuVE8etSN4gvhgyo+ZEYoQ6Ldo21LH6XTTyNaKtXO5Mbb3etBy61P1AhoBI4vAhUVFSqyPplMKq1FpMlrMeFwhL7ePjKpLKbhT3/yWyBgkYin2Lqjla6eLiZMmsLsU08lGPSTS0ob+WW049k7kXXvx3QPVQnKEJcjP4OAimMRj7ejOUEfBIQDksruc3Lz7Nh5pxAsjFG7oZ2ZF09QXgh7d273GUO0kyXgpsn0xDCKXOYviXHa1YV0NaXp25UmkzSxQyZF5RaF1UFCBUHSUgSnN0PACWGQwlEBPcrtQxGGxP2rsFjbpLPBobM2wfybZqq114znEjhOgzBEgOlmNAInLAIygcqEK5u4+Y6prKS2ro5K10VqpkjmYlkaKyoqoLmxg47u+O7lfcO0advVS31dI6m0waxT5zBl2pQB5/A4FqD3719e55CpWRbIlJuRkEh/QXIfBJNjTS4HJxV/iU+JWj7rJConT6X+rZ30xscStCRX/1FaWxSwlP+0rCxmkf/TWVNqbFE+OUTl1LCPoIoc9dS6YqpPAhhlLdJPWunjK93LU5+8i1ErTdAMsH19M07WZvL5C9ShpniC7DUq/UdI72sENALDHYH+k+fECRPZWVdHW0cHk8aPx8ilxS8rKaKnO0pTWyfJtB/0nEhk2bytUcVznDH3VKqq/LQr+f72bzf/3fF4358ch5qy9nfO0Zb94KTS7+qBSIRJF13Em7/4f7RvilMzJ4IjLr67LS/9Dh6y3Twh+A3Ksmc2dbDG9z5+D6H45xgElbcXvR6bX+olOnUi486Yr3zTLGn8qDjYHUxe/ZtGQCNwNBAoLS1l8pQpfLh5MwHTJBSSwlv+U7ttB1UdE+XIY5k4Tlalv58zew7RiBTu8pfLjseEfDSwONZtHpaqcer155MhzJZnezHNoO+aq0hFmhkBLyOLFbRo+qCHurW9zLxiMQVlpYp7JNJUbxoBjcDoQEAI4eSTTmbixImqVG5zczNtbW3Ie29vXAU1SpyKuNgWFhayYMFCRSjKZpFbRhsdSBz7XgxYU5Ept+aMuUw9cz7rn3yDeUuqiFU5ZMQLTOJGRsCcLLEtklju7ac68bwAs2+/USEudOjJ2preNAIagVGDQNC2WXj6PHqmTVf5wJQraE5bkYzGFWXlopIQkABoa8/fv9ZQjuwWGLCmIukA7FCI2Z+7lba6JBueaFVBNsiSklpAElYZ3i8r6tK0Oc6GlV1MuepMxp8x10dPmVMOtTp5ZEDrszUCGoHjg4BoIhK7UlxUpN6LioqU/SQUDCmB8gZ++aAJ5cjHaMCkIpqIVBE75eYrGb9oEa8trae91lDEInl0hvfml+Q07ABvLu2itw8WffFz/ord8BZcS6cR0AgcJQTkQVlvQ4/AgElFTCfC6JFIlMV/+Xl6Gz3WLK3HDThgZvGkdrLKsyNqpDQrT/7D4SUeZC6BQoutr8V566EdzLn5EqZedI5f93noMdUtagQ0AhqBExaBAZOKZ5jKzVfWIGfeeDmn3Ho5by+tZeuabgKxmFr4smT1y0rBUNeWP5LhMVyskEuiPc2zP91OsKSSC7/5Z36Jzlwd6yNpXp+rEdAIaAQ0AnsQGDCpiM7h56NBpcG/8DtfI1ozmWf/cTs9222iYVeV03Jdsf2LWikMI+/H9+WZNrZpsebfO6h7K8VFf/clKk87SdUSUDWs92Ch9zQCGgGNgEbgCBEYMKmoVJiyvGVI2i+PymlTuPoH/4fWOo+Hf/g+yR4LMyqplAOoYovH0dXYT4QpmdMMomGL15Z38eI9tcz67NWc8Ud3KL7LmhJfL8SnN42ARkAjoBEYKgQGTCriFaFeGFhS+9mDWTdfyYXf+iKbn+7gsX/ZRjbrYYaTilRMx8RwhYScoZJ1QO0IoXimVFJziMQCvPv7dp748XomnTWfK//571RqaGlI6M9Utp8BNasPGoEI+LqyZJ3dN1/S4XVGbIn5mt+Hd+aeo+V8MQzrOIg9mOi90YnAgONUpPv93e3kD1U0gfP/+kt0tbTw8k9/R8AzufTrk/EKsmR6JSeNjeWmkZKVx2qTssOW4WIUmqx/tIdH/u9GimbM5aZf/4DCinJfDEnPf6wE0tc5fgjkgtiOyFlcbl2VV+mIWvHTjSsk/JTmxw8UfWWNwNFF4LBIJS+KTxEubgacgMU1//y3qib0ml/cSzxpcuVXawiNzZCJZ7DTYbCOneueGbawLJuX72nmyR80UDZ9Lrfe9WPKp08h4zoEzD1BTvn+6PdRioAUIxJOcNycQ+LgiEHKaatNbuPBNeGfJn84sip7BO2M0pHS3RpFCAzqgV3+rtTflvoD8SAU5oZ//TYX/c2dvLeqhWVfraVxrUs0GsAKSU15+cv2q5rJrp8MWL6Vy+dbO5x3fO1HFcuRKmY2huURLrBJd7v8/ge1PPbdLVQumsmS+/+Z6lnTyYoGI+tiehu1CCilQrSTnIaS3LWL3q3b8KQykf8kdNh9l9Oy8QStG98/IvVWXO69rEPjW2tReViVsIMW67D7oU/QCBwrBAY9y5qmpewTUnVMygZ7Ulf529/imp//Pc2NDr/7ygbW/KqDlGMSKrQx7DSelwSxsajlsLxX2OF2VSYNC9uR6gF9aqnLjnnYoQBbXkpw91+8x8u/bWDup27mU8t/SdWMmeoCSk5L0dvhXlAfP1IQkBQccnv4jzE0rXqKd//h+/jVpAc39vIA1PXaWt77yv8hk8kMCgll0TGgZ+cO3v3SX9Hb2ORznCsBxUdm7xmUQPokjcBRRGDQpLKXTIaH4brqD2XhFz7NHSt/ScXcOTzxw40s/dNtvP9kD7bhESoNYtkRRQp+agR5XMuTy6He88d6eGaGbDCFFS7EjIZo2hpn1fcauOfL79GzM8K1P/8ON/76JxRWVuUfWvcSV38YnQgoQjEgk+OPlgcfp+HBx0lt3zHoZStBquGRx2h54jHaX3l9kMD5FTCaH3+WXS+/RPsjTyl5XAm/VSQ4yGb1aRqBYYjAkJCK1D5RfyCOlOWE8WfO5zMP/TeX/fO3aW8yufcvN3LPV1v44KF2Ej1JgtEQ4YIAZtBDxYqoZSwRRewd+77ke1MtmZmWQTBiESoIYRKi4e0Ej3+/nt/8wfu8vaKOk2++ik8+s5RFf/Ip9bSacXxvm2GIuxbpaCDgeTgeqmhRx8ZttLz4Im5POzvuf2TQV0vt6qDu948r3afpd8sH1Y5wnJPN0LL0EeU5uX3ZCpx0Gldp+fmSS4NqWp+kERh2CAzKUL9vL+TPQpbDRJeQTZ4YQwXFLP7aHzD71kt57b/u4d3/Xcl93/yQkhkxZpxdyZQzYlTMCBIrNwjaJpZIYlgqFbXnZVW5LfBtJS4O2UyGdJdJ8wceO95pY/tLu9ixrhXPKWbGpZey6AufYOqVi9X1RecRLzBTKj/qao7+oJwI/5omlicu7Bb1968g09IGkQD1yx9m8hfvJBqNqYcfwzVRzzH7wUTpw8r1V+5pg+aHHyO5aRuBWDkNq5/mpJ11RCaMx3FdRRD9PSL3as4Fx/C1d9swaV3zKq1vvkmwuJSO19ey69U3qVx8ttLUfXeCvc7WHzQCIxaBISEV0eXlaWz3qvXuHSiZPJnLv/NNFv3hp3j/oSfYct+TrH14Pa8u3UJpRQFlk0sonxymeKxNtNIgGLawbSGXLJmES6rboKs1SVtthvYdvXTt7MNNWpRNm8L8z9/CzJuvYOK5ixBzSRawPRdTZgxzH5lG7BBpwQeMgNgnTItUTw8t96/CCgYxY2G633qX5mdfYMrVV2J4frqhA+sHfuZU0zRx3Czblq8E08KIhOmrb2HH/Ss55c+/iF8pVCio382+l6CuKgfhl7SGnfc+TCaVJBwtwGjvZcc9D1G1+Gw8+0Dn79WY/qARGDEIDBGpHLi/ngRAegYlkyZw1pc/x4IvfYrGd96j4cX11L38Jq0fbqHp+WbEU8fIWhQWFWHbBn3xXlKJNC4GsYJiouWlxKbO5KRbTmPC2adTc8ZCCstL1IWFTDzHQ4zxcvyQrOkduEv6l2GKgGe4Kqi1/fHn6NnwHhSECIirlZOg6a77mXTVFVI4B2938Z+PTujyjWgf4kXc8frbdL/0ClYohOUZ2LZJ8/IHOfmPP6tIRvSQAzmoi6OhJMG1MOjdvo32VU9hx6LgmIQjYVpX/56eHV8iNmmCSsSac4kcpshqsTQCA0fgqJOKr8I4ZD0TyzWwrSAT55+uXvzZHWQSfXQ3ttDXvIst76zne9/+Nt3dXdz52Tu58YorsAuiFJSVUFAzlkhZ2V7PhencMpetJgq/qsuBn0AHDoo+cmQiIElPZdu5/EHShkPQsjGzHm5hhM4nX6Dr/Y2UnHIqKo/oQZ488kumDUsfItXbTbS4jAwuobBoPe/Q9PxLjL3i4kOAJGmATGXfaXzoMXrr6wmWFhFMu6SCQdL1ddQ/+Cgzv/KFQ7Sjf9YIjCwEDvKnNTQd8Z/6LGxJ82J9dLEgEIlRPnUKE89eQM1VF/IWCV7rbafgvDM46ZrLmHrBuVTNnkV0H0IR6aSgsSWPlNKuRMlLsa2PPnwOTUd0K8MeAUl42rFhI03PPU0kFMXIuCSdJCErSLK1lbr7VqqHEnFGV0ns9tsjPw1RvLWR+kefIBAtwHOypLNJZTd00xm237NctXOwuCfDE23HIJtKseP+RzEDNlbWIZ1Vj0IEzQj1DzyCk5as3vqm3e9Q6C9HJAJHnVQOB5VMbx8hZfQ38ZKpwzlVH6sRUAg03PsgVlMPrukSrq6geP7peMkeLHE9v/9x4l27/ODDQ8zj9SsfJ7F5B5blECwoZNzZ55IihR2N0vXYGjo/eP+jT0j9xsA1TGXna3n+RXrf3EAkbJIJGpRcfbFyTzOiNn2vrqPpmRf6naV3NQIjH4FhRSojH07dg+OJQLqnl7YVq/GiEZLxOJVXXMJp3/1b0mJoD4Xoev99dq1++pA2N4l8r7v3YQKmSzqepGDBAk77yXcwYkXIEluipZGGex89aFeFs8QPreHuhzFSCVIZl/DEycz/wXcIThlHNpPEycbZ+buHDtqO/lEjMNIQ0KQy0kZsBMmbz8ibfz8qojtZMm5WubM3r3qCjg+2QMgmGLCYcMPVVJx7FuWz55FNJDFJ03jPA2qy7y+LyCdZhCVFmGzNr60l/tIGUkVhrKxL9Y0XUzxzOjUXnkkqkcAMR2l68FFSvT0qz4rjOXhilc/71Od8wrq3bafliWfwCizSyRTjr7mC2OTxTLz6ajLJlLL1tD35DD2bt6rrOq6DtNV/k/IMEnsjjih+wHD/X4duP5+F+WheY+ik1S0NZwQ0qQzn0Rnhsh1VMhFsJNhRbHWmqSb17UsfwnYcSGYomX86RecuVFrJ2Nuvw025WLEwjWteo/Od9buRVYQin4QTcktiQjx9yU4CqRTRKVOovuYSdfy4228h4pmEghYdG9bT8tjTaglMuSlL1G+/JTXhl+b7V5FuaFBFFkKlZUy89WrVzvgl11FUOpagC6mWFnYu94MzxQ5jqBRGu8XDdB0Mw8W1RMQc6+35eUj2BAOxfWpCGRI4T/hGNKmc8LfA0QdAJix5DflmGKostBjeE++9x67nX8GOBEmnMlTeegvBUFgpDzU3XUVs/CRcxyC9q4uGu/aOjBePQcMylaNHqr6BFmWgt1WW7dLrryJSWS0JVSi/5BJiC+aTTPQhpbOb7lqugiCVoV11b4+q4ibjNC5/BDNokoo7VF5yPoWnnaJooWDmTCouvoBMohcrYNG8bAXp7m4lQ39Okdakcqn8kRpOFks8XY7CdtTG5yjIqpsc/ggcfZfi4Y+BlvAoIZCfrJ544gl+9atfEYlEhvaJWCbyrEfaNjh7Sx3TkikStkesZizjb7paTeASwxQeP4nqay9m83/8N1ZhkLqVjzH1G18mVlGh0gpJhROp+SNl22pXPk5PbQOBggBWYTnTbr9ZoWPgEAwHGXv7TbS+8TpWQSHNL7xG1/oNlM6djeP6+e8MmfhNaHvmJTrfeQczFsJNwKTbblARVFLcTgJ1x37yBrY8spxoIED3ho00P/ki42++CtfNeUnmtIdkYyPrvvK3JDq7eWNCOeu8NIEhJGjRTlKpFJ///Oe56KKLjg75H6X7Szc7PBHQpDI8x2VUSfXBBx9wzz33IFHqsnZ/NLZFdgVWWRFea5LqJRdRNLFGXUbczmUb98nr2f67e7HMFD1ba2l5aDVTPn+HqmAqRd3EHTmbzVJ73woClkE2maDqkrMoXXi6Ot/A/1MZe9PlbP3xv5Ld1Uequ4PGZSspmztbRfK7WaEwoSbYvHQFnpvBjBtUnHoSlZddqNrJJ8ouv+Rsyk47ncS6DUhxiJ1LVzDh5itV9L4gZHhSbM7gw5/9ii3L76M8FKU+1c1viat2huqf/JgsXryYiy8+VOzNUF1VtzOaEdCkMppHd5j0LRQKYds2JSUlzJgxA/k8VOQiNpUCx6VwZwfxHVtxouVM+Mytatmr/4Jb6VkLKV+0iI5nn8GyTJrvXsn4O2/HMgO4nsSmmLS/tIael9cRioTIxl1qbr9pLzuJwFk0aRKVV1xB7f/cTSAWovGBVUz76h8SrKgEqdtiQu+WzfSsfgFiIVJdCWbceC3BgoLdoyHml2C0iCk3X89bb6wnWBii46k1dK9bT9GcOUgWCtc0ie9qo+3BVcRiUSwrxNhJJ3P2uGICkhFcYrLEiCONHeaW1yCTySQffvghvb29akwOsxl9uEZgvwhoUtkvLPrLoUZASMSyLH7zm98wZcqUITEKSyUSyY8tWkTnho3U3/MAZQvmU3reOVKohN0VG4GAFWTckhtofP45wtEgja++QeeLb1F5/iKynp+NYefSB3CTfWSNIAUzJjPuqis+Qk6Cy/hPfcz3Igtm6d7yAc0PP86kz30Sx7RU2padyx4k09qEWWJjVRUz7rYb9oJTyE58vKpuvYboz/+bTGcbia4G6u5+mFOEVDwXaalx9VN0fbgZoyhEXyrAJ3/2z/zFJRcq0lGkcvh8slsOIRYhFFnycsS5QW8agSFCYFiSSv5JSvqoPVKGaKSPYzMyhvlXXmsZanGqTp+NvGRTy0f91ZTcxSpvuJySH06gu6keI5Gi4d77FalIVoaeulqaH3sOOxqmNxXntGuuIVxRqopoyf2Y36TtMeeeQfTs2XSveQXP9mhYdh8T7vy48kJL9XTTvHw12ahBts9h6pWXUHjStL3IyTUcDMegaOpUqq+8iC2/vguKimha+SRTvv4lAmUlZD2P+nsexBGPgESKsQvPZNwlF2FYlsogkZfnSN5lLGRcpH/5v7P8+5G0O9zPzY/nidDX4zEWw877SwZaXvmBl3f9GrkY5G9qWbuX7Vg8FStvqX5EINcVMiiqqqDmuiugJ0MkEmLn6ifo2dmoPIGbHvw9qR0NmLZNNFbC2CXXKm1id+7JXEcM0YBsi4lLriOQNjEjEZpeW8uuV9YqW0rrU8+x670PCQRD2GaYallCUzaSXAO5NzNX8bH64zcSDUYI2Radm96jadUTKqVRz+tv0fXSS6r2UCAF42+7yieUvZs5ok9iQ8pv+fE5Ef7W8n3OzzH5z/p9aBAYdqSS71b+Js9/1u8jFwFZ9jruT4W5paLq2z9GoKQcxzLJ7KileaUfI1K/bDUhyySRSDLmvDMpXzjHDzrs5+ObX26TqXj8dddiT5mkvM/oTlK/bIUaoPqlD+O5aZxElsK5M6m43K/x03/0TEm/b5mK6KrOOYvihfNxertV8smdy+5TWk3tAw+Q6u1SWY0DkyYx5pYr+jcxpPsyNjJGetMIDAUCw275S8gkGo3yi1/8gkceeUR55AxFR3UbxwcBMdBv27ZNjelxfTL0PNIGlC2cS/mFZ9L06GMEAtCw8nEKJ02je917ELUh4VDziRuV+6/teCroMD/dyiKY2DJEe4lUj2Xs9Zez5V//XQVVNjzzPGMff5q219YSiobJdCep+dgVhCIFKivy3kXBfBuO6bhKo6m6/UYaX3wBu6CQzjffovHhlbQ/8QJhu4Bsb4oxn7mYcPU45akmSVOHeguHw/zbv/0bq1evVprkcX8AGOoO7tOe3IdCom+//TbBoO8f2H91ZJ/D9cfDRMDwhtEdtG7dOs4//3zljXIslkkOEyt9+CAREGIpKioiEAjw8ssvK0P9IJsa9GmeJ+UXLAImbL13Oe985s8IR0LEo0VEK8rJbt9B1skQmzqFC559hFBZMZIiRXys8qSy78W7Xl/LC5ffSsZMYViFRCorSDc1IJmMzeIKzn96GUUnzSDjOQRlcWyfJbl8e31NTTx33hWkmzvwAibh8lIyPQlIpTHdNGc9ch8Vi8/CEQP+3uyUb2JQ75s2bUJciTOZDD09PSfcA5w8wIoDyaJFi9R9qVdHBnUbfeSkYaWpFBYWcvnll5NIJJQL6jDiu48Ap784NALyRChEsn37djZu3Kj2D33W0TlCaqTYriQ6MZlwxUVsnTmd7i0fEkkapLf1YUYs3LY+aq69RhFK/t47mGZQtHAuxeecTdvjjxMsdMju2Ek2Kob1BGNuPVcRioTlqEqkByAUoa1YdTXjrr2OTT/7TwqLC3GaujCDFsl4kooLz6H87Pmq4NfBZDkS1MS2Mn/+fCZMmHDCEYu4Vc+aNWu3DfdIcNTn+ggMK1IRV9Nly5bpsRllCPzyl7/kC1/4gloCO15dk5gOqQwpdpFASQVjbr6e7n/4MQQNgrZNNtWHXV7MuFtvVLYOmeyVwf8gAkv0/PiP30LL409L2kcIhcDNYtqFTLhdltBEOfFQZplDLFtNuP1Wtv76LlUMTBwBREkyHJcJt96AYQfJZBzka9XoQWQ63J+EPOUhTsbns5/97OGePiqOzz9AyPtxXaIdFWj6fzejpCu6G8MVgeHwh6rye5mmipwXnGqW3EikvEzVoc+YLtneNOUXnkvpvJlq3pYCWwPZKq+9kMKZM0inE7jiqdiboWDhKVRccJ46XZo5WFtyFXEfLls4h8pzziaZSOBYLhknQcGkyUy47kq1CGfasnx29PxqTuSlH7k/86+BjLk+5uAIHL279ODX1b+eAAj0fwIcDt1VxJITpGzmSZRcehZedwIxmxtGmIlLrleagNIwlJZxcGKRPF4FJWVU33glXtxRGYWdrKPSrUjpYdlU1PvBm1HF7D3bZPzt1xFMg+W52L0pKq6/nGB1pSI5SdlyNMl5qDIcDIdx1jIcXwQ0qRxf/PXVjwcCOffiCZ/6GARiOPEk0dOmU3XZRcqNeKAiSSJK2WpuuxFD0rQk4oTGV1Nz640DbUIdJynvxU153LWXEjllBl5fEqOgkImfvP6w2tEHawSGAwKaVIbDKGgZjjkCQgfVFy+mZO4s4okuJtxyJaHi0sOLp3FdMh6UnXYqlReeRV+yjZrLzycycaLSPgbaKVkeC7gQKqui6qYrSKc6KT13AZUL/GSWA21HH6cRGA4IaFIZDqOgZTi2CEgeRhfsSAGVN1+GHS6h+ubr1DKTa2RV7ZQBCWRKGiHJPQZTPnYdBAoYs+RGZeA/HIu65CjLm0tOWnIjhIupuVWSWdrKsWBAsuiDNALDBIFh5f01TDDRYoxyBNSileRtMaHq6ouYuLmRgpknKa+vwG5T/kBAMAgoiwyUX3AWk++8k/Iz56oTPd+aMpBG9jometpMpvzJH1J2ydlKHpUm5lA2mb1a0B80AscXAU0qxxf/E+LqXlDSy7vE8boqFmEAACAASURBVDBj0ePeZ0UqptSkdyk4+RTmfuevVYVFCVmXOBZLdI8BTOS+m7I4E3vY5VXM//7fYRQWkvE8RU0HCpo8KACGzdx/+DrZSJRs1iVg5Yz9Bz1J/6gRGD4I6OWv4TMWo0ASD8/JkvWyOM4en//IzgbON2Nc4dj0PP8KyZ4e1VdRFlzHUXaJY9l54Qupa28YJsFgiPCYMixXPMBy7r8DIBRfXtWSIiFL3JXLSzE9RUmqNPFg+iQxLXZhMQE7gK1iawYszGAup8/RCAw5AlpTGXJIT+wG01LdxBFzgEHrq2tZ/8OfUfzs8/x1QQVWxqT2U1+lacYkpv/RHYz/0qfBsjGlnscxTGiYn6aFVPKbkMJhb7lCWaq9vHIjkfuH3VC/E3LCKS3Hzkva73e9qxEY5ggc0f0/zPumxTvWCEj9dUxM26Bu9ROs//RXSLXtxLMMvJJyzECQZKqD+Ltv8vqfv8uu9zcz+1/+Hmx9Gx7rodLX0wgcLQT0X/PRQvaEbNfFMC16PtjKu1/4Bum2eryKSqZ/7rOMv/Jy7NIo7W+/w9b/97/E31rPll/8J7HJNZz89S+dkGjpTmsERiMCmlRG46gerz4Zvml6+y/+m3jtNuyiMub87PtMv/223RIVnj6bMRdfxCu3/jGZN9aw6T9/zYQ7byFaWb37GL2jEdAIjFwEBrGQPHI7qyU/+gg4fb00PfeScrStuuYqpt1+G1kHko6nCrNnXJfIxBpO/tYX8aIxnO11tK154+gLpq+gEdAIHBMENKkcE5hPnIukGtvI7GpWHa4498xcQKGHZWTxDIegp7JhUXr6HGJjxkK2j8S2rScOQLqnGoFRjoAmlVE+wMe6e57cUYYtKRpxUml1eUs+mVlcyQZs+hmzMhkP13XICu2YfvLFYy2rvp5GQCMw9AhoUhl6TE/oFoPjxhCpGq8izRuefpK0xIWbFoYTwHAtDNePK+xY8wqppjoCdoiCqdNOaMx05zUCowkBTSqjaTSHQV9C4Qhjrr2MNBbdzz7Hlu/9VC2BWZYNpqnCUdrfWMu6f/wJVjKFOfcUxixeMAwk1yJoBDQCQ4GA9v4aChRHURt+9TtJZDKI5w2xxRsw7Y8+zo4HH6TvnXVs/u4/0b7+bcZcfS3BwgK63niL+t/dhbuzAdcqYP5ffhm7tGQUIai7ohE4sRHQpHKCjr+U1U3jEcKkr72VhkeeYvz5FxCaPAaXDBahQSEj0fSMrebsf/8XXvvsn9GzcT1tSx+iccUqTNNS9dtVrdxoiJnf+msmf/wWXM/BzLkjD+qi+iSNgEZg2CAwiMfRYSO7FuQIEFA+WCmHdd/+Ec+ddw1v3fmH1C57QOXDMt3BEYpoKUJWnusSO3MeFzx+D1P+8qsUTJ9FMBQlaFgEqydSed31nL3sd8z6xpfJIJ7GKsXjEfRGn6oR0AgMFwS0pjJcRuIYy+F5YuIw6HjhNbLvv4cVDVH7wENM/PIdRMJFg5JG/LokmaSNjSdxKeMnsOCH/0DvN/+ExNY6vEyawJhKCqdNxCZAxnFwLJOgY3JkCbMGJa4+SSOgETgKCGhN5SiAOiKaFFIJ2Ez/kztIRQsJBGLE315H++PPDijt+/76KLU/JDGjY/mEJRqLrIYVlFdRecZ8qs45i9Jp0xShSHEry4SQ2GFsfRvuD0/9nUZgJCKg/5pH4qgNhcyGh5BA9WUXUnXKTKykQ9pIU3/XysEvRhmGsptIynb5XwjmQDVFJEOw2FEMKaU7FP3RbWgENALDAgFNKsNiGI69EC4eTtbFjBUw7mM305fJEI7E2PXMGrrfXXfsBdJX1AhoBEYFAppURsUwDqITqiCVv9JV/bHrKBo7Ftf16Opqof7ehwbRoD5FI6AR0AgMKhhBwzYaEPDrnvjPFIVTJzPuiovx+uJY0SA7HniKRHu76qakUhGPLr1pBDQCGoGBIKA1lYGgdAIcM+bTN2MFiwibARIfbKHlkceVkd1xQQIi9aYR0AhoBAaCgCaVgaB0AhxTfu7ZFJ59BplUBtNKs/Oe+/CcjFjbMT1d1vYEuAV0FzUCQ4KAJpUhgXHkN2LbNmNvvxYj5eAVBmh9+XW6Xn0LyzBwNaeM/AHWPdAIHCMENKkcI6BHwmUmXHcZsclTCSTB7Yvz4d0P+mJrUhkJw6dl1AgMCwQ0qQyLYTj+QrgeRKvHUXrLVWTjGexwhLZVjxHfWYup8gwffxm1BBoBjcDwR0CTyvAfo2MioYcjlU+YcvsNeKVFELBJ1m6jYcUq//piq9f2+mMyFvoiGoGRjIAmlZE8ekMou7gNi7ZSMX8uxRcuJNuXwAwE2bH8YZKJpPIAc10X7Qg2hKDrpjQCoxABTSqjcFAH0yVJl2I6oowYTL/tJoKeRyAaIPnG2zQ/8wKYhkqp4hcDHswV9DkaAY3AiYCAJpUTYZQH0EdJhW8Ykv4Rxl11JbFZp5BKeTiZDE13369WvoR4srljBtCkPkQjoBE4ARHQpHICDvr+uqyM8ZaB4YFdWMT4m27AS6RxisK0PP0CPZs2+TlddMzK/uDT32kENAI5BDSp6Fshh4DoKubutPc1S64lUllKyIFEayu1Sx9Wx1kHzDusgdQIaAQ0Ajr3l74HDoBA9JQZlF11Kdm+LIGATdt9q0h178LQMSsHQEx/rRHQCAgCWlPR98FHEPAtKzDptptwgkECoQA9H7xPw+qn9hyr3Yv3YKH3NAIagd0IaFLZDYXeySNginsxMObC8ymbP4tsMkWWFDvvfhjXy+UsdqUWvaeTTeZB0+8aAY2AQkCTir4RPoKA4XmYjocdDjJ+yQ0YKQ+7oICu51+ja+1b6visJeYX+U9vGgGNgEZgDwKaVPZgofdyCEgCSakvnwXG3nI9gUnjcbMGbmcHO5ber4hENBmVaFJ7g+n7RiOgEeiHgCaVfmDoXR8BCYB0DV8LKagZS821l+N2J/AKTeoefoy+5jYCilo8PH0H6dtGI6AR6IeAnhL6gaF3fQQsDGzb3O08PPYTNxGJFWBaBqkttTQ8tEpRiiyT6U0joBHQCPRHQJNKfzT0/n4RKDtrAcXnLcLpcwhYNk2/ewA3lcYzJWRSE8t+QdNfagROUAQ0qZygA3843bYNi4rP3IDhmRjhEC1vvcGu515V/ui+n9jhtKaP1QhoBEYzAppURvPoDmHfJl5+ObGTJ+FmXZxkmu3Lluda17fQEMKsm9IIjHgE9Iww4ofw6HdAYlPC5WXU3HgtbjJFNBSm+ffP0bl1u3YqPvrw6ytoBEYUAppURtRwHSdhDZAo+5rblmCWx3BNA6exkZb7Vh4ngfRlNQIageGKgCaV4Toyw0guT7y8PCiafTKVFy4mnYyTDdk0LV9JOpFQkrq4qsjXMBJbi6IR0AgcBwQ0qRwH0EfaJU1PYlYkegVqPnE7lmkRCEZoW/8uTY8963dHykbqTSOgETjhEdCkcsLfAocGQAIcpc6Kygd25WIKT5uHl0zieA4tv5UCXrI4ZurspIeGUh+hERj1CGhSGfVDPAQd9CBt+PnAwuEY4z92A+lsimA4QOOaF+hcvwHTNBTpDMHVdBMaAY3ACEZAk8oIHrxjJbppGAQMU9Wpl2uOv/UKQjVjpWw9iY52di59RImi04AdqxHR19EIDF8ENKkM37EZVpKpGyWXkrhg6hTGXXYJ2Z4UwVCAxgcfp6+jVS9/DasR08JoBI4PAppUjg/uI/eqviMYEz51K15BAYZtktj4HvUrn1CG/JHbMS25RkAjMBQIaFIZChRPpDYM3yxfcc4iys6YRzaVwQ1C612PknX9mpG+H5j2BjuRbgvdV41AHgFNKnkk9PsAEfAwpYhXMMjEJTdgpgzMWIS2V95k12tvqjb8ipAuuRqRA2xXH6YR0AiMBgQ0qYyGUTyGffAwMTw/N3H1DVcQnjIRI5UmkWyj+Te5fGCG0IlkMNZ1IY/h0OhLaQSGBQKaVIbFMIwcIYQmJM7R8TyiY6oZe/1VeHEIh8PsXP0svbW1GIZJVla/JLBFbxoBjcAJhYAmlRNquPt31sF1XHAc8HxbyLOP3sV/P/B0/4P2uy/exVbul8mfWIJVHCJoWvTU11K/4jGln6ilL21W2S9++kuNwGhGQJPKaB7dg/VNaqNgkDENPMOip2Urf/qZz/Ojn917SAVD4lMMw1/aKllwGuUXnEMmniRsWdQue1jlBrNNiWs5mAD6N42ARmA0IqD/7EfjqA6kT2IXEV5Qtehd/v1H32NDe5poqpE25zBUDAPGfeJ2UpaJFQ7T8+ab7Hrqud2azEBE0cdoBDQCowcBTSqjZywPuydZIIDB1jdX8rNf3IWkYGnqbKG1LX5YbVVfeTElp55CwknjuUm237PCLzKs7fSHhaM+WCMwGhDQpDIaRnEQfXAMSVafBTfBj3/0a06ddw7lQZddjS001HcOuEXPcwgXFVBz0/VYfUmMWIymp1+kZ+OWAbehD9QIaARGDwKaVEbPWB5WT8SiEjYDrL7rP/jQGcf3vvsXWFaaTE8rDY3NA25LeYJJSvzbryFaMU6dZzY2s2P5gwNuQx+oEdAIjB4ENKmMnrE8rJ6IoT3b3cA//eK3fOGvvsbcGeMwCyrIunE+qNs54LZMw1QuxsXTZ1B01fm4PQmsmE3j/Q+T7e4ecDv6QI2ARmB0IKBJZXSM44B6IUtVnptBYt1l+80/fo/iWVdx04IpZK0YxcEoeB5bNvhLV66XQZ1zCLu9lSvgNfGOW7BDYZxgmPjGD2n4ve+e7GU8Mo5YcPSmEdAIjHYENKmM9hHu1z+pCuxiqFj35i0v8YvHX+Wbf/tVdUSouJiZVbLrsat+k1hbVGr7fqfvd1c0nrw9vmbx2ZTOOx03nsbBpe6uh1QBL882xMlMbxoBjcAJgIAmlRNgkHd30TTxTFsRx3f++eecu+RPOWtKuf9zsJrxUyar/fqWnbQoBzBbaS6q7OPuRvbeUfXrc18ZoTDVH78JTwp4FYTpfmYNnW+8pcjJNPLhknufrz9pBDQCowsBmWH0dgIgICtYrudiGxYbX1nFvf+7lJMWt3PTq4/iOmkClsGWd7ZSGilgZ30Tje0djIuW5hbKRL/ZPynkgyDzEI6/+SrqfvBTejrbyfT1UPe7ByhZuFDFw+SP0e8aAY3A6EVAk8roHdu9e6bsIia4HXzvW9/jjm/+iGvOPY2+RFItXwVCYV556Lf88Jf3YHQ00drSBhNKVe35ga5cySViY8dRcc2VdP7HrwjEIjQ++iSTv/FVCqsr95ZHf9IIaARGJQKaVEblsH60U0IMtmGw6n9+wrt9laz5uz8ntg9bjDHr+cmv/5d4KsXOnW2wYAZIoq+BbmKzMaD6Ezex/a77sMnSvbWOlgcepvBPPj/QVvRxGgGNwAhG4DBmjBHcSy06oo5ke+r54Q+X8um/+quPEIpAVFI+nmikkEy6jw8/3Oaj5g081bAY44Wnys9eRMm580jFEwQtk53L71N2HD0MGgGNwOhHQJPKqB5jN+cS7PsE3/OL79FdNo8/uv6c/U7yFVXjmVQaASdJbUOdQsYwxJ4yMGLxPJe06yDJJCfffgueYWPEAnS8s4kPf7ecvk3bSe3q2I24Cpx0PJxcluTdP+gdjYBGYMQioEllxA7dAAR3TcQ7S4zp7TvW8vc/X8EffuWrSkvxZJ1qn62gopxpU/yo+MbabaRVvklp46PH7nNq7qOH7XnqvDG33kjp3Nk4qQQ2aTb++V/z/GXX8ew51/LqnV+h7dU3fDdjadvPvL//JvW3GgGNwIhCQNtURtRwHaawKvu8uAX38hdf+RO6C07m9iVnHbiRYAVF5RXq97r319OahJqwOeAYEynOJVqN3FTxxgay6RSuaWCkUhjxOHFayQA9H7xH40O/5+Qf/A0z/+DTeK5+tjnwoOhfNAIjCwFNKiNrvA5L2kyyixeeWcXPf/ZLHlj9KpEJc/jdPcuYP2MyC+YtJJAreJKJd/DaG++wbv1aHvr9GnWNre+9xte//g1uv+5qFp91BqVF0UNe2xOLimmS7ujg1c99mfiG9TjhCJXnnEfV1ZcQKSqi45W32LZyFWZLAxu//DeUVJRRfeO1h2xbH6AR0AiMDAQ0qYyMcRqUlH0dLTx0/3Ls0sn8n7/5O+Ld7Tyz4n7q5yxgzpyF2KaLZ5j0tG/ngfvupqEtzq13fIGCoiB9HQnaWrbym2UrmDnzVEqKomopzTxEaLz8vu1Xd7Pr+ZexIjYnf/FzzPz+twja/q028fOfoOKJq3jnj76Gt30LH3z3Xyi79CJCBbFB9VGfpBHQCAwvBDSpDK/xGFJpSsbO4F//64H9tqlygHmQ9UyKJpzOj376n/s9Lv+lmPqVZWX3Tv6XPe/yezqTpuG+1So9S8G5F3Hq9/8Gw7bJeh6265E1TGouu5jUX/0Z7/zZ12l59wNaX36D8ZddsKchvacR0AiMWAT0YvaIHbpDCy65vsQj2HM9XM9RE7vjyheeqvooWkrAyGA4jnylNBFpVfYllF4ST0rNFflXCMMYgME+0dCIU7cDC5fxV16CbYcgncWVbGCGqQz5co3Ky8/DqhmHmeyl7733D90ZfYRGQCMwIhDQmsqIGKbBCWkYviuxYhDDVIkkxRNMSMMwbPXZlEPk0UKpIeqffoZ5+Wz7P4kIilkOIUs6o5JJWhgEogXKMO/ZYLlCSllcU1y9QpjBCHbQxpUjUkOfwVicoIVQTQMkL3NAxD+cQM5cNxWxegKRgYNDYJA5zMRtWrzoxO5kGcaAknUeAmn9s0ZgWCKgNZVhOSxDJZREI4rxXPhAshPneEEFKfqfkUnyABOlHL/XDeJzzkGFi1RVEigoI4tJx6tr1WSOsArgmC6uI2QGPe9tJdvUStYIEq3x3ZgP2vBh/ijXsKTfBtjCYwPQsvZ3CdM1kJcQqu3shcb+Dj/gd6ZjYrkmpintHfAw/YNGYMQjMPi/khHfdd2Bo4GAXVxM8flnkcGkcdWj1D36OEELLMvGMIPYAYt0VwcbfvRT4vFeIuMnUbZ4wdEQhXQ8TqqlCcfOscsgrqJ4JJsiW1ePa4umMbgta4JjeSQ+3EnW0IE5g0NRnzUSENCkMhJGaYTIKEtFMume/KXPUFRZjburlQ2f/yrrf/ILOj7YTN+WHdSveoYXb/40XS88Q8Q1qPn8EiITJw5ND3N2ILEhydb09BrW/dNP/fzKg2QDyc3c88561n7922r5TjUs9qdcXwcquGgo6eZ63v7zfyC5qy3XjLfbfjXQdvRxGoHhjoAmleE+QiNIPnmONz2XwtmnMftHfw+RIvqaG9j8tf/Lyxddz8uX3MhrSz5N+zMv4CYdqm9fwqyvfXnoAuqFVMQRIadPNN7/KHW/vZ9UU8s+63gHB1WyEPSvE9Pw2HPU3beC1rfezdmXPN8BQnk0HLwt+VX4TMip5ck11K+6n86nXlUnua5YafSmERhdCGhSGV3jeVx7o5QB18NxoeaO2zhv+a+Jnn8BgYJCAok4Vkcb2axDdOJ0Zv/NNzn9f36EHYthZwepRuzTW8/wsDxLBWAmd+6g9flnyLa20LTyqT3OBvucc6iPTk8PTSsew8z20bzsYXW4K9UuXSHQARiZcnYs0Wzqlj6KQ4r6e5aTcbOYyllCPPGGpv+H6ov+XSNwLBDQpHIsUD5BriGmf8+wMMUF2XOpvPJiLntmGR1f/hQ/6+vkd1aWk374bc5/fgUnfecbmJEYXsZVbstDApEnwZy+M8LO+x6lt66ZSMBkx/LluNmBW8f7Fx6rf+oF2t9bTyASo+mh1cSbdymCylq5Cw1Q8I6169j10ouEC6toeuEVOtet973sHPF806QyQBj1YSMAAU0qI2CQRoqIyuPY8PCUXdxTS1GWGaRv+iRWOl0sDWYo/Ph1FEycoCZm8QkzbRPD3n9VycPttxCKXDubSlL/4CpiXoBguIj2V16j/cVXVHOum8XN2Vz2274HGddR3nIy2e9YtgJPzolE6Nm8hcZHVyvZxSMsexBFRShMluLySlj9svtId/cQtcJkujppvHeFurxnWgOK/9mvrPpLjcAwRECTyjAclJEskjzli64i/+af+K20OBibFHkWZnff7u6pOVl5PA/NbZiPQ9m15lXa166DghDpQBCnL8XOu1f4+oApsh1s85DVKPEi7t64ka4nXyQYjaq4HsM0qF+6ArGFSA5M8yDkJPE/Xi4eJd7WTt1DT2BFImQMFzMapOnBJ0i1teOZg/dMO1gv9G8ageOFwND8NR8v6fV1RxwCR3OhRwIL5YauvfsBrEQSxzTIGA7RSIy2R5+kt3arIreDyaCWz0yhQKi/ZxVOaxuovGUegUiEzpfeoO2lV1XwoizxHXTzfHkaHl1NavNOrEAQISY7ECK5aQdNDz+uMjoftA39o0ZghCGgSWWEDZgW9+AIJLbsoOGp56DAJpTx8NIZvGiA3sY66u5/VJ3sHFRVkWh3g2RXDw0rVpOJ2Riui5NK49kWmUQv25c+oLy5POvA9CTkJNH8ruPQfM9DZEwX0/Bwkmm1tJa1XXYsexBHUuTs1aW9P+31k/6gERgBCGhSGQGDpEUcGAJKu1ixmlRdPZY4DJQUUjh5Em4yDuEATcsfw0kkVJqUg7UonNP85DP0fvgugXAAOxSi+NRTMR2DUChG/e8fo6euAfMQeoZE87e/8Sbtr64lFI0QcLMULToN07AIxoK0vvoS7S++5ZOKuDG7vqvywWTTv2kEhjsCmlSG+whp+QaMgJNKsvOBRzGDNkZXhqpLL2TWt7+BlTTxQgF61r5L0/Mv7p16Zp/WhVAkiFPZYFwDqzdD8WmzmfPjb2HaYbyQibu1icYVj+xz5j4fcwpHvWgp3T3gOBg1Ezj9J/8f4eoaslkPtytOw9IVOXl8bzJZHtObRmAkI6BJZSSPnpZ9LwR2PbWGzrffJhgKkAoEqbjpcqqvu4rQaSepZTA3k2DnXQ/tdc7+PnSt20j3889hRqMk01nKr72UinPPpeiceWTiCYjYNN+7AjctBZf3v4mW0tfURPMjTxKIhHD7+ii54kJK586n4qoLcHsShGIxmh97jERdk/KDFscGITS9aQRGMgKaVEby6I0Q2fPR6fn3oRJbpUqRZSMV6eGy496HMdJJnEyK2KwZjLlgMaZpUnPTFRh9abwim/Ynn6V701Ylgj99uyABm56UB/Dbql32MOm2LqTmTGDSOCbecKU6fvwnrgMvgxEOsWvtBlqfe1F973hZ8R+WZsiI8d7xW65/6El6dmwFyRlWVMCUJX6Fy4m33YBdUga2S/eObTQ87Nt6pJl9g/TF5iLBpNJsZt8fBwnkUI/DIMXQp41SBDSpjNKBHY7dkifxwsLCIRNNMi9Lm7JglNy+ncYnnseKhXATDpNvuJJg7lo1H7uW0NixhDPQ19pE3b0rlQyKQhSnqGIySKR8X2cHTStXYUSDuIleqi4/n+jkSUiI4rirLqXglJMJJF28VJrau1bg+38ZuBKfI2lqMPDE68zN0rz8ESzbxEmkqFx0BuVnLFAEWLJgLiXnLcLoSSqPsIZ7HyKbTuBIMoB9NRXLUu7LEn8TEPVnCLa8q7eMRX5/CJrVTWgEFAK6noq+EY4JAqIxyBPy0qVLqaqqUvtHOqHla51ImZSSx58n1NZOXwEEKqupue0G1S/RQApmnvr/t3euwVGVZxz/n9vu2ZNkk5D7JksIQUxFiVEURVBCMVwSyCYGCPih/dDxS2/TsTOdTqfTD3WmnXbGafulU2c6/VCrjZWLA0oFZdBaQR1FEEVoBQVyoSFZSPa+e87pPO9mdQkKS0yWZXlOhuyFc97L782e/z7v+7zPg/IVD2Lwma1wOnUMvrAT83/4bVhuNzQhAhYUm+IAACMvvoowJQ0rdsJUijB3g0+Uo5iA6p6FGp8PHz/xJNwuB4b3vo7AJ8fhbrxVWCj0DY3yyJDn1/k334b/4EE4HAUIhUOo29gNSdaEFSMpMrxbfBjZvQ8Opw7/24cxvP8gKttaIYKBTewFJXsnPj6Ok0/8AeELfviXNmNYd+IKTmcZjWXKUjl37pzYoEljwwcTmC4CLCrTRZLL+UoCqZtYPB7H448/LgSF3vu6okIZKU3JRqEJ/NxRgbuLXbAvjKO6634UNM1PWhGWBVlRMHdzJ/q374LqVOD/6CjOvLwfczZ0wqZ5JbIyhMVjY/DZHaAw9VLYQkXLYpQve0CUY8smZCio3uzD6T/+BZFEAPH/DWDwuRfh/umtIg6YYtswFdr2CfQ//QJi0XGozkIUN8xB5fo2wYfKocRnnjXfxPEF85A48SlCZghn/74TNW2tsGihPplFTVhgn/3pabz3m1+hUtXx0p9N/F4OCCH8StgZ/EdqPEhMDMP4fDwyuJRPYQJXJcCiclVEfMJUCaREI/VINzOXyyXEJHVjm2rZ4joRQNIWO/gL4iri5/2Iw4WqR7uFRxV90ydBoaNsxXIUt8zH+KFDUOMK+p/bIUSFZpQkSwHFoRw9dAhDbx6Ao9BAbCyI2T3tUJxOMSFFbsCinKb5KF6xBCPPvwDVqeL01pcx93uPQS4qFGJAZwUHBjC8dw9kww1rfBzVne0wKsrE9ZRxk6bJnCWl8KxbhRO/fhJFhoFze3dj/NSP4Grwwo6bInSNGQzhs75tMFyFUFwG9EQITgUwJmICJCMyi2Kv6VdqPFIX0VhMy3ikCuTHm5oAi8pNPfwz2/nUzaqzsxOLFi2CMnGDn65aaformebXguvEJxjtexG1i1tQs26FWNymzI+pQ3E54Onx4dhb78NV4MLovjfhP3IYsxY2i3V1Wq0YenYnEhfHYRg6JO9sVPYkrYv0lQwqsn5LN0a37wWcNgJHPsLAK/tR39VBYTSFmA1v243xzwZQZLiQcJfC07su1QzxSKJCK0GzN3Xh1FN/hRkPAf3ncea57bjtJz+Arcgi2OTgqAEqNQAACJRJREFUvtcROnIccpGGcNjCxt8+gV5ai5mmBftUoxKJBLxer9iISdbLZNFJncePTCATAiwqmVDic6ZMgG5QVVVV4t+UC8nkwuYWmBt6xE2dgjhKXxJBZXa3D6d+9xSsUT8SYyM427cVpQubhTtvaGQYZ3fuge50IBKKwLu6FQV1XjH1laZNwmqpWdmKj1tux4Wj70KzbZzu2476rnYxhWZFTZzp2wFVVhENB1G6pg2lLc2X9IBy1ZMgltxxG8pXPojBf2yHaqgY2LYDTd99DCjUxfn9zzwPyYyCytSa7sRd3/kW4NAuKWs6X0zV8pnONnBZNz6B9M/Ljd8b7kFOEZjxb7wU+FFkexQ7FsUCNn2Jp6j0k9eeKcB+4exaeNpWIhgNQTE0DO7Yg9Do+WQCrV2vInDyY9guFZphoH7TI0JAxJpLOlULUA0DtT1rgagFu9iJsVfegP/DE0LQBg78G+ffPwzVcCKmSGjY6LtsBz9ZV5RRmHSvrrcTkqYCDicufvAfDO3bJ8oJHDuO0f1vAEU6rLCNOnJHngFBSVmT9EjjNeNjls6Sn+clARaVvBzW3OnUjN6kJuJriT9i+pX+On3OitZWJsTH0+uD0+GComkInDiFc3teE7AG+3YBigU7GEXpohaULrmXtp5c5uJLrr201O7tWg29ug6umIyo34/+vp1ipWPwb1uBcBiIx1EytxE17Q8nHQaSW1eSA0PrOOR2DBs1rctQsuA2yBELcszCJ33bxDlntr+EwOgINFOCXlGH2kfWzsigpoQk9TgjlXChNxUBFpWbarhv3s7SKkYcQPmye1G56B5Ew3GokoWh53fhwjtvYeytd6HqhSJ8SuVGHzRNEZbPZFEkSyhh2yhqnIeKtlaEA2FougtD/9wN/9FDOP+vA1BdOhKhCOp87VBLSpK75NNEjvSFPNdoyd5R5Ia3uwuhRBx6gYqx196G/8BBDL20H6pDQyQURvmqZXDPm8+5vG7eP98bqucsKjfUcHFjp0qA9o5ocUDRnKjZ7BPmhlWk4cI7h/Dej3+JaCIAKQHoc7yo8SV30Fsy7bJPq5Gm1iwLimWKzZCNj3bCLnDB1FVETp/EB4/9DLHhYUCRoZaXoHrTOmG9yJNC5Evk/yVD7I2h0qs3dsCoqkBYiSMRGsPh7/8Cof+ehK5pkJwO1G1eJ6bEpnl9Pq1j/JQJTB8BFpXpY8kl5TABiXKbJL2CUdW5GnpDLdSogmgggLF3P4SmaYgFI6hbtQpFNVWiJxQCX6adlamDrA0SDEUV6zDly5ag7O47YIZDsGKA/8hRSNBgB0NwL1+KktubxVSZRBm/0hSBPL9ExpYJ68XdOAeVbcthjscgyxIuHjuGhBVEPBJF6R0LRLgZWuCxSPX4YAI5TiDtE5PjLeXmMYGvQ0BscEzuxzCqKuFd3454KApJtaE6nEDCgmEUo+bRS91/v6pK0gNJ08RmSEfYgkSuuIYTEsmIpKOxZz1Ijyg7JIVtoc2VVzo8W3zQlEIopg3J0ETqSTtio3JDBxTdgGnakGkzDR9MIMcJsKjk+ABx86aHAE1jUTos+qHD0/sI7NICyLGoWOGPB8MoWtKM0vvuvqYKa33roMzzQAlTIEnAjAWhf6NJrLdQVbSoT15eV5IUalHVsiUovucuJCIRka1Si0qw6qpR290urrdJFNOn4q6plXwyE8geARaV7LHmmq4jAYp+IqwLshhsYNZdt6P8gXthBiKAHAdlg6zb0Cn2l2R697ZhopD24HS0IRwJQJJsxMNxVHW1QS8pEbnuqdLJi/2TMZCXmdOhw7tpLeyoCQUqYiE/ale1orihQaynyIokPMYmX8uvmUCuEWBRybUR4fbMCAFax1AksUNElE87x+s3dUO2NJiRAIzGeng61iTdf69kVqS1jk4j48GzsRtqYQGkaBSuWdWo702GuCc1UKVkLLC0yy57Sk4EVE5N98PQ673Cc8ws1FBPDgUTVo5oeYbtuqwCfoMJZJEAi0oWYXNVOUKAcsfTTXzNwzBuvQWR4EVUdqyBXl0hXH0zbqUtCy+wivsWoWzJYoQCoyhbsRTupqakOGVYkC1ZIvaWy1OPio7VUIN+VCxcjPIH7s+wBD6NCeQOARaV3BkLbkkWCVD8LOesWajuWglV0uDdtF5YC+QyfOUVkC8aSflXVNOGKinwbF4vYn95eztEPDLpGtY/VIvSAiTENBcl8DIVDdU9a6HqyWCWX9TIz5hA7hPg2F+5P0bcwmknYEOyTdiSCm/Haox8+ClK7lyABGxolsiUlVGNJBy0l4VyqFQuX4GqTh/Kli4W4iQJ99/MPl7kJaYgGdOr/L6FqOnZguqVD31u7fCsV0bDwSflCAHJ5pjXOTIU3IxsErBMC5YsIxYJwDw7BP2WuZAptQr9yPT76kcqbpYIcRK3EDk7BKmhFg6KozWRN+XqpVx6BtlJ0f4hSGWlUDUnqQ0yk6ZLy+FXTOB6EWBRuV7kud7rR8AGYpRHXrJBXlVkaVB+epoLpsCTykTulKs1ULgnJ3N8icRetFnSpOspZhiZH5ko06RKyFqiC03bgmaROHEo+kmI+GWOE+AvQTk+QNy8mSGgTPgYK+RLLE2kAabNikJarrFOsmwkmlJLiEksO0NR+rJaxAfSNIXYUVOmoEtfViy/xwSyRoAtlayh5oqYABNgAvlPgL2/8n+MuYdMgAkwgawRYFHJGmquiAkwASaQ/wRYVPJ/jLmHTIAJMIGsEWBRyRpqrogJMAEmkP8EWFTyf4y5h0yACTCBrBFgUckaaq6ICTABJpD/BFhU8n+MuYdMgAkwgawRYFHJGmquiAkwASaQ/wRYVPJ/jLmHTIAJMIGsEWBRyRpqrogJMAEmkP8EWFTyf4y5h0yACTCBrBFgUckaaq6ICTABJpD/BFhU8n+MuYdMgAkwgawR+D+hG58EtodTgQAAAABJRU5ErkJggg== />
  1.It increases.
  2.It decreases.
  3.It doesnt change."



itsakadoozi

  • Sr. Member
  • ****
  • Posts: 317
Answer to Question 1



Answer to Question 2

1



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
 

Did you know?

There used to be a metric calendar, as well as metric clocks. The metric calendar, or "French Republican Calendar" divided the year into 12 months, but each month was divided into three 10-day weeks. Each day had 10 decimal hours. Each hour had 100 decimal minutes. Due to lack of popularity, the metric clocks and calendars were ended in 1795, three years after they had been first marketed.

Did you know?

Recent studies have shown that the number of medication errors increases in relation to the number of orders that are verified per pharmacist, per work shift.

Did you know?

Signs of depression include feeling sad most of the time for 2 weeks or longer; loss of interest in things normally enjoyed; lack of energy; sleep and appetite disturbances; weight changes; feelings of hopelessness, helplessness, or worthlessness; an inability to make decisions; and thoughts of death and suicide.

Did you know?

According to the Migraine Research Foundation, migraines are the third most prevalent illness in the world. Women are most affected (18%), followed by children of both sexes (10%), and men (6%).

Did you know?

The term bacteria was devised in the 19th century by German biologist Ferdinand Cohn. He based it on the Greek word "bakterion" meaning a small rod or staff. Cohn is considered to be the father of modern bacteriology.

For a complete list of videos, visit our video library