Hwk9OOI8Jz3RDaKdlU0
Ntag9Ex4qouJdXsa+xK+edEMV8xIb20za1wgyhirA1IYjkvdfXTPpeL0Tfd8znzqbrnB6F7VtbxfiEof8eh2EYiL+7HuJ2PmRPYFZotma8fJu7Pv+AN0sqqnjmj39MY/suEvHEuqeF1kCQpibi3PjkQ+xvQf/AVVLZnDNEVtXo6z9P3dlPaNh9AHdl0Jy/Kfyt6826YSGw8RGwBICNv8abh0Lx6y/S2qZV4pNp4lPzzE8PkcmuZRaKmib3LampAAAe60lEQVQ2P818/wx2p4Shyjh8PhxuB1I6TXIuSSarInaU4jB0HYfPiycYxCEq6sV0kkKLoOSy8ng8TpxeL5oIXs8zPMH0JaGBSBpoWQU1m0JVM4W3l9fEZK2Ggexw4w6EkD25MD4hCNzTNyGfJEcW56yOEleIpzMIusSRm/WKHCHbXbgCARx+m8mkhaCz7AlfaLw8o/u8yAtaQvhILSZJx6LLJhYJu4mHw+/N+VgIIk1C77PvezQLFgUINFUS3BXAHgvctU9Bjk0uZ2eRP4f7b/4tt/u7UfMlEbMqxCNLZGK5RAZCuLMOC4HNioAlAGzWld9odAvHP/FptkNsYJahUyfpvfIBA9fPMDu3tpJdJDpF10dvszg2YjoGhgO1NL3wIlsOtGAM3uTGex/Qd3sYh1OEEhgo6RTbjj7L/ld/gGMUJrq76e0/xsz0oFk2d9++TpqffZZMdWNuBy+c7WxCUFCYu3qbpaERZiduMzc3gK5r2IRTXf4Qu2tNzVJW2UTLUy9R1tmKI5B3uhPM6U7GKZh+/lk9mUEauMbUzUn6+oeZnxvAEHb8fP9iLBH1UBKuZ9uRZ6k50onNnSs2dE/hojCxzzrbRGghCEvK9Xff5vYnH2F3OhC78JLwFrYdfpaap58wx9OF5uQhmFgkwa2Fa0DePeBuO3cTLhsUt5XT9trXGR+5ytT4MJHE4gpFQquxDtiVt60rC4HNgoAlAGyWld4EdJqx/jZIzc5x8/hHnDrx98RTETN8bTX58WScm91nGbzRjYSN+ppWwi311B9oY3FO4fLx41y5fAK7LBixgaYoyI4Q+1q+w/WzH3L247837ctz89OmABCwO6ne+yyOvCreIcIOpyL03xzn0vu/ZG60j1hkgbn58Zw6ffW2U2gJdJVQuIyh3gts23OI+h0HqGhvx13jM8voLrsvyLnoBm9kkeme61y7eJmp6ycZ6x9hamaBZGI+JzEU+jd18hJFoTLGR7poHX2J2h17KWptQg7Y0FOrUbn/a9Gt2w9KXKf77bf46D/+hKGeKyZj9rgc7Dv0hinMmD0KU4PgygWp5f6HWdfSNEdouilkmRqSfEXDOxuK95yl4K0uxhsqwi5CH1YdpqmggNGq+9alhcBmQ8ASADbbim90ekWSn3SahblRlkTs/10O4QmfTKdIkuOAjlmZVGoO3bATU3zMRuNEU6t2jMDS5DQTl7v48P3/l66r7xCPp5f3kHMJnYTqpUjY+e2QmYnS/8HHnDjxAVeu/p5kKldhz0xJe5f5iFtirrOz/fR3nWHXvlfZ99obVMmdOIM+0xQh7OqyqLcXXSLSdZHz//gPfPTR75mcGUIxdfr36BhYjM8xvzTKaN8N9j/zfQ7KrxDsaCQhe+9tZrhbd0LtDzh8Qu0f49YHxzn1t/+Gm1dOkDU0873Kyg7q9x2keMcWUxujCd/CLzvxTj6fQC7sU1q327+nT8PdaLbuWQhsYAQsAWADL+5mJU2yywSC5fi9RWh6lqySRsvbgAuYOB0uXIKTSRKlpQ24vWHzLcEu7ub1PjV3mxNn/pbrPSeJxfMVefKdSULVbhjYDFAWNfp6xk3m39X1LrHEWv8DnzuIXXaamgDhW5BVkih534CUojMy2Q+Xf4fdYUdTNOqOHsJd7MqNlFCJXLrAqbff5tgnHzI6ebtAjnl2Ol04Za9pAlDVLNlsEtX0KoSleJzE7UvITpmyYBqf91vIbTsxGfSdZoY1va68MJ0ZnSJqQuf2sdN88O/+BcO3L+eYv2SjdfsTHHn5x+z42st46wNm3w8z1l6YAGyybOYyEHke1h15LYPd0FHnEiz0j5KIzKOvshUUNv66kKisw0JgkyNgCQCb/AOwkcg3Vc1GLsyrbf/zFFVUMjl+nZ6e02Yp3AKtToeN1rb9tHW8hGx34AuXUrW1w2TKObv5en314MAlxkauk0is1yrYZRnZJaOnYebSLc6/+/dcuvw74qlcDHph3LqaRp7Y/y1CRbXoWtYMZZuc6GF0+Aoz06OkMrlQvPGJftQTb+IK+Sjf346/xoVw+FuainHq2HE+ev9txmZGC92a56JwOe07D1NdtxOXJ8jS4oTZ7/jINeYXZs2Yd1XLcvPmeWxaFqOykY6GnWbCpPtSzwsfC0cuZ8LU2V4u/+ObdF/5BMWUIKC2ajtPv/xjdn3/e4RayhHylmm6MDMJrZnq535RMAGYGoV8PoM1nQnHSx0cE6MMnjzB8Q+P03v1uBkGWmgXEM6cbieS8NC0DguBTY6AJQBs8g/AhiFfFMERqmYdAlur2FH9AltnDnDzvfcYG+lbIwAUhyrZ+fRLPPXHPzZ32joynoqACYVxh6aggE82k0L8Cfe94qIyqqraCAYrsckOmp98msC2AMlYlOvH3+HKqV+vY/5b6lo5+q3/kt1ffx1faRgtq6HrCktz0wycPMmZd35KT+9pczhN15icGWSw7xwHMjHsrlKc8Sxz/Ve5ePI9RqeHCtMyz6FQKQf3fJdnX/kRgT2VSAE32VSU6duD9Lz3DpdPvsX45IApBGSVDLf6uyg79j7F1TuoOtCOs2ytjXxN5/kXYsdtT0O0b44TP/sbLpz8Fdk88w8EguzZ9TJ7936PQGM5ihAUhJP9Q2T+YhqRuUUmz1zFMZ8hlVyrhRHvS3aR1UknMXydix+8yekzx0iko6j5/MWSzU5l5Vaam2qoKBOqjC82tfHdcLTuWQg8SgjcvwBgCcyP0rpZc7kLAgV1s7vIj6vYT6aslODlGhx2kRRg5fB5iymuayS8s8b0ZFdSud2tGvn0dHcel5O2nU+z/cBR6tp2EwxWIXb/4R2NOItdROcT6KpOZcV2AsFqc0ChtvZ4PHQ+/xoHfvCfUdRRik3kHlBzY1ZqdZSEGpnqG1wWAMSD4usWi88jhAGRd2BhYJKbx95lbOj6CiF537rd7e288Pr3aHx6P0odqIJZO8ooa9xGSbYaZS7KwuI48WQuHj6ZSdNz7n0qq1so2t6Atzq8Jv3vmgGE071Txm7A7I05zv/0bzn1+79jPjphNgsGQxzo/B6HnvsTgk3lqCKfQSKXdtjULNzv74Zo9xlt56cn+eSnf0koWIGSD8FcPVcR8SC8+5eiU4yMXl/r+S8Et3AZOw+8SutLXyfYVEOqkABKdPIZY68ex7q2EHgsELiP75QpANgQJ2FUE4k0nKZntCkei8ocohJX4e31mtHHAgdrkpsLAeHkJxL3aJrIDCe2oXf+uhtmURsRNi/eFqFsIsEPdskMY7sbWg7Zxfb2Q7zww/+BlpdewlmZj8cTMgOQSYukQsW0PfdtqrZ0kk0lzTS7dpuBJ1REeWcrRW2l2FIaSsRAaB1MrppVSSeX0AWHveOwyw5sstv8Co6Nz3P5cg/p1Irruwj3q61p4ODzr9LwYiepKlBFuF0cVDc4XVDduoPte19leH6A0cGeHBKGgeTwkdZT6GLXLL76dsdyHP/qadhEch3VYOFGlIu/+Bkfvvn/MDM7iM0mEQqVs3fft3n+a/+M+mfaSNfmchgINTx5t4XVfX3qtSDfnIcZyH/XuaTTMS5ceudTu7nXm8L2Hw4XUVHXgndLK1qoJGeiuP8t0L26tu5bCDyaCIjfNKEVtctINhm7zYlNEl8ycXaYHsvmx18XrSRhf1QxJAXx85T7WROGPBVJks2EHo8mldasLATWIyBMvIaaQdfUdZnsdF3HMJRcHnzBx4X3vviu6Plc+XcxileWN3Hg2X9C07OH8NdLZtZA049MCMW5r4mZVbBy3zYqdm8xJQtTXpZsOcc1tx0tmkW73c38VIqYFsBQsyRmJ5keusH4wJX1RAinBl0xi/hoSgZFEd/NlcPrDrB77+tUH3gNtaIkl+dfVAEUdRBEdkIxgS1QuW8HR9Q/Y2l2Mud8aBi4PX6qd+/C6XOgmyVyVTPf/0rvhSuJ2OAMl6d/xQf/8C8ZHekz3wgEwuzd83Wef/6fUv9MK3qD6U9pYmGGY4qxV0+20N2nnMVzQngQzpEP20fPbrORTsfp7zpOfbWHRudhbJX1uYUv/Nx9ytystywEHjsEclHMSGgYumo6ROso2CQl5xgryn7bsDOoX2ZOE1nMxHYozSwTOEghLZ2GnmEznMf8Mj/gF/qxA8ya8MZAQAKXC1JzOnPDfcTT8TV0zUdmWOz7EEeXDdlpM7PpOWSNVCpIbNJFemWTvfyc019BMFiKd+p95KVF9LTd9AdYbiAuhJe6w46wNbtkBVXzMBHZRkoJEF8aY3H0NvrsOOPDQ8wtRdFVjcW5GWLRGSKx2TVdiRfJxUlsvT/H692C0neFhfkhtIKdQ8gdhkQiraBMnUO+fh4jo63E3IvvqvCLwKDciBNuD6PYnzEzJZnJgmQPDp+Ct/9XyGMRlLk6ovNRU2uyeiLxZJKhrnNoSpbhod5lni47g5SVBqkq7sK3dIXkNRXbg6YxXj2QBHabjq7bSY1UE48XMget+tGRbNhld06yEL4apoS1upP8tYjFtMsYmoKeNxVoum46Q14481vIJkGdYUtHGJtNJGK6Sx/WLQuBxx0Bod0Tu5q+T4iNXqPXt8SIawzJUU48dgnb5A1kkSRjbO4DspmTpv5OVASzx6exiz3Rzf+EJIQCs4TY446GNf/NhIDu0MjE/cyPVizngi/QH41HWLzxHsqxC9gcEpoiXNyFQTiMb6ERZ3ak0HT57NRG8U39LfrxYbJSBE1frzsWzFbwJL/TQdpWQvdsBRd7nSRSTlKJSSKL46joRBYmiMUWTT1bYYC78bLEwgTquZ9gWwgRuTjLxPgMQntROOykCMbfx9V1HHUkjSq2/Kv4pSkDSAayTcfhbUDztiHS9IptuoGMMbmAHr2Koi3goInAnB+bsVZYSqfT3Og6bg65qmtSqQwL01dg+Ay2mTiqYNimVeRulBRm/OlnXdQrFg6Z2e344mvzMIgnPbLO3q0KJVVlpF2ikM8dW3dT9aFDdB5HJkJMcdMzV0kkmkRLRxG0iL8zF05RIg/QvJhBlxQyili3zz/vT6fKetdC4CtCIP99MBaniSxFmPfcwOAihieAY3ER98w8si5BKOVCVvz5lF0Gkiw8oiWIfrpT1FdEljWshcBnIuCyq6hKkICnBLtT7BpXDqfXT9hRTEk8gFOWzIpxggE4ZIOQvZfj8hRrXe2g1h1lv2MMZ8pOVi1a6WzVlXD4c0oSsaUluuZSvNs/S/e1iyjZXCKgVU1zl3LO7h4IBExmFo2sZXpuu5PiVIBgNIA3ESUrPOxWHUGXwYt1Ku1uP8mIa13Cm0JTM/Y9ugTS2bzbYJ6Vm19vIciUU+2OknaO8LYtydpZwOTU2qgD0W8yscDg7WtMlAUoryqi1AiYaYgLY36es2DBYq61zlH6HFPrbAhlfjd/tr+F7XufIOErz1VvWj1Q4Qdvog/X4igLepgPp6o5dWuIoaFuYvGccBNdGmewP0aivo5ybwCv+BE0Y0hXd2ZdWwhsEAQcQSgV+3vD9A8ibkM1QqTDNmRdz9JS+cfUln0TNBG3nDciCtpNB6oNAoJFxqZCQLLbmc+qXJNv4e7pXUN7uLSC9pY/4um2FxFJgwxRhg8Zmz3D/NJVwt6/EkFnK8/YYFvlYY62/tdm+UAtm1m3XzR328KRTlf4q673eK/vPYZGe9Yxf5/Xg90uUVRUTUVVM3a7jNPhYHJikDsFgPLiBg40/y80tTzBzqm/I+D/FyxFV4QJl+xje/W3ONjyPEo2hIG6bl7LRJjf5dUChDljDOHfg4zsiKDq7+OS/1q4NC4/ds8LI8vwXJxj4zs5sP1POVS/G13JmD4Gn38vbUOyGdiNMc4N/Qz41ZrhK0q38lTb/8z2mj2INVjHtMXAgqyGFLY6DdVQaN8yhN99kb+PR4nFV8S6Kb2WCd+PeG5rJyGHa70wsWZk64WFwGOMgOlck/9ymD8BTsa0y1zWfoMs7IEB31aCxXt56Km7HmPMrKk/5gjITuyZBMFAHNmxNs5dZMwLB7cQLDqYi3IRIQPCK1ZKo6kaTntwHfFeTxX+8FMgtAnZ9THoIgewCNn7cOo2H47G6B0eIRXN2fUdsoTXF6a4voPtHU+yz6uzy11EacU+0zvXYUzx85O/5Fbf5TXjup1+SkOdeEu2Ew4045DXmh0kmxOfpxlP+AAeoZUwM97ld/drevq0F0JvL4oMzBNwD2E3vYTXtxeFEWVZQlFFeeDc+5m0Ss/oHNGkgj/cAFpRLvZ/jXFjfV/3vFMooagM4HF8sq6Zyxkg5O3AIbfgSOWq+a1rJG44BT0OnFKWdncNe9IhPhgaZ3xVCKUih8i42wiHDxBweXK1mO/amXXTQmAjISA8bZ2ElAyoZ5FF3FAqOY4S68fQEn+wGm8jQWXR8vgi4JCdLKbizM3eJp1c2TULikRUS1ZZIhu7gc0mo2kKNhxojhRjtttE7Wvt4GJbraiihOwNs2xvoQzwanTEeBPJOG/3nuZc3wlSkZnlIkT+UDlPte3h6O7n2Lp9H51ujW1C7ewSXuh2FjU/3mDF6u7Ma6GdiyX6YamYRHIU1dRUrDTTtASLsU/IRKqxGU3ohvBeXLXLz23ycdgFP8w5xi0/LTQCikpWEWWLZbLeeSbsI2RtuWyEy+3yFyVlTZSW1dDfd95MMZy7rbM408d7N95ne3UlzUWt2DQdTXjVfQ41gHBINmwGcecgs/J6p0hdzxBPDEDcQya1dOcU1742hB+gCHVyoOg20wt6dQMlvUR0/iZLS8X4PH4UIQRah4XABkdAFD+TbB6S8RsQuYHsKakgIU8wo5w0wwRyIYAbHAWLvA2PgN8uM5FKMjrRTVzYv1cd2XSa2aU+BuMyQa+HrC5c4hwoUpSB1BmW1MlVrcWlxGJqlKH4ccL+AOm7uI0HZAeTqSjjw6dZmB5bZv7iaV+oij3N23m90YVTu042qnMLA0fyOoZk590ZG++OzNwxJiQzUUZiZ6iOzLOQHcDhEAmN8mY6IJGOcbLvd5QWeSgL7yejpEwVvEuEQADZbMaM18+oTuIJZZlx5xwJbfh9XkrCbtwOB7HsKMPpc2T0temLRT8lYSdP7W+nqKyVyPwwk1PCSTInaIj0xW9e66Wk6F1+vLsfSXaR0gwcsh1nfh7rCLvHDSEACMe+KeMaU9meda0SAo/4WcrT88S1ezPsbCaDomq4zXDIDKOj00QWhE/ByhGNzDM6cYWJZjsed4B4PqvhSgvrykJg4yEgBAC74SSe7cETnUZW6zoZlCOMaifWxUtvPPItijYLAh5dYtqArBTHKdlNtlmgPTI7xuBiFzedivleVniTC1t8Jkpisgtb9A43ON1gKjvFTVc3bpuDtLI+bswvORlMRxgav0I6tvZ5p91N2p1mxN+LDdXMQCfYp9MhoWo6x28M0NN9tTC95fNCKsJtuZeAZ4lkmUJNfTuR6HkUJVdgaDEFP72Swd04wlN1LlLpLCLcrbD9lv2Cn0pcvGnj2Kl+xke7zL6FCj8Qqubg3k6O7nNR4rXD0gja5C0kYVu/4/jaMzv43qvlzEWTTE12Ek8pxJbGl1tNT9zm3JVpDlQ04m5sI+3x58yJQsvxAIcInxSFleT5G9hmV/ovdLGYx8MpR4hm1s+z0A6HqFfsMNdTmehjLlIMhsj0UHASAKfNiSKluWlcI6JD6mEnHliejHVhIfBoISAZEqo7hVLTgXzg9f8RTcugG0L192Bf2EeLLGs2FgIrCNjtBtXxBEvGb5iacHJ6YeU9seNr2n2ErU8fxefzoKq6mUfeSKe4drIZT9mv4dbFlQcMqNu+i8Yj3zHba9p6O7ss23CMzVJ6YoHQ6AJLS3PLzxcV1VC/8xlqjxQhoaNqBm6njGYY9A1MsZS5RTq+0r7woD9UTN3eF6ne1cye8hiDyfMMDFxDWcoJACLEdyIqMyM34mt/ka2lIRKJJHa7A6fTYWoAhsfmuPrRmxzvPgPZnGlDcgd5cncz5bs6aX2+jXDIQWJ6lu7pchzeX0NkRRvh83o5eOQbfPON7zGTtJFoSTOW+QuufzS+EnGoKfRMJDgbq+a7e75JuLyCdCqJ8LV4oEMSsRgGs7du4771WyTp7Xwmx1wvJRVV1O97kYadLajq+jUojJXNpHH7fMTmFzn+zmluzlwgtjC8HFVQUlLNocPPc/DIfjpeaCYYsK3Lf1DoyzpbCGw8BAwzE6Dd7kJubDq08eizKLIQEHktlSw3um4TDK51rguFK2jdcZSO3d9Yg5PYO9+crsBRdgtYJQAA9Vt2sH3H13E5xU7y7ke4JENL2wjjE1HiIo9/XlCILk2RTBmUVT9LaZGbVMZgPqoxPrXIhas/Y3QsbmYizCnVV/oOhUpoaH6G+sZWiipUFpbgd2/9f6y2aNj0DD09E9y8bWPHzqM0+lbm1z+8wPDEKYb7p5aZv+i9eUsnP/juDzl6tJ1dO7aZAy6UG+gXs8ieU8CKAOBxu6lueAJX0R4qiuC5MFw7sZ8bH/8OzVjZhU8nXJwYdPOaaxdNzW1mJj/hOPh5jqzciVwXQZJ+vexwKPopKamgc+/r1NVW3Ve33dkJLk3e5IoQshZWzDolpU28/Mp319B/Xx1ajSwENhgCa92KNxhxFjmbG4Fo3ODG2BYmF0NrgBA55bu7L9LdVYvb48bt9uPze/H7Q9iNLIZZx3bNI2iqgqKkcDl9a99Y9UowvJrabZSWVWC7aZhpuMXbA7dO8c7bHopL7HS0NzE6Os71wST9Q1N89PZPGB0WAsfdDgMjb+sOeGX27trB1q07GBkVKX1zZohEMsXH7/8axaxWmGRfZxuhoIfh8Vk+OXmJ48dO0H87l75XjCDLLiqqGtm5s4NtW8qXB9WyCTMLqIgKWn2IuHy3KxdFIbKIt9pSvH74EBff3UNXV656oWivKVGuXf2E3//+Q1qatlAScmMYNjOuf3V/93OtKwkMUaDhjmNudparVy6iZtuJxdc6dhaailwMIlphZi7Ou7//iE8++A9MT6zgey/6C89bZwuBzYSAJQBsptXeZLTqho4mPMDvSNo7PzfCf/qbf8cnH79NwB+gpq6dF154jjf+6HUcsvAcW69eNmvRr8rCdzcoXW4b25qLqKgMmxk4C22Eqv/q5XPMTk+YdTYE006kVNLpLMm7pAAuPCec9QqZ/4SZzunyc/Cp7zE+scRA/xnUPK8W/V++eJr5uUmCAZ/p3BeJxhkaHiMWjZLJ5Bz77HYnra37OXhoN9XVIh/BirbALJp0H3k/7JLBi88fov/2G/yf/0c30dhKxMTS4gLH3j/GkUN7eP65J0mnUgiHRFFQ6IEOMY+7zKXvdj//+//2v1JSImz69+5R1RQWFqOMT0yyuLBiWvk0+u/dm/WOhcDGRcASADbu2m56yoSTXW2th9bWFoYHLhON5lTbqpplfGLU/BMgNTQu0N7eYVagE8xKMPvPc7icdvZ2bmVu5lucPtXF6MiKGWEpGmUput6zvbhkC1u37WdxcZz+vpUdtRh/biFC//A07R3CfG1QUlrEG9//GqFQiJ/86/+LkeGV/uOJBD09K4lu7py/0FzUN7bzwsvf4M///NtUlfuQ78grIJ65G+2r79kdTvxumaefeYVdnWe5evk9Yvm0vbqW5cL5jzn+yUGeOvKkmRdB7Mg/zyHG1O9wzEskk1y5mnNkfNA+3S4/dQ07PpP+B+3Xam8h8DgjYAkAj/PqWXP/VATcbpm9expwuV5mKTLLlUsniMUW0DVRCVAyGYxklrUN4nbnUukKxiMy88l2O3ZZlNPCrMJ3N63AnYML4WFLXTXPHvUTifw3HHv/59y8eYvFhWmyStLsS7LZcLuDlFVUs3VrA4cOPkPbjsNcuHCav/nrMZYic6Z6X9S2n5uf5x9++Ut2tDbR0tSAz2tnzxNb8PqCOB0qPdc/ZGBojLHRSWamJ0glRbijkcunaximM6A/WEJDwxba23ezd+8hdj2xk+3N9WYK5FwpvBwVQuQRmLhdLpN2IRxommbeEzUOCofIXCgEqIbGbfzgT/4UJTvHte6zqGpOZZ9KznPi5CnOnb/K3t3bzOcLz97vWayBGN/rcZtjibLHhUO8l5vPPQSL/Psul4dgsAKfv5iy8hDNTdvYt++pe9Jf6N86WwhsJgQsAWAzrfYmo9XpkGlrqaeopITBwTGS8RQDty+QzcTNJDG6ruY85h1Oc+crmIs4vG636aXv8frM+9FoNL8zXmGE94JSMMi27WHq/9s/obKmlLf+4W2uXPyYeGwCEX4jUg+XVTRx+OgrfOvbL/P0kx0E/D7CoSznzuyl9+YZdDVlzi+RSPDbt37Gd15/idaWnLOeGHdbo5d//t//ExKp73D85FV+9ea7nPzoXWame81Suja7bFbvc7j9bG3aw0uvfIPXXnuePbuayWZTCKNIrsTnChWCdiHA+P0+XE4Zvz9AKpk07xVwKbTOZhXKS31889UnuHC+k9GRQbLp+bywINF/a5BrV6+xZ9fWwiMPdBbjiayHoWCAdDqB845aDp/WmTBliERERcXVNLUcYcvWfbTuqOHwk43sf6L9nvR/Wp/WexYCGxWB/x9Y9glUe/u7cQAAAABJRU5ErkJggg== />
Which ball reaches the end of its track first?
1.The ball on track A wins by a large margin.
2.The ball on track A wins by a small margin.
3.It's a tie.
4.The ball on track B wins by a small margin.
5.The ball on track B wins by a large margin.
6.Not enough information."
Question 2Two identical steel balls are released from rest from the same height and travel along tracks as shown and labeled below.

Which ball reaches the end of its track first?
1.The ball on track A.
2.The ball on track B.
3.Neither; it's a tie.
4.Not enough information.