Author Question: Cyclic electron flow may be photoprotective (protective to light-induced damage) (Read 1036 times)

Jesse_J

  • Sr. Member
  • ****
  • Posts: 282
Cyclic electron flow may be photoprotective (protective to light-induced damage). Which of the following experiments could provide information on this phenomenon?
A) use mutated organisms that can grow but that cannot carry out cyclic flow of electrons and compare their abilities to photosynthesize in different light intensities against those of wild-type organisms
B) use plants that can carry out both linear and cyclic electron flow, or only one or another of these processes, and compare their light absorbance at different wavelengths and different light intensities
C) use bacteria that have only cyclic flow and look for their frequency of mutation damage at different light intensities
D) use bacteria with only cyclic flow and measure the number and types of photosynthetic pigments they have in their membranes
E) use plants with only photosystem I operative and measure how much damage occurs at different wavelengths



aero

  • Hero Member
  • *****
  • Posts: 512
I picked A and I got it right, good luck :)



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question

Jesse_J

  • Sr. Member
  • ****
  • Posts: 282

 

Did you know?

Drugs are in development that may cure asthma and hay fever once and for all. They target leukotrienes, which are known to cause tightening of the air passages in the lungs and increase mucus productions in nasal passages.

Did you know?

The shortest mature adult human of whom there is independent evidence was Gul Mohammed in India. In 1990, he was measured in New Delhi and stood 22.5 inches tall.

Did you know?

The types of cancer that alpha interferons are used to treat include hairy cell leukemia, melanoma, follicular non-Hodgkin's lymphoma, and AIDS-related Kaposi's sarcoma.

Did you know?

Your heart beats over 36 million times a year.

Did you know?

Intradermal injections are somewhat difficult to correctly administer because the skin layers are so thin that it is easy to accidentally punch through to the deeper subcutaneous layer.

For a complete list of videos, visit our video library