Question 1
Refer to the information provided in Figure 13.9 below to answer the question(s) that follow.
![](data:image/png;base64, /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCADKATkDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9U6KKKACiiigAooooAQ9K+ePCX7TmpeNfi1eeHtM8HS3nhWCc2T6rBcK9xFKtxNAZJIR92HfCR13AMrEYNfQz/dr4EvdFubr9qqXWvA/h3xD4F8etJZNq2nWkD/2dfw/b5Uu5rttvlvG9uN6OuDv29W3UAffYanV8b/s1/tiL8Xf2vvjF8PnuhLpOmmP+w+f+ff8Ac3OP95zu/CvsigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiikLBaAInmSNkDuqs5woY9T7Vm6xoiX1rftbFbLUrm1a2W/SINLGMHaffaTnFfBv7SXx5t/EPiq98a2Wsapa2Hw21y0/seztrG5NrqTRzKuozSyhPLKBGeFctxsc/xV9+m+RtP+1QKbmMx+Yix4y4xkYoA+GP2fP8AgmppvwL+P8HjbTfiLrGoX+lEXEkU9nGovFnWVZUdg3fFfeY6V5vonxA02b4ia5YXaXOlXYgs0RNQi8sSE+cRtPRvz7H0r0jIoAWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKy9c019X0m8sI7uawa5heIXNsVEkWRjcmQwyPpWpVa6u4rGCW4nkWKCNS7yOcKoHUmgDzH/AIZ+0JfgJL8JRf6iPD8tg+nSXYdPtbxOSXy2zG5tzZbbnnP3ua73wx4fTwv4d0zSIrie7jsbaO2Se5YNLIEQKrORjJ4ryaX9rbwidGvfEVrpPibUvB1mW8/xNZ6S72GxWYPKrffeNdpy6Kwr2fTNSttW0+1v7SVZrS5iSaKVejowyD+VAHnPirTI4vGOr60bZbyG3s7aLUbVk3rcWpaYtx3KffH/AAId63YdK1Pw/EtxoFz/AGtpjAOunXUu4hf+mMx/RXyPda1LABvGGvAjINra/wDtas7wz/xTmrTeHJMra4NzprH/AJ47vnh/7Zlhj/ZZf7poA1dF8U2euPJBG0ltfxrmaxuk2TR/Ve4/2lyp7Gt2sbXPDVj4hSP7XEfOi5huInKTQn1RxyKxxf654UXGoI+uaWP+X63j/wBJiX/ppEPv/wC8nP8AsUAdZPIYoXYYJAzycV8tQ/tj+II/hlY/ES++HMUPhO61M6ckltrqSXj/AOlNbb44TCu/LjcqhskV7l498Yx23wt8Ra7oyTazJBYTvbRadG1xLLLsO1FROSc44r4Y8LfDE3Hwz+EWmeC/C3jdfinpF1YXU+paxb3kWnaad6veb1uf3OzDSgKi5zt20Afo6n3adTI/uLT6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBpbaMmmJPHI7KrhmX7wB6Vxfxt4+D/AI1O948aPdHckgQj9038TcCvMv2Y9L0S11HVbzTNbl1nUry2S41OefSLixead5pXLnzOCFDLGiD7ip1O6gD6Grwv9tnT9c1T9lz4g23h6O4m1CSxG6K0B814PNT7QqbecmHza90pCobrQB8j/GP4/eH/AA3+zXp978KvFPhi6ePT4rTT/Dctqt8+ohkESWi26urhucMNpxzkV9Q6baXUfhu0gfyLW9W1RGMEeI432fwp6A9BUFl4F8OaZqkmp2fh/S7XUpDue8hso0mc+7hc1v0AcN4e0/VYvG2svdastwotbZSkdsIwf9bhvvGn+KPC2r6noSfZNWRdcspvtVldG3RQGAxsZf7rKWQ+zVq6Zj/hM9c/697T/wBrV0NAHOaDfS69FZ6nBeNHavHtms5IRlZQxDBj1BDcY/2anGl6otpPG2sFp3fdHN9nT92vpt71lSn/AIRPxWsudula1IEf0hvMfKfpIBt/3lX+9XYcN70AeceKPCt7beIdCvdK1Y6Ve3U5t7qSGEbLpvJkbdKnRuUX3HYitqPxfPo0yW3iW2XTiTtTUYjm0l/4F/yzP+y/4M1buoaZHf3NhM7kGzm85Avc7HT/ANnq3Pbx3MTRSoskbjDI4yCKAHo4ZQQdynoafXH/APCMX/hz974buESD7zaTdE/Zz/1zbrD+q/7NXdG8X22pXX2G4jk0zVlGWsbr5XPuh6OPdc0AdHRSA5paACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPPfjL4stNB8Ea1ZL4h0zQtdvdPuE077ffRWpeXZhSrSHH3ivPavJv2VZAPEXiC0bUb3VriztIree+uPEw1aG6PnSsk0K+c7RbkK79yp8wUD7teg/HTwha6hpM/im81rUdLtdBsLmaSHTrW0leZflf708T4+52wPXpWB+z9oXiLw94g1e28U2l3aXs1pDNbrJdWdxE8W9v4oLeEhwcbgwI+YbW60Ae80UUUAFIelLRQBz+mf8jlrn/XtafzmroK5/TP+Ry1z/r2tP5zV0FAGXrejwa/ptzY3QJimTaWU4ZT2ZfQg4INZ3hHV5760ns9QwurafJ9nusdHP8Eg9nXB/wC+h2rpD0rkPFcTaFfw+JYN3l26+TqCL/HbZ+/9Yz8/03+tAG5qmptp95pcKpvF5cGAnP3f3bvn/wAcrTHSsnULD+07nSLmKRNlrP8AaPXepidOP++64bxl+0B4W8DePbfwbeRaze+I7ix/tKOz0zSLi7/cb2TfmNCPvLj8qAPUKyta0Ow161EF7brOqnejdHRv7yMOVPuKxvh58R9K+Juj3Go6PFfxQ2109nNFqNlLaTJKgUspSQA/xDmuuoA40Lr3hUceb4i0pT0OPtsI/lMPyf8A3jW7omvWOv2vn2VwswU7XTOHjb+66nlT7GtQjNc/rPhK11W5W9haXTtUQYS+tTtfHo/Zx7NmgDoaK46PxLf+G/3PiO3DW6/KNWs0byT/ANdU6x/73Kf7Q6V1dvcRXUKSxOskTjKuhyGFAE1FFcX8Rvif4f8AhRotvqGuXUim6uEtLOzt4mmubydz8kMMQ5dz/wDXNAHaUV5b4S+Otn4h8fQ+D9R8N+IPC2u3Vk+oWkOs2qKlzAjKrsjxu6ZUuuVJDcjivUqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPLfjBqmv6rNZ+CPDFlpVzqetW08tzPriPLZW1mmxJGeJGBkLGVECbl6k5+WuX/Z38B6t8Mtf1/Q/ENlb3GrPBBcQa9a315cpdW2518nbdSyvD5bfwK5Hzg12/wAQPgzo3xH1/TtWv9R1qwurC3ltYzo+py2W5JGRm3mMqx5jXvUvgH4RaT8O9TvNQsNS1vUZruJIXbWNVmvdqqxI2eYx29e3WgDvqKKhuLiO1ieWR1SJBlmY4AHrQB41e/tTeG4dc8UaXZ+HfF+sT+Grs2WpSaToFxcxwybA+0Mg+b5Crcf3hXqnhzX7bxT4f03WLISi0v7eO5hE8RifY6hhuQ8qcHoa+Tf2XPCvirx9pPizx14c+Ir6LpfiDxvqGoSafDptvcpNDHc+TjzW+dd8UIHtkGvr+6jkktpEgkEEpUhHKbtp9cd6AMnTf+R01z/r3tP/AGtXQVwOm6Zr/wDwl+tj+3IN32e1y32D/rr/ALdbv9leIf8AoPQf+AH/ANnQB0NRTRpMhRwGVuCrd6w/7K8Rf9B63/8AAD/7Ok/srxD/ANB23/8ABd/9nQBh6HrA8H63b+E7gMY5pD/ZjsetvsZtn/bMrs/3WSvnvUpJPG37YnxGv9P+I0XgaTwzoGm6J5qx2kzStI01zKpE6nGN0XSvc/HngrxVqn9kXum61ZnUdLuzdxM9iFz+6kUp9/o+dp+uf4ap2Hwx0TxlbrrT6d4cuZ7wmSWW58PQvLv/AIw5LffDZB9xQB1Xwu1e11nwLpU9r4mi8YiOL7PLrsGwreTRnZI/yfIPnVvu8V2NclpXhXUtCsYbLTtSsLCziXbHb2ulLHEg/wBlQ+BVz+yvEH/Qdt//AAA/+zoA6Giue/srxB/0Hrf/AMF3/wBnSf2V4h/6Dtv/AOC7/wCzoA6FlDDBrkpvB8ukSvd+GrldLdjuksXG60mP+5/yzP8AtJj3DVc/srxD/wBB23/8F3/2dH9leIf+g7b/APgu/wDs6AIdO8Yo93Fp2q27aRqb/KsU5/dzn/plJ0f6fe9VFeBfHnUrXwh+1l8IfFHi2VbPwPaadqVpBqN18tpa6pJ5flGR/uoWjWVVLf7Ve9an4V1TWLR7a+1WzurZ/vRS6aGU/wDj9cLNoXjDT7/UtHi1K08SaJbxQyvY6lZK82x9/CO74fGzo/8Ae+9QB0PhP4peDfiN4xu7Lw5PD4gudJtz5usWMYmtYGdlzAtwPl3narMinooz2r0SvPfCfm3Vm1ppGr2dh5HyyaeukiF7c+hi3/L/ACrof7L8Qf8AQeg/8AP/ALOgDoaK5xtJ8Q7f+Q/Av008f/F0LpGv7gT4gQr3X7Cv/wAVQBl/FT4ueF/gt4UbxJ4w1BtI0VJkgkvPIklSN34XdsVtozgZPFN8f/GLwf8ADDwC3jPxLrcGmeGykbi+bJD+ZjZtC8sTuHSvL/2utLs/Hlv8OvhzeujweKvEaR3UDH78EEE078emUT8xXyn4v8N+LfHnwU8EeHviBZS6bb6H4g0/wLo9ncna2pXKXqwzX+3ui28WxP8AelP92gD7q1v9oDwbof8AZMUt3fXWpapbC9tdIsNNuLnUGgI/1jWyIZEX3ZRW58Ovib4c+K3h86x4Y1EahZxzvay5jeKWCZPvxSRuA6OvdWANeCfsravp0PxA+O994juraz8YJ4qmhuRdyBJYdNjRRZ7d3SHZkjHGd1e7fDS/8K69pF5rXg8QSaZql7NcS3dtGUS7nB8t5efvZ8sfOOG20AdpRXyr4n8Y/Fm38SapFYT+NFskupFg+zeC7OaLZvO3Y5u1LjHdlGa918OeJ5dH+GNtrnim5uLZ7Wya5vp9RtUtJUCbmZniVmCHaOgY0AT618UfDPh3xvoHhC/1aC38R66sz6fp7H55hEm9z7cetUPG/wAZ/C3gHVrPSNTvLi51q8UywaTpVpNfXjxr1k8mFWfZ/tYxXxD8QrzxtN4Zsfj1rXhO0tV/4SbTPEVjrEmrD7Ra6P5qxQ2wt9nG63mcuu/78rN7V7h+y7rOmyfFb49ar4hvLeDxd/wknlOLuQB49KSFPsmzd/yxILnI4zuoA97+HPxQ8OfFfRptU8M6gL+3t7h7S5SSJ4JreZPvxSRuodHGR8rAda7CuK+Gmp+EfEml6jrvg5reew1K+mluL21jKpdXCbYnkyfv/wCrC7hwdtdrQAUUUUAFFFFABRRRQAUUUUAFQywpNGY3UOjDDKw4IqaigCjpuk2Wj2/kWNpBZQ53eVbxBFz64FXqKKAOf03/AJHTXP8Ar3tP/a1dBXP6b/yOmuf9e9p/7WroKACiiigCrc3sFpNbxSvte4k8qPjq21mx+SmuYVv+ET8V7P8AV6VrUuR6Q3e39BKF/wC+1Pd61ddspbrUdCkijLpBeNJI39xfJlXP/fTLU+u6NDr+lXOnzkqkq/LIn343HKuvoynBH0oA1FO4Zpa53wnrNzqli8N8AmrWT/Z7tFGAXH8a/wCy4ww+vtXRUAFFFFABRRRQAh6VQgvrebVLq0T/AI+YY43k47Pv28/8Bar56Vm2+lLb6xe36yEvcxxRFOw2b8f+h0AVNa8L2OuSRzyq8N5H/qr22bZPF9H9P9k5B9KzP7X1jwqdusQnVNPHC6nZx/vUH/TaIf8AoScf7IrsaTbQBU07UbXVrOK7sriO6tpF3JLE25WHsauVy1/4OEd3LqGi3J0bUZW3SGNd0M5/6axdGP8AtDDe9MtPF72M8Vl4htf7JupCEjuA++0nP+xJ/Cf9l9p9N1AF/VPBuh63rWnaxf6NY3uq6du+xX09ujzW2euxyMp+FJr/AIL0HxZJYPrei2GrPYS/aLRr22SUwS/303D5W9xW2rBuhp9AHDeLfgv4F8earDqniHwjo+s6jGmwXV7ZI8m3+6WI5Hsa66xsYNNtYrW1gjtraFQkcUKhERR0CgdBVuigArN1vQ9P8S6Vc6bqtjb6lp9ymye1uohJHIvoytwRWlRQBzepeA/Dmr+GYvDt/oWnXugxIiR6ZcWqPboE+4AhXHy4GKx/E3wR8A+M7y0utc8G6Lqt1axrDDNc2aOyRjomcfd/2eld5RQBSsLC30uyhtbO3itbWFAkcECBERR0CqOAKu0UUAFFFFABRRRQAUUUUAFFFFABRRRQAVWu5XhtpZI4nndVJESEbn9hnirNFAHn+n+IdT/4TDWiPDOoNm2tMjzrcY/13/TWum03Vr68ufLuNFu7BNufNlkhZfp8jsah03/kdNc/697T/wBrV0FACdq56XX9TjldE8N30qgkK4ntwD78y10VFAGLp2tXF1P5d5pc+l54jNxNEfMPoNjtWu+VQkLuPp61g+JF3ar4c46X5/8ASeaugHSgDy7xZ4k1PwnfHxWPDOoJZ28TRamqy27b7cZZZMCX7yN/46z+1d3oWrzavZrcS6fPp6uAyLO6MXBGc/IxqxrDKmk3rNCLlVgcmAjiT5T8v41zfge8k0st4fuQUNvCs1iXP37Y9F/3oz8h9th/ioA6+RiiMwUuQOFHesH/AISLV/8AoV7/AP7/ANt/8droqKAKOmXdxeweZcWU1hJnHlTOjN9fkYipb2SWC1lkihe4kRcrEhAL+3PFWaKAOc/4SLVf+hXv/wDv/bf/AB2o/Dzahda9qt5eafPp8MkMEcMc8iPkgybj8jMP4lrpj0rKtdUe417UNPZAqW0MMofPJ3l//iKALOo3E1natLb2sl7Ko/1MTKGP/fTAVk/8JFqv/Qr3/wD3/tv/AI7XR0UAU7CeW7t0lntpLORhzDKykr/3yxFV9eBbTpIzpp1VJPke1Gz5x/wNgK1KKAPLh/wkvhkq+g6Dfz2A+9pV9dwFEH/TGXzSyf7rZHTGK6nwt4707xZbQND5tneSQJcGxvE8udUYZDY7j/aXIrpZOEY+1c1Hoth4u8N6W97pwti0Ec0UaEpLaMUBwjrgoR0+XFAHT5FG6uf0Wx1jTJ5ILu+TUrBV/dTyrtuAf7r4+V/975fp3rwrwl42+LfxJ8W/FNvD2veG7PSvDGvvo+m219pEr/aSkEUr+bKsylcNLs3Kp+6floA+lqK84+A3xXX41fC3RvFYsDplxcmaC6smbf5FxDK8MyK38QDo2G7ivR6ACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA5/Tf+R01z/r3tP/a1dBXP6b/yOmuf9e9p/wC1q6CgAooooAjKjOf4qeOlc/4iYpqvhzBK7r8g89f9HmroB0oAp6m08emXjWq77kROYV9Xxx+tYPiLSr2+0uy1C0UDXNPxcQr0Ehx88R9nG5frtP8ADW/qUc82n3MdrIIrh4nWNz2fHBp9okiWsSTHfKqAO3q2OaAK2iarb65ptvf2rZgnQOu4YYf7JHYjpWlXG2v/ABSnis223ZpesSF4P7sN1jLp/wADCs31Vv71diDmgBaKKKAEPSqMD2jahcrH5f2wInm4+9t+bZn/AMf/AFq8elZdtpX2fXL7UN+77TFDFsx93YX/APi/0oA1aKKKACiiigBkmdjY+9iqGhSXc2i2El8gjv3t42uEX+GTaN4/PNX5PuNVHRYbm20iyhvpRPeRQIk0o6O4Ubm/OgCzdO8cEjRxmV1UsqA43n0r5K+EmkfG7wR4B8TaJY+ALLTfE2u67qGqHXNT1iF7SD7TMzI5ij3O5RNg2cZK/er69ooA4D4IfCq0+DHwu0LwfaXcl/8AYIyZ72Vdr3M7uZJpSO293dsf7Vd/RRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHP6b/yOmuf9e9p/wC1q6Cuf04/8Vlrn/Xva/8AtaugoAKKTdS0AV5IY5nRnUMyNuQsOhxjI/Opx0rD166lttR0FI5DGs14UkC/xr5MjY/NVrcHSgClq0IutLu4mmNuJIXTzf7mR978KksY/KsYI/M8zEajzPXjrUWsfZ20m9F0Str5D+cV6hNvzfpUmn+UtjbiAnyfLXZu/u44oAq+ItFj8QaTPYu7RM2GjmT70UgO5HX3VgDWBH4pmk8EatdXEq6fqmmwTJdttyIZUTdvweqlcOP9lhXaV5n8efCmueJfhT4y0vwfZ2knibW9OfT0kuJvIXDqU3F9p+6rtQB4P+z7+1v4i1n4DeINc+IFtBdeNtLvIbe107T4vIbUTdwRTWCInOC4mUe21j2rkPBf7SXxU17wn8ILzX/Gvh/w5d+NdV1U3l22nx/ZrOwtQ+Chd1ySUX5j/fr1y+/ZXh03XX8faLHnxbb+FYdJsNEkuNllHfQwPDFclv76I5QNjhd3rXMfC79l/X9P8T/CW38YeGtEv/DPgzwdPpJjluEuc6lM8RlmWJkxt2xMu7r89AHefs4fFHxR8RPFfjqC71ez8XeCtMmt00bxVZ2H2RLyRkJuIl+YpKEO394nHJFezWLXf/CTaoJd/wBjFvbeTu+5vzLv2/8Ajn6V5l+y58PvE/wu8Ban4X8QWtta2FlrF4+hx2139o8vT5JjLFEflGNm8pj0UV6rbasLjW7/AE/Zg2sUMu/P3t+//wCIoA1KKKTdQAtFFJuoAZL8ysM44rP8O2osdC062FwbsQ20SC4/564QDf8Aj1rQkwyNu+7jms7wylmnh3Sxp7MbEWsX2dnPJj2DZn8MUAatFFJuoAWiuC+Knxq8GfBPTtN1Hxv4gg8O2Go3i2FvdXQbymmKM4UsB8vyoeTxXQ+FvGmg+NtLj1Hw/rNhrdhIMpcafcpOjf8AAkJoA3KKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDCv/AAnp2oahJezC6S5kRI3NvezQ7lXOMhHA/iNN/wCEI03/AJ6al/4Nbr/47W/RQBz/APwhWm/89dS/8Gt3/wDHaP8AhCtN/wCeupf+DW7/APjtfP3x++JWtaH8YRokPj/VvAug2vh5NQnk0vw4NUaR2nkVnZvKfylRE6n5eadZfELXvjL8T7rwl4N+IE1loOi+FrPVhr+nQW00up3N0XWJzvRk8tREWZUC5LY4oA9n8QfD+1u4LQ2ragZ4buF8tqtz8qbx5mP3v9wuP+BVsDwTpuP9bqf/AINbv/47Xyh8F/jr42/ad1a30O38Qy+DLnRvDa3+qz6Vbwytc6g1zNAB+8RwsK/Z3bavLbx83y175+zV8SNQ+LXwX8PeJtXjSLVpvtFre+Wu1Wnt7iS3dgvYFombH+1QB0us+BLG40e+hgfUWneB1jB1W55Yg4/5a1Jpvgawh0+3jlk1ESpGFcf2rc9cf9da539of4wW3wJ+Emu+Mp7dbqWySOO2tnfass8kixRKx7Lvdcn0zXgerftI3vhb4XeI7628fHxN8RZHsLRdMu9MNjbac91cLCk0MLxJJJCC7fOzPu2dRQB9Uf8ACFab/wA9dS/8Gt3/APHaT/hB9N/566n/AODW7/8AjtfKPxn+O/jb9mrxDqnhabxHL4rl1jQ7e70XUdVt4VltLx72Gzl3LEiB41+0JKF2/wALDNeqeDfEfinwR+0DB8Otd8RXfizTdW8OPrdpfahbwxzW88EyRTJmFEDI3nIVVlyNp5oA9c/4QjTf+empf+DW6/8AjtN/4QfTf+eup/8Ag1u//jtdDSHpQBgf8IVpv/PXUv8Awa3f/wAdrIs/h/ax+JdUuXbUBbTQQJG39q3OSwMm/wD5a/7S18pa5+01rkPxM1Lw3J41u9G+JMPi1NMsPBNzYwpp1zp5mXZIZnTLb7fdLvWVTu+VV7HZ1j42eOl+GHjD4zW/iGaHS9B8SS6fb+FvssP2SawgvFtpd7lPM85/ncOHAHyjbQB9V/8ACFab/wA9dS/8Gt3/APHaX/hCNN/56al/4Nbr/wCO18nar8c/G918J/GvxusfEUsGkeH9fmtbXwuttC1tPYW9ysEvmvsaTzn+dgVfA+UbetfZNtcLc28Uyj5XQMPxoAx/+EI03/npqX/g1uv/AI7Tf+EH03/nrqf/AINbv/47XQHpXg/w58X+NpP2l/HXhDxDrlpqejWWiWOpafBa2ItxD500wZWOWZ2wi87se1AHq8ngnTtjYk1Ldj/oK3X/AMdrM8MeAbSz8N6Tb3j6kl1DaQpMo1W5wHVBu6S461y3xibxnceJPD9tpust4U8DpbXl34g8Q2z2/wBotjGqeTGPOVgqNmRmcKSNg6Zrwb4X/G/4ifFG98CeDZPEF1p8Wt3ms30fiqOyhjvb/RrR1S2lWJ02IZmdfn2cqu4DmgD62/4QfTf+eup/+DW7/wDjtL/whWm/89dS/wDBrd//AB2vk7wr8dfG/jf4p2PwXk8SSWGs2Gt6tb6n4ktLWFbm4srSOF4dilGjSR/tMQchf4Gwq5r2n9nT4ga34si8ceHvEV4dS1nwh4im0V9QESxteQ+VHNDK6p8ofZKA23AytAHmP7cP7GuoftOeAfDnhrwzqkOjS2uspe3d5qt1PcKIRDKh2oWbc+XX0+tUP2Xv+Cb3gv8AZs1G11xvFGv694giIZpFu3srTd/1xjb5h7OzV9iHpXyn8LPD0H7Tnjv4h+LPG3m6p4e0TXrnw1oOgSTulpCluFWa4eIEB5Xdjy3QLxQB9VpjHFOr5x/ZT1G5sPE/xg8G297c6j4X8LeI1tNHe7meZreOS3SWS2DsSSkTkqueg4r6OoAKKKKACiiigAooooAKK+f/ANoT9pW8+AnxG+HGlXejwXfhfxNdPaX2p+c6yafgoolK7ceXulTLZ4pfHP7SF5o37TPgj4SaDo9rqMmrW8t7quo3M7ollGFZ0RAqndIyxucNj+H+9QB7/RXP2njbw9fatdaXba9ptxqlqC09lFdxtNEB1LIDuX8aoWXxV8Gagtx9k8W6Hc/ZkLzeTqMLeWq9S2G4AoA6+iuasPiB4X1SxivrPxJpN3ZSzC3S4ivo2R5D0QMGxv8A9nrVuTxbocSzmTWbBBBOLWbdcoPLmPSNueH/ANnrQBtUVy9n8RPC2pXd7bWfiTSbq5sUZ7mKC+id7dR1LqG+UD3rzvwn+1j4A8Xz+DIrHVrYT+KXuktYmu4d0fkbuXAfjfgbfXcKAPbKQ9KxNC8ZaH4oe6TRtZsNWa1fZOtjdJMYW9H2nimaj438PaRrNtpF/runWeqXOPIsp7tEnl/3UJyaAPOvG+l/Fy28Wa9N4Zbw7rfh7VbGK3tLTWbiS0fTJ1Dh3/dwv56PuU4Zkxtx3rzT4b/sxeMP2d30278BXWjeIbubw7FomqxazPLZI1xHLJMlzEyJLwGmlXyyo4x81en+EfjHeeNfjj4r8IaYmkHQ/DUccV5K13uvZLl0D/JEOPLXdtJPO6vQNT8beH9F1S10vUNb06y1K6wsFnc3SJLNnptQnJoA+b/h/wDsxeLvgDe6dqfgWfRte1G58PDRtYi1i4ltI3uVnknW7jZIpSRvnlUowHy7fmr2z4DfC5fg18KPD/hFrz+0J7FJXuLoLtElxNK80zKOy75Hx7VlfC34zL4k8Ha9rXi+TS/DX9leIL/RXka722/7idolO99vJxXa3/xA8M6Xpdpqd54i0q00+8/49bqe9jSKf/ccthvwoA5b9oX4Uz/GT4Y33h+zvItP1NLi21CwuZ03xpc28yTRb1/uFk2t7GvF/iH+zD4w+PWvah4n8Wy6L4W1210aLTtGttJuJb2JbiO7S6E8zvFESN8SKqAHALHOTXtuhfHbwbrvjDxH4ci12wivdEnt7eUyXkQWSSZNwVPmySMhT71Z0L4paf4g8U6rp9r9mk0WysIb9Nch1CCW3mDlwy7Vfeuzy2+Zht/KgDxD4h/syeLvjxqGteIPGU2jeH9ci0a303Q7fSrmS9ht5o7tLozyu8UTYaWGJdirwgPzbq9A8C/DXxbqXxkPxH8bx6Tp+oWeh/2Fp+naPdS3MWHmEs0zu8UfLMiAJt4A611OofF/RlvPD/8AZN1Ya5pepXM1vPqdpqlt5VmscLyM7bny/wB3omSOp4p/wv8AjV4U+LGh2eo6Jq9nI915zJZ/a4nuNscrIzbFYnHyZ+hFAHoVMddyEVkr4o0iTR5dWXVbKTSoVd5b5bhDCip94l84GO9ULb4jeFLuS8it/Eukzy2UP2i6SO+iYwR9d7/N8q+5oA+cNb/ZZ8U698PNb+HV5Y+GLrTdQ1ufU/8AhM555TqaCS7a48zyfK/16BliVvOxhFP+zU+o/sx+Mj4P8R/DCyutHPw81/xA2ryarPcy/wBoW1tJcJcTWwh8rY5Lqyh/MHD/AHeK+h5PiP4VtbG5vJvEukQ2ltIIp55L6MJG5GVDNnAJBBx71YvfHHh7T9Ci1q413TbfSZseTqE15Glu+emHzg0AfOOr/sxeL28H+KfhdYXGjR/DjxHrj6pJqctxJ9vtLaaZJprVLfytjlnVwr+auFf7vHP1VBAtvEkafKiDAHtXkH7P/wAdU+LXhye51V9J0/V/7X1DTbezsbzzVuYrWZk8yLdguMc5Ar0Gbx34btdFfV5tf0yLSY5Ghe+kvI1hVw20oXzjIPGKAOiPSvCPCvw9+IWnftJ+JvHWo23hyPw5qumwaTFDbahcPdwxwPK6SFTCqMXMvK5G31Pf1TUPiH4Y0m0sLq98R6VZ2t+M2k897GiXH+4S3z/hXBftF/He0+C/wz1/W7O80W88RWFl9tt9I1DUBC9ygPzbVHztxnG0c0AeZ+O/Cfxh+PeieGmuNM8JxaHZ394+qaFfXt3Fb6r5czJbFmELEw4G8oyjecfw1uT/AAn+KM2ueD/HtwfCs3jXw9Je2g0ezkmttPl02dEVYVm8pnDo0SPnZg8jatdx8Z/ixqXw1+GWn+KtO06zvDNe6fDdJeTlEihuJo4ncEL8xXeOOK7Gz+JHhPUbGS8tvE2kXFokwt3njv42RZD0Qtuxu/2aAPnnRP2YfFvg/wAV6f8AE3Tp9G1H4ivrGpalqdhLPJDYzwXqIhtkn8pnHlCGHa7Jztb5V3V6x8B/hdqXw5sPFGoa9cWtx4k8Ua3PreorYljbwu4REhjZlVnVI4kG4qMnPAr0W21iwutQuLGG9t5b22CtLbJKrSxA9Cy9Rn3rxmD4xeMfiN418V6R8N9J0V9H8L3n9m32s67cSqlxfBFd4IUiVjhA6BnPdsBTtoA92PSvmH4s/sw+LbV9e1z4ReOLvwpqmoakutz6DMEaxubzZskdXKMYS6dflcblU7asWH7Wstw/hqDUNIs9BvV8VS+FfE8F9eYXTJktpJlkjfaA8bhFZXO3hq9b1f4o2MA8LzaQLbX7DXNRWxW9s9RtxHCNrHfln/ecrjYmT81AGP8As4/D8/Dj4W2Wm3Gh/wDCP6rNPNd6jE+o/wBoSz3LuS80lxsTzHf7x+UY+72r1Suet/HHh2616XRINd02bWov9Zp6XcZuEx/eTdurzT9oT4xeJfhbrPw903w3pejajN4q1g6OZdZupbdIH8l5VfKI2RiJ8/hQB7ZRXmPgrxj4vibXp/H0HhbSdIso4ng1XR9VeWFid29ZfNRCm35PruriPDf7TVzrni3x1YW2m6ZrWn6FrWmaZZXWlarFtuYbtN3ms8jKmUz9xMlugzQB9C0Vg2PjTQNS1W80y01zTrjU7MFrizhu0eWEeroDlfxqtY/Ebwnqlne3ln4m0i6tLH/j6ngvo3SD/fYNhfxoA6eisPR/F+h+I7m7ttJ1iw1O4sztuIrO6SVoT6Oqnj8a3KAPnb4/fD64+KvxS8LaBfaDfXfhO70HWLC+1WCNWitZZ1iWIls5BHlsenB2140f2d/iD4C8SfCxzJe+KvFrXOr3Gv8Aiy0j/cwyzWX2S0LZZTsRUi/h/hY96+66KAPzb0r4IeK9W+Fa6d4j0zVfDPiTw94bv9PGoXVlb6ZpNtNJCUmlmu/NeS8M3zDfwB5rOVG2tPx3Fq178R5o/Cvwxh8N+IW8Ciyg0ae0s706giXtv9oeJEcxk28ZbZvYb2ccfLX3r400201jwhrllf2sN9ZzWUyS29zGJI3XaeGUggj2NeC/sfeDPD+iHxFe6doWm2F4ZvJNxa2ccchj3H5NygHb7dKAPDv+FL+LLjxJ481Xw94X8Uukdpo3iPRpfEtrbwtf6np9y7vHsjVRGXj2xKGUHFdV4V+F3xR1Lxzd2eueF4V8OeNdWtvHF9JLs26TNB93T3/vSMUs/m/2Zq+3m60lAH5++Dvh340vPHvwr1zVvBPiWDWbPVry38RwR6Xa22kWdtPFMnlQoi5khYmJi7Fx/E3NQeA/glqugeHfg3/aPwm1GW60Gz1vT9ZitrK3SZppkH2eRX3dMniTsVr9CaKAPlb9kDwZ4n8H+Idatr3Sb6PwzDpVnaWV94g0aDT9USRGk3WrvCcXMaLhvM2r8zHrXH+Ofhtrdvp/xv8ADeofDjUfFfinxhqc11oHiKCBJYfLkRVtt9wWzbfZivt93cuc19s0UAfOn7NXw+1Lwf8AEj4mXOseHpbS7un01I9cktURdQaOzSO4dHHzEGZGY567s14/r/wm8Yan8WvHOl+KvD+t6zo+seJ7fVrG70PS7d/tVtGYmhil1CSXNskRTBRUB+U7WbdX3XRQB+fereAPiZY+KdL8QReGdXg0K28T+JJpbZtGi1O4h+1zI9teJbGZA/yb035bZvb5fmre8KfCiT4ca/odxrPwx8TeMPBNx4XudNg067toL27s7ya9mmuHmhDbIftCSp93hAu1ttfc1L3oA+BPiR8Dp9Qs/iTYRfCK8hbV9Q8PX+nLp1nC/kww/ZluY0mVuHVRIPfBra+M/wAE9Zbxn4wj8DfD+4g8OS6NoLPY6fBFbQ6klvfzXF3arhlG9opVG1uD8wr7gooA+R9V8NWvin4i/DrXdB+DuqeHtNTxFNNqc9zpsMLyxPps1sZJYg2Qm54l+bqFJ2/LXnnhbR7/APZx8MeAfHr+BGs9R8Pw6roOs6N5dvb3t8l1cCW2mtvm/ffOiJt64dvl+WvvuvM/FfhjRtU+NPhXUbzSbG71C0s5vs93PbI8sPzfwORlfwNAHPeF/h0nhb9la+8Pa7YWvnT6NfXeqWbIDCLi4Ek8ybehCvIw/wCA18t+HPhknxE+G/wiTwf8Nr7TDonhy5fWtVl01IYtShm04p9mRt2bnzpnR/QbM8V91fE60gvvh14lt7mGO4t5dNuUkilQMjr5TcEHgis/4KadaaT8LvDtnY2sNnaRW22OC3jCRoNx4CjgCgD5V8C/Bab4d6T8C/EN58N7u+03RtGntvEOjW1kkt3FqbxIi3kkO798RslG75iA4K1neD/hf4p8GfE3TfG2s/D7Vb34dS6trN1YeELa2S4uNFa5W3EM7W2do3eVcfKudnnfWvvKigD4Q+H/AIB8U+AdV8F+LZfhvrcFroni7xHNPpVnaRNdx2WoKzW7oiPgovAKq3ymm+EfBvirR9Y8N+I9e+GGt3XhbTPFXiO7uvDItI5poftr77S7SFW2SBUd0bb9wu392vvGigD8+/FXwq8Uy+MvEMTeAdb0TwD4k0O30/S9O0XRra+u7KENN51pvebZZF2fzC+0/f8AvBkqfxn8KPEGl/D340+Dp/hdrPiDxD4lRH8P6rFBDdolstrCkMD3BZfLeEoy7e55Gd1fftFAHhP7Qfg7VviD+zW+lWGhS6pfiLTrmTRZ1US3CQzQyyw4PG8qjLjNeKeOPgpe/ELxD428X+GPCMfgnSrfStKbTtP1y3TT01DUrK8+0qWi6IuxfJ3t/f8ARa+4a89+OXh/S/Engc2Wr6bZ6rZm+t8297Ak0Z+cfwsCKAOG/Zp1GX4l614x+Ks2gy6DF4ha20+xgudjSvbWoceaShYMrySy4KsQQqmuf8Atrv7NvjD4iaVqXhPXvEXh3xBr0/iPSdV8P2X2vBnVPNtpkByjq6Hax+Ug9RX0hY20NlaQW9vElvBFHGqRRKFVB6ADgCrjdaAPh+1+BXiTWfEukeKvE/g+a6bxV8Rk8R3+isiXC6XYR2ckFv8AaPm278shYLnG7vtqC++EnifT/FTw6b4K1C2020+Laa7YG2tUWK3sGskikmT5uE81WOB9dtfc1FAHwt4b+FXiJfAfw+8DQ/D/AFHS/iHoXimDUtS8ZvboLYpHdGW5ulu926T7RFuTZ9758FV216l+2H4MuvGusfCNf+EKv/GehaV4l/tHVrSzt0mC2y20sfzK7DPzSrx7GvpeigD4r8d+HZrltBsfB/wP1zSfA+jeIrXxBrmnPaww/wBrABotsVtvPmlMRSFW27tnQ1i694F17V/EPxB1fTfhfrtjYat4u8L61pcDWEUT+VaOn2mXYH+Q7UfhsE7/APar7uooA/OzWPgZ8Rtas/GGheENC1azsr7TtSLxeJbC3huLOWa5SZra21GNszx3H71fm+6GG5q634q/Dm/+KE2pXvhL4Vap4Z0u18Dapo93Y3enxWr6hczCMWlskStiTynQvv6Ds1fc1FAHzZ8OvhvJ4N+Ofge+0rwfNoulN4EbTdSura2SKEXQlheKObHVwqzfNz97/ar6WplPoA//2Q==)
![](data:image/png;base64, /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAARAMkDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9U6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD52/a3+Ofin4Iah8NW0bXvB/h3RvEmuf2NqWpeLrKWWGxUxPKLjzFu4FAURMu1vvFl+Zccz/BH48ar4++JreGrnxh4M8W6eNEn1SG+8N6PqNn9rCXggWaF5Xlt3hHzo3lzyMXAI+XNb3x8+B/iL4u+JPh1q2ieLtO8MHwdrI1tIr3RH1D7VMI2jCErdQ7E2SSAgAkkqQy4wZ5Pg7qOk/tAv8AFC11iwTSIvD82jN4cttFbz5A8/2p5RcC4CmRpuceVyGIPJ3Uo+7Zy2vL7uXT/wAm2/HpZNXv6Rt682v/AJL/AF3ytR/bV+EeltAZNa1qe3uftJtbyy8Kavc2t4tuGM7wTxWrRzJGFYs8bMoCkk45reg/ad+Hlylw8Wp6nIIPD8fikhfD+okvpj7dtxGPIzIPnXKpll5yo2tj4I+Fs3jXWvFOiad4cuvhd4ksdduLjSW0Szv9Q/4SXw1p12XF1O2kieSy0mSNCVl8qMKHxGd5fDfUXh39kDxxoLQTP8VdM1C4j8CHwFifwoywi2U5inVFvQRIBgNliGxwE4AGpqm5dbO3ryydvTm5Fe9tX2utmoKfK3pf8OZK/wB3N80u9j0PRP2wvhH4p8PprOg+K38RWkkvkxxaLpd7fXUjCGOZ9lvDC0rCNJozIQhERYK5VuK0viX8bZPD/wAEbn4jeCNGi8caeumS6vE/25bO3FrHA8xkd2VnHyptCLGzb2UMEG5l8q1v9iKbxB4I+E+l6l4h8Ma1q/w+tZdOibW/Bsd7pOo2rRrGFmsHucrIojjYSJMp3BjjDYHq3jD4QaprfwCu/hvoWo+HPCsl7pUmkT3Fj4dYWEUMsTRy/ZrJLpPJ4clQZXCnqHp1or31TfWy8136b9t1truTR5faQ9p8P2vv/wAv09DhPi18d/FPg79nLQPiXB4k8DeE3n8Px6ncJ4ntJ5Yr69e2WaOztlW5iKFiJMfNK3AAQ4JrqPid8db7wN8AND8bw2Vius61/ZNrBFNN51lbXF9LDEHd0Yb4ozMWyrDeFADDdkV9M+D3xJ0v4deHvB8fxE8OSafZaR/Yl+ZvCEji7gCLGkkam/8A3UojDBi5ljYkHywBtJa/s7ah4c8GReCNA8RaVceALPw5b6HZeF/Fnh2PV7Tzo5FLXVwRLC8+9AV8rciBiGHTbVzcXOfIvdbuvRc2mmqurJPW2jsveZhDn5YKe6Vn6u1n8tW1/wABLS+A3xR8QeONW+IHhrxSulT654O1kaXLqWiRvBa3qPBHPG4geSVoWCyBWQyPypIODgeuV538D/ghoPwK8LXek6LFAJtQvH1G/mtrOK0iknZVXEcMQCxRIqKiRjO1VALMcsfRKl6WTd3ZXe2ttfx/4ZbFq+vq/uvp+AUUUUhhRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH/9k=)
Refer to Figure 13.9. If Ohio Edison engages in rent-seeking behavior to maintain their monopoly, the true ________ is
BEC and the portion of area
FGBE that pays for the rent-seeking behavior.
◦ consumer surplus
◦ net social cost of monopoly
◦ producer surplus
◦ net social gain from monopoly
Question 2
A monopolist
◦ faces the same pressures to cut costs as a competitive firm does.
◦ must use the most efficient technology or it will be driven out of business by firms that do.
◦ is protected from competition by barriers to entry.
◦ faces the same pressures to innovate as a competitive firm does.