gSqkBeNXED/Eky9ewSlnjhi8LXXUUkZ1EJDm00PB1XFpr0LusnX2ZDaT2vOlu+NJ6Wxv+uoNxLPwe0NF3FZF+hR8SkBXSAJ0X8dLytOcyG8gK6SicJmigrBrg4eO9S/6Ji7JWIRSeogFGROUxjpwwGMgUtYfNQQO1NcDDGGRp0kDFXrmwNCk1XGvQQNBA09BAMJBN4z6GqwgaCBoogwaCgSyDUkORQQNBA01DA8FANo37GK4iaCBooAwaCAayDEoNRQYNBA00DQ32wrUXAAARAklEQVQEA9k07mO4iqCBoIEyaCAYyDIoNRQZNBA00DQ0EAxk07iP4SqCBoIGyqCBYCDLoNRQZNBA0EDT0EAwkE3jPoarCBoIGiiDBoKBLINSQ5FBA0EDTUMD9VyLzSJx/WsaCglXEe5naANBA6qBehhIUs23r8krSKaTIE1DA615i7aIhMFF07if4Srqo4F6GMhvROTGmlcqhCwn9bkJ1XUsGcfJsTetuqpV1tpwzR1EZLmyJl8t6yWEwhM0QCffRkT87w1KODC3qWgDueS9GWN480muoPClaWqAV+E2feGlUY/XPEwhY3jTud+EizBxdbdTRRvI3//+9/Ljjz82HR2GK/Fq4Be/+IV3f2PeyVs0Y8FbTn9LZGO+xlD3JRrg/drFStEGsl+/fsJfkKCBxq6BFVdcUTbccMPGfhmh/gVq4Je//GWByCWwZlElXl685HzhW9BA1WiA92gX8i7tqqlwqEi9NMCrbHl9bDESDGQx2grYoIGggaVKA4HLsVTd7nCxQQNBA8VoIBjIYrQVsEEDQQNLlQaCgVyqbne42KCBoIFiNBAMZDHaCtiggaCBpUoDxU3pVEg1Tz31lEycONGcbb311pNNN920QmfOP80HH3wgX3zxhcyePdvs+M1vfiO/+93v8kHhV9BA0ECT1UBVGsjzzz9fME7I4YcfXnEDuWDBAhk2bJhcddVV8vzzz+eI8SeeeGIwkE32UWh6F/bpp58aR2P+fJaOivz617+WlVZaqeldaBmvqCoN5LLLLpu75GWWWSb3vVJfJk+eLBjpl19+Oec9Vurc4TxBA/XVAAbx888/l1NPPVXeeustmTlzpily0KBBcvDBB8vUqVNlzJh4+V3r1q1lzTXXlFat6r5eub71rebjq9JAQuhsSGG9+f/+9z/RpUn0uhhtVl4ECRqodg18/fXXcuGFF8rgwYNlyXJKyZHin3jiCTnmmGPMZay88sry+uuvyworrFDtl9Ug9atKA2lrQns2hr386cKfFi1aSJs2baRZMxak+4UelRUTixfHadk4hnK1bD164cKFpkFNn07ygiVyySWXyCabbCKdOnVasrHmG/XR8rVulE/96J2T6sd16LAHHF4yddNyOM6tG6dLOhedCXpo6E6llmLChgbTAN7hk08+KbRn2l/79u1Ne+zQgYxFsaFUw4l3SRsMkqyBqjeQ3FRu4jXXXCMvvfSSzJgxw1wJSRQOOeQQE5/s2LFj8tWJyFdffSUMLd577z0ztADYuXNn2WabbWTfffeV1VZbLXcsk0PnnnuukMHGzmLz73//W6jHQQcdZGKiegCN7L///a9pjMR79Ji2bdvK+uuvL7vttptsvfXWtZY33XfffXLllVeaYlgfetNNN5lre/TRR82kELHOAw88UE9jPjGqr7zyijz22GPyySef5Lzb3r17m+vYbrvtpGvXrnnHhB9LpwYwjPwhyy23nNx1112yxhpr5OKPdmdK56od+9KpLf9VV72BJIZC9iCM17hx43Ke19ixY2X8+PGyyy67yD/+8Y/czdfLnTJlitx6663y2muvGaPz/fff5wwYjYKy3nzzTROn2Xzzzc1hzJxj6FwZPny42UQmIxXqxDBmyJAhMmrUKJk2bVpuCEOPzDbK4vzEgrT35njqreehHnfeeafcc889MmLECHOtbLOFCaP//Oc/8vHHHxsM59IHYOTIkTJhwgQzmXTmmWeaeJJ9bPjeeDXwzjvvyBtvvGHamHa+hHrWWmst2WmnneQPf/hD3sXdfvvt8uCDDwoxdBWOo+0sv/zyplNllMKzo8Jzsffee5tRDO3ZTd6B8XzmmWfMcJ2hOx01BhaDe8ABB8gGG2yQOHoZOHCgPP300+Y0PF8nn3yyPPLII8YRoP2fddZZteqvdaqqT5JVVJtsttlmZOA1f127do26deuW+63b9bNv377RwIED8y5h8eLF0RlnnBH16NEj9Tg9fquttoqGDh1qjr/rrru8+OOPP97gxo4dG5100klRq1atvHjO0a5du+jkk0+OJk2alKvjFVdckTuubdu20XrrrZf7zTEXXHBBDstx+++/f95+rbv7ue+++0YjRozIHRu+NE4NzJs3Lxo0aFC0/fbbR7/85S+jli1b5u4/ba53797RjjvuGJ144onR8OHDcxfZv3//HM5tG4X8fvLJJ3Nl8WXYsGGm7W6++ebRCiusELVo0cKU36xZM/Ns/fWvf40uvfTSaObMmXnH8eOggw7K1WWdddaJbr/99mijjTaKOnbsaLbff//9tY6pxg1V70Ey49atWzfTy6277rpmOPDhhx+awPIPP/wg3333nendNt54Y/ntb39rYnl4hgxFtSdlOP2rX/3KxBCJRY4ePVoef/xxIdbIsBXvlCA1ccYLLrjAUCNuueUW01vSm+GhMtP3xz/+0cxqM7t9xRVX5Do6el164Tlz5piYDzFEhtEMheFQMpyGQ7nrrruanjp3oIjp1fEm//a3vwnXx7HUF2Gy6O2335a7777b/MYz3WuvvWTVVVc1k0ZMIn3zzTemZwbAOemtwfjCDqaw8K8qNYCHxqTJgAED5KOPPqpVR/YTY+TvueeeMyOTo48+Wrp06VLSoTKjmYsuush4pG4l8Cp5tnhuCF3R7k866SRp165dDmp/x0vFo3z//fdz+xvLsL7qDSQzxzzwxx13nBBvQ4grYnS4QdwoOJM0FgwkN4thBkNshDjgeeedZ4yP2SBi4pgYI4wcw2q4jsQM//73vwvDVAwow14aI/LPf/5TNttsM/P9yy+/lHfffdd8J3USdWI/fE1bGApRR4YzTMAQKoBk3rdvXxtmGhWGlwbmEuIZphM/RSiPc5xyyil5M448KDwchBMQ6k05wUAadTS6f7RbJlg0rMMkCx0r95jvxONp7zgG/CZ+/ec//9ns32KLLUz7p90Qr0eY7CMMZU8wsviB0BCCIaN84uYajyfOzww4zxHCvq222kq6d+9uJnRmzZol3377rTF4PD+0UYbaO+ywQ+LkItfEHx1/nz59zJAch6MxSNUbSG4elAQ1jigV5R5//PHGw7r//vtl0qRJxpNiH16Vzf0Cy8159dVXTePBCyOGgsdIXIYbTG9px/1oIHYPR4NQoWG+8MIL5ieN7rTTTpP9999fd+c+Dz30UOMNEnvh+GeffdY0VNdAcl2nn356LeNIQdSJHhqhoeM5fvbZZ+YP4423iRAP4prYRuMPGd+NWhrlP+45ox+dgca40dFy71UwSCStJp5I/FlXejEK4e/FF1/MGUgYEjgCGCYVJm3UQDKxd+ONN5rJHN1PrJsJQwTDjANw5JFH5pVBbJ0JTQwpz8sDDzxgYorgXSH+/qc//UnOOeecRrfQouoNJArXns1WPIFq9ZIwijq7TcMiCKzeHzPQ/PkEA8ZwXcU2jmyzfzPkx6AiNL5tt93W0Gz0WP2k12W4q3QdDGuS4cILxZtNEobYGHAEzwEvOks4B150kMapASYQGTWtvvrqxltjxAAPl/tK26atMprwiU7ogKHtKp9Xj7H3M7rBwDLbrQLJHCOJ9OzZ04yeeL4IGVEenTHOAV4lBpJ2SpjILlfL4pPwEpMyjXGZbtUbSPfm2oovxBBgYPG0bCNHGRgmhigqdaHI0GDVAGo59ifnzcpYDVWoEB4ajZJYLJ/2tXANbpZkO/5j1yd8r34NsBxw6NChpkPEKDFzTPiE0A6/MVyEmJRHm3RFyvfVfe5vu/2AcfcTtsIzRRjqM2NOu9O2TJujzWq7ZTuhJHVK9Lz6ifF1Z8d1X7V/Vr2BxBNLk6yelOMuu+wy2XHHHc3NpGFwM12DAq4uRoVy6D3ThJ456Vwu3mdkFUuPzSTMOuusk9dYtZEqjk/1rO1t4Xvj0QCGhmH0Qw89ZGKNtA+9z0wsFtKmSnW1GEOMI0bUdijUSOrzSfsElyQ4OVr/pP3VvK3qDSQ9KDO5zDDbgmvPZAqCl6gxSm4EnpZyBRluMxQuldGAZL7KKqsYniMGkFgNs4g2z5E6cX4mkXTYQQyJmKcrGG28SG1o9n6MNp4tw3q8VTiPDGuCNF0NcK+Z8WWyjXgkxhK+I+Eaht0Mvxlms8jB50UWo6E0w0YZTF7Co6R9YhTVUNrGEhxGO225oostpm4Nja16A8kMMz0oy6U0VsfExbXXXmtItCiQhqPxDW4khG5idxgpAtDEF6EsqBGiEdIAmbjB8GBU99tvP9Posm4IK3jwSG+44QZDE2KFDw2AyRjtJWnU119/vWno9J7s/8tf/lJrBjvrXL169TLXxaQQnioJNKjvEUcckTsUo0kdGHYh1OHiiy82DTsHCl8ajQYwihCqua8YLmapYVD06NHDdPK0JYa9pTI6nEOfC1USzxrDYgwxHTjGj7SDdRUdmtf1+IY8ruoNJHEXPDHoLDpZg1dJUJgbiGAct99+e/OdYTczyBg/DCSGEroChkpjJPS8cCkxKvSIxFgKGa5zAjzBLbfcUm6++WZjrJgh195e46V4rNAs4H8hOplTbLILDD+zlXQSNDJ0QG+u8SjKxkOFy0nciIeGGXXOF6RxaoCOUCk+GC9GJvbrSpl9pr3RUZZCiJNrx67l0e7WXnttYSUPk4snnHCC4Qcr1Q0czyBhANo/wugIilzSLLaW2xg/q95A4kXRUKAV8OcKwV/WO9PDItxsSOOs08aIwQnDSPI9SZgNhyvJbHQhQoNiuHPppZeaBsFEEQaLvyQhNqPLqji2GGGIzfAKI4kngTEnSK8zjG5ZXDdruLUjcfeH341LA3SKMDBY+IDhIf6I8STTlC31CR9RJm1ZO1eMI+1ojz32MAYSgw1xnVEKIzecEuoFtQ46EqMzjDhcTHfyx65jY/1elQYSr1GFFTD0XASs8fh05po4I9sxbklxObiTEFtpXKxnxfvSmA1GFO4gEx4cy5CZYYUKvbN6g2zT43Q/58ZoIXhveLMYYfVQMYQYduI3GG84ZPZEjF4Dx0Pf8DUsYp7/+te/TOyJBsofjRNjieD5MvMJzw3OHHwz+1wGFP41Gg0Qc4ZQzQiEdsE6fP5UoAERQoLri2DYdKSimGI+OZbVYwgLLTCQxBIZkbFiTDm/rDzjzxXaGiRxEqzgDDQ1qUoDyc3R4Sgk1Z133tkoHw8SPiCCl3TYYYeZJYRJ8RhiKAy1GT4zFGBIrYaJm4pnRgYcjJgrGCUIt5oSKikLM4aJocdGG21kGhEEbZ2QYR/Gl3Oz3xX2YZQRrjPLs2RS6IwzzjAreOgoWF6oQyyGNsQ3mcSyycTuOcPvxqEBOjpizNxfvEUdwtKmiMET3mGxAZ0yk4S0fYwYk5Q6FNeOmivGA3RjgLQT2j6Ogz4TYO3niJgjRHBGZhhohtr67IFldMP5eA5Z6ea2c9vB0FBY47gD+bVsxgLx/E3hV9BA0EBDaoDRASMTVqfoq0cYDbHUlJVlsDf69+9vRi0YPx5hJiHpkBHi73TeCBMwrJyxV3BxDBgocLb3yey5u9wVQ8ekEUl2CVepuaBjJ0cBHTMduCvkUNWliswRpIW43OOq7XcwkNV2R0J9ggZqNIAnqN4f3h3DaxVGN2qs2MaoSCdbOMb2IjnO9g7TymAkQ7zfFc5DeRrWYT8438jHrnsW1j1fNf0OBrKa7kaoS9BA0EBVaaB2d1FV1QuVCRoIGggaaDgNBAPZcLoPZw4aCBqocg0EA1nlNyhUL2ggaKDhNBAMZMPpPpw5aCBooMo1EAxkld+gUL2ggaCBhtNAMJANp/tw5qCBoIEq10AwkFV+g0L1ggaCBhpOA8FANpzuw5mDBoIGqlwD/w+aVXbiXDGNdAAAAABJRU5ErkJggg== />
1.T < T
2.T = T
3.T > T
4.Not enough information"
Question 2An ideal gas is allowed to expand slowly. The system is thermally isolated. Which statement regarding the final pressure is true?