Question 1
Refer to the information provided in Table 36.3 below to answer the question(s) that follow.
![](data:image/png;base64, /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCACxAR0DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9U6KKKACiiigAooooAKKKKACiiigAooooAKKKwPGvg608c6N/Zt9e6tZWvmCV20bVLjTZ3wDhfPt3SVVyQSFcZ2gHIyCAb9FfHX7I8dtpvgPxt8QfE/i7xVdyeGfFOv2Sy654xvprMWNvLJHHHJHd3Jt8KuMSPggqCX654vx3+1nr/wASdd0C203Q9V8Pa/4Z8eeHLY22j6zf29trllqAnKoy3NvZl42+zkHzInTA3IzKcmVJSty9f1HaybfS/wCB980V8aePfjl4g8c6p4PgurG/8C+KPDHxY0vwxq1no2vzT2N7BMglPzosInikjeM7JYgV5GBk57zwv+19d+MvjAPC+jfDvXNQ8MLrdzoE/iO3tL5hazQhg00uLP7KIDIoQMLsyDepaJeQHezs/wCtv8xPT+vNr9D6Por5d/bbj1Twp4T/AOE30u58eW02lvaz3OqeGtb8ix0azguUkuJp7H7TELvfE0g2GOUnZgmMcng/Hn7ROsX/AMTvE3iC/wBOvb34YeEPEOi6JGNJ8VXOjzJJdrbyfbHghQNeDN1GpgmlSMKgwjszlWveV1/W1vvbE2lufb1FfL37bcWp+EvCX/CcaXcePYJNMe2nuNT8Na55Fjo1pBcpJcTT2JuYlu98TSDYY5SQmCYxyfpnT7+DVLC2vbV/NtrmJZonwRuRgCpweRwR1oWquHWxYooooGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcp46+LHgj4X/Yf+Ey8ZeH/AAl9u3/ZP7d1SCy+0bNu/wAvzXXdt3pnGcblz1Fcr/w1j8EP+iyfD/8A8Kix/wDjtHiP/k6f4ef9iZ4l/wDS7Qq8s/aK/aF8a/Cf40aZ4ct/FfgPwr4Vv/D95rP9p+KtJnk+zSW7wxiJpVv4VbzXmULhQQcAByRUt2aQ0r3Z6n/w1j8EP+iyfD//AMKix/8AjtH/AA1j8EP+iyfD/wD8Kix/+O1yXgv9rXSbD4V+DdX+Jttd+GvGWqaB/bmo6DpOjX+oS2cCHa91JDBDJJbwE4IabAGSu5ijGtHwP+0xoninVfiZqy69pup+B/DFpYXsEukaXqEl7HBNbtK8soMW2dGC7ozbBxsBLc4qpe7e/QS1Nz/hrH4If9Fk+H//AIVFj/8AHaP+Gsfgh/0WT4f/APhUWP8A8drzT4jf8FBPh14a8FjWvCgv/GV88en3cGnDTNQsxcWV1cJCLqOR7Vg6KWYHaG+dfLOHIFfSuk6nDrWl2eoW6XEcF3Ck8aXdtJbTKrKGAeKRVeNsHlHUMpyCAQRQtdRX1sea/wDDWPwQ/wCiyfD/AP8ACosf/jtH/DWPwQ/6LJ8P/wDwqLH/AOO0fGT/AJKL8Cf+xzuf/Ue1muZ+NH7Sd58Jfi/4C0FtIin8H6lfwad4h1yQnOmy3glTTwvIXDzQt5jHOxShIG9SV1S7j8zpv+Gsfgh/0WT4f/8AhUWP/wAdo/4ax+CH/RZPh/8A+FRY/wDx2tD4j/tA+CPhRqo03xDf6gL8WEmqS22laLe6m9vZo21riYWsMphizkb5NoJVsE7TjkL/APba+EGm6RJqk2u6w2nQ2ltfXN1B4V1aWO0huM/Z2uClqfIMowyLLtLKyMAVdSWtdg8jf/4ax+CH/RZPh/8A+FRY/wDx2j/hrH4If9Fk+H//AIVFj/8AHah8FftX/Crx/rmt6LpXitYdY0O2uLzVdP1ewutMn0+CDyvOlnS6ijaJF8+P5nAB+bGdj7YB+1x8LhBcNJreoQXMUlrGmnT6BqMd9dG5Zxbm2tWtxNcrJ5cm1oUdSEY5wCaV9kHS5d/4ax+CH/RZPh//AOFRY/8Ax2obr9qj4HXltLA/xm8BKkilGMXiuzRsEYOGWYFT7ggiqtr+118M73Qda1iC+1+Sy0W5ktNRH/CJauJrWSNd02+E2vmbYht8xtu2PfGHKl0zT0/9qzw/e/GmbwU1nNBoH/CLQeKoPFkkVytk1vIHcl3MAiihEabvOeUKWzHjcCKTa2YzivC+s/smeDvAvinwbp3xM8Fv4a8T+edWsNQ+IP25bhpgwmcNPduyM+4lmQqScEnIBHNt4V/Yye5luW+JPhpryWSzme8PxUuftDS2hb7JIZft+8vCHYRvncinapCgCvpD4e/G3wf8UdT1DTvD+oXb6jYQQ3U1nqOl3enzGCUsIp0S5ijMkTlHAkQMhx1ruqrzF0sfLms+IP2UNf0bQdKu/ih4NFpomojV7Q23xC+zzNfAgi6mmju1kuJsjPmTM7EkknJObGg+L/2WvC3jzU/GGjfFfwlpGs6netqN/HYfEUwWN3csgRppbJLwW0jlQMlozkjcfm5r6aIyCPWlpWsD1PmvxP48/Zf8Z+KJNd1n4reDb24mSKO4sj4/VNPuxGSU+0WS3Qt58Z/5aRt0HoMV/Enir9lDxd40fxVqvxG8BXGrym3e4VPG0UVpdvBn7PLcWqXIgnli3fJJKjOm1NpGxNv05XlPh04/al+Ih9PBnhr/ANLteo2Dc8h0Rf2QPDttY2en/EfwdBpVpCluukH4is+nTxq7OouLRrww3GGdjmZHPQdFGPX/APhrH4If9Fk+H/8A4VFj/wDHa5j4aftK3PjH9ovxd8OdU0qPTNOjsf7R8LagAwbVYYJ3tr5mLHHyTquwKPmTL5Iwa29f/a0+GfhrXZtIu9U1ia5i1VdCabT/AAzql7anUDj/AERbiC2eJ5snBjVywIIIBBAfZ99Qso6di5/w1j8EP+iyfD//AMKix/8AjtH/AA1j8EP+iyfD/wD8Kix/+O1g3P7a3wltWtv+JvrtzDdm5FpdWXhHWLm2vBb7vPe3mjtGjnRArEvGzKAM5xzW34e/ap+Fvi/wIfGOg+K49a0H7dHpiSafZ3E88928Mc620NusZmlm8uVWMaIzLhwQCjhVfqC1dh//AA1j8EP+iyfD/wD8Kix/+O0f8NY/BD/osnw//wDCosf/AI7WZc/thfCm2sYrtNd1G+VrW5vZoNO8PaleXFlDbymGd7uCG3aS1CSK6Hz1TlG/unGpYftO/DvUn8K+TqeprD4nkhh0u6n8P6jDbyyzZMMUkzwBIZJFwyJKyMyOjgFXUkuFxv8Aw1j8EM/8lk+H/wD4VFj/APHaX/hrH4If9Fk+H/8A4VFj/wDHa5n4Z/tf+GfG3hfxLrWr6fqXhtNI8QTaBBbvpt9PNqMiuyxi3j+zK80zCN2aCFZHjC5bFes+AfiDoHxP8Nxa94bvjf6a8stuWkgkt5YpYnaOWKSKVVkjdXVlKOoYEcihNPYDjP8AhrH4If8ARZPh/wD+FRY//HaP+Gsfgh/0WT4f/wDhUWP/AMdr1WimB5V/w1j8EP8Aosnw/wD/AAqLH/47R/w1j8EP+iyfD/8A8Kix/wDjteq0UAeVf8NY/BD/AKLJ8P8A/wAKix/+O0f8NY/BD/osnw//APCosf8A47XqtFAHKeBfix4H+KH27/hDfGXh/wAW/Ydn2v8AsLVIL37Pv3bPM8p227tj4zjO1sdDXV15V4c/5On+If8A2Jnhr/0u12vVaAPKvEf/ACdP8PP+xM8S/wDpdoVUPEvwP8Qa5+0j4X+J8HivTbTTtC0240tdDk0WSSWaK4KNMTci6UBt0a7T5RAGchsgi/4j/wCTp/h5/wBiZ4l/9LtCr1WlbVPsHkeF/Ej9nnX9e+K+oePvBnjKw8Mapq3htvDOqW+r6G2qwTQiUyRTRhbmAxypvkXkujBhlMjJ5b4Yfsb33wj0v4h6T4f8Y2X9leJtBstCsY77RZJZ7FbW2NtFLLIt0qzsyO7OFSIFmBXYo219O0VPIrOPR/1+o7s+OfEP7Aur63oHg/T4/iJp1rP4f8KWPhjzU8MtsuBaXsd1DPsF4NhJiRXXJ3ZcgpkBfrzS472HTLRNSuILvUFhRbme1gaCKSUAb2SNncopOSFLsQMDc3U2qK0cm1ZshRSd1/XQ8p+Moz8RPgSP+pzuf/Ue1mvMPiL+xLH8WfB3ju38U33g7UfHHiO7M1n4zbwd/pukwYRUiiY3ZkJjVAEZZEA6sj5bd6f8ZTj4ifAo+njO5/8AUe1mua8DftQ/bvFPxNsvHtj4c+HugeCNTh0mTXrzxMGiuppY1lj4lt4VjBjkTq5O4lQDjdUO1/68i72R84ftP2/ifTPHmgaBf+PfhzY65YeFobPVNX+Ilzf+FrTxBE8soxBcWd4JboDb+/tZnaJTKjhSZSE8jvPHfxB8TXVzruo2Xwh8HeJIra0S6+HniqTVdGk1ZrZA1k1nptvcKNUhkjEIhW5jZ1kVoVUBAW/T/QPif4N8V2er3mh+LNC1m10h2j1KfT9ShnSyZQSyzMjERkAEkNjABrNk+O3w0g8IReLJPiF4Uj8LTXP2OPXG1u2Fk8+CfKE+/YXwrHbnPB44oStf+upV/I8k+Df7Pfie++DvxB034j6zYvd/E7drOpWGjaU9hLo93dWkcVxAJHuJvOEflxhSyg5Rt24MFXw/4r/AGf8AZ2+Enh7TY7/4X6fq8+o2Vpb+Mf8AhCv+Ebt4ngimbzdT1K3vDLbGTG1Li3EbiVlUECUsv2De/tFfCjTI0kvPid4NtUktE1BHm1+0QNbOwVJwTJzGzFVD9CSADzWzp3xU8E6zca1BYeL9Avp9DiE+qx2+pwSNp8ZUsHnAYmJSoJy+BgE0WS1jpt+BN3sfBnwk+Anjz9o6w1nStc134eReCdHM0NveeHLW+8SaL4hur1C1xe+deXeZ761ICrdOZQjyOmCYyK960H9i6+0+3tbG/wDGtpe6dN4Bi8AauINEeGe6toVlW3nt5DdMIJF3oWDrMrFWwE34X6E8J/EDwv490Nta8M+JNI8R6OrtG2oaRfRXVuHUAspkjYrkAjIzxmvLvFH7RGqW/wAAtR+LHhHwlB4t0a286+gtP7Ue2mvdLi3bruP/AEd/nYIXSE4zGQS6sdgU0nv5f5fqx7v+v66B+zT+zifgBpr2048D3lz9igsjqvhnwWmhX10I85e7kS4lWYtweFQA5POePcK8ek/aU0V5vD+o2lobjwZqUtjZz+IZJwi213ehDaQiPad/34xIxZRGZ4QPMzL5XsNaNNashNPYKKKKQwrxDUdN1jWPj38WLHQNVh0LWbnwJ4citdSntDdJaub3XgJPKDpvI6gbhzjr0Pt9eIal4w0v4ffHj4ueJtbuRZ6PpHgHw/fXc5GdkUd3r7scDknAOAOSeKmVuV32GtXocTc/sRxaRrnwu8Q+CtQ8H+BfFHhCXz9S1fSvBxSXXWMXlSJMUvEcRurOWDtKxYht45DfMvjbxv420X4seKPEfgb/AIVj4j1Kz8T3Nzp3w51+61K28SNeLMYjKmiW9x9lkmI3TJeNGZGiYTOy8hfuD4dfFT4ieOU8P6zd/DK00fwfrhMsEz+Ilk1a1tnVmgmubP7OsSbgE3JHcyunmAYYhsdE/wAevhja6rq+lSfEbwlHqWjpLJqVk+uWomsljOJWmTzMxhDwxYDHfFTLV/15Arbs/Of4fjx94g1zRNJ8H6t8JNfXxBLLpS6aJdSuvEHhWwvNwu55dEW7+x6bJFGSkywiNN+I9zbxu+xPGP7IVz44/Z7+HXw61TxPpdzqXgmaxktdQuPDiz6ZeLaqYkjudNknZXVoDtbEg+bLLsB2V7D4X+L/AIB8ZTXsHh3xv4c12WytkvLqPTNWt7loIGUMssgRztQqQQxwCCCDVPTPj78Mdat9NuNP+I3hK/t9Tv8A+yrGW11y1kW6vMIfs0RVyHlxJH+7XLfOvHIzVlbb+umo7tu6Phv4+eC7n4d+N9N8LaVq3wX8AzW+iH7d/btre+B9G1eKe4lPl2r2V6ZLoIExPbTO0Q8yNwpMpCdb8OP2T/iB8aNI8KfErxdrnhzwr4lXVNP13T9IfwpPcHREspAILK1klu0kt7KVI1ma3VI2Dy8sQCG+uT8dfhqunW+on4heFRYXN+2lw3Z1q28qW8XGbZX34MoyPkB3cjio7D4//C/VX09bL4keEbttRSWWzWDXbVzdJFu81o8SfOE2PuK527TnGDTXdEtniHin9iC68V+F9Y0K68YaRcWh8aP4z0iPUfCyXcMEkssj3FreQvceXdwssgRdqwMm3OWPT3r4R/D2P4Y+C7fQ0svDNiySySyR+EdB/sawJY5ytt50u1sYBbeckZ46DK079pH4Ua28kek/EvwjrNyltLefZdO160nlaGJWaSQKshJVVRiT0AU5Iwa4vwt+2D4T+I3gb4feKPB0mm38Xi3W4dIOmarr1lY3tlu/1uY/McSTxq0TfZkJkYSp0zUxSirL+ug3rqe+UVxuofGf4f6T4uPhS+8deGrLxQACdEuNXt470Ap5gPkFw/3Pm6fd56VH4W+N/wAOvHOq2umeG/H3hfxBqV1A9zBZ6XrNtczTRKxVpERHJZQysCwGAVI7VYjtqK4fWfivpulePf8AhF/3Rms9Kl1zWLqaYxx6fZglI3J2kMzur4XK4WKRiRhFfi7b4yfEXxVpek+I/B/w007VPB+qzWws7nV/EcljqL20sioLs2qWcyrFtbzQDMJPL5ZEbKCVJS2Hse2UVyvw0+Imm/FHwjb+INLLJBJLNazW8uPMtriGV4Z4XxxuSSN1yODjI4IrqqoR5V4c/wCTp/iH/wBiZ4a/9Ltdr1WvKvDn/J0/xD/7Ezw1/wCl2u16rQB5V4j/AOTp/h5/2JniX/0u0KvVa8K+LPhnUfFX7SXw3tNM8Wax4OuE8JeJJWvtEispJpFF5oYMZF3bzptJYHIQNlRhgMg9B/wpvxd/0Xb4gf8AgD4e/wDlVQB6rRXkOo/CvxNpNhcXt38e/HsFrbxtLLK9l4eCoiglmJ/sroACayfAfhXUfid4O0nxV4Z/aF8f6noGrQLc2d2NM0GPzYz0O19IVl+jAEelAHulFeVf8Kb8Xf8ARdviB/4A+Hv/AJVUf8Kb8Xf9F2+IH/gD4e/+VVACfGXn4i/Aodv+Ezuf/Ue1mvBvG/7L/wAWvGPg79ovRPs/gu2b4l30Fzps39uXh+yJHHFCRMPsXXZCHG3PzMVzgBq6/wCK/wAKPFFr49+DEUvxn8cXb3Pi24iimms9CDWrDQtWfzI9mmKCxVGjw4ddsjnaGCsvpf8Awpvxd/0Xb4gf+APh7/5VULR3QdU+x4j47/ZM8f8Aiab4pvos3hbw8vieDw1eabCby5uIYbzShGfslwggj3WzlNvmqd+1QTHk4XtvGHwm+JPiH4i/Dn4mWei+D7TxL4ZbVILvwzJrty1hcRXcKILiO8FiHScGNQc27BkJXcODXcf8Kb8Xf9F2+IH/AIA+Hv8A5VUf8Kb8Xf8ARdviB/4A+Hv/AJVUmrh5nzPoH7EnxC8IS3X2O18Faql74Q13RmW41S5t0sb3VbpriT7Ogs5P3EIPkhiQ0ilmKx7vLqPxn+w18RPFPhjTtLsbjwp4dktvh/pnhkmx1S7VDf2F8l2jny7aNjDKY1VmDJIhbcA5UZ9x8QadP4X8X6F4X1L9on4gQ69rcnlWNnHpOhSlm2SON7Jo5WIMsMu0yFQ3luFJKkCnpSX2teMX8M2nxs+Mbagk81s1zJ4JsY9PDxbt4+3NoItsAowB8zBYBQSSAVbZ9v8Ag/5jkm9/62/yOq+B/wAIJvBmg+Jk1nQLbRNY12ZGv57TxfqXiNrzbAsSyNcX8aSIQo2hBuAVV+Y9Bl+APhr4y+HX7MEXw60Wy0278RaLYy6Jp9zrF4YLO7iAKxXLNFHK4GxgWjKA71dfu7XPQ/8ACm/F3/RdviB/4A+Hv/lVR/wpvxd/0Xb4gf8AgD4e/wDlVQ1zKzYLR3R5f4Y/Zf1m1/Zp+Fnwg1Ox03TI9Dv7C61e80a8a4tmFpcrdO6GSKJ/MuZVzjyyE3uS7FV3/UteVf8ACm/F3/RdviB/4A+Hv/lVR/wpvxd/0Xb4gf8AgD4e/wDlVWjk5Nt97kpJHqtFeVf8Kb8Xf9F2+IH/AIA+Hv8A5VUf8Kb8Xf8ARdviB/4A+Hv/AJVVIz1WvAfF/wAPdO+LHxh+M/g3VjImna58PNA0+d4Th0WS719dy/7S5yM8ZArqf+FN+Lv+i7fED/wB8Pf/ACqrzTQPhP4of9pLx1aL8Z/HEc8XhLw9K98tnoRmmVrzWgsbA6YUCoUYrtRWJlfczAIEmSTVmNOzujr/AIR+FfjJ4T8L6N4J8US+EtR0jS4fsA8XadfXUd/dWsY2QsbA24jimZAoZhcuqtlgrD5a8SsP2NviNB4B8B+Dp/8AhD2tfh2mrto2tW+pXKXOsPcxTwwrcRG0ItAVuBLMyPcFniCqMPuX6J/4U34u/wCi7fED/wAAfD3/AMqqP+FN+Lv+i7fED/wB8Pf/ACqpyXNe/UE+XRHguh/se+MNM0XRtNutG8H3tgnwsbwDqWnjW7yKOa4E3mCVZUtA/lyYyx+VkMrYD7fmt6L+yv8AFTR/hpptlP4nt/EniHSvG2m+KrO28V69LqReK22iSKXVFsYpmdwCFZrd/LVUQbl6e3/8Kb8Xf9F2+IH/AIA+Hv8A5VUf8Kb8Xf8ARdviB/4A+Hv/AJVU3re/9a3F/X4W/I8H1X9l74sap4ZudKvbfwNqxl+KEXj1vO1O6ihmtRKsr2jRmzkw2V2BssCDuOCNpW1/ZU+IkGonUzpPgeLUB8WR8QfMj1e43PaGJ0aBn+wg+aCwI4Knc3K4593/AOFN+Lv+i7fED/wB8Pf/ACqqnq/wh1+20q9m1T48+OItNjhdrp7uy8OCFYgp3ly2lYC7c5zxjOamyWv9aW/yQPVWf9b/AObPm/8AZD+CV98T/hR4E1PUrPSdI0Pw34p1/WbG+s7uWfUNRunu762ImjMUaW6JkcLJL5gjTIj6V2mk/s4fFTSvgf8AB7wV9n8Hzaj4C8U2Wqy3P9t3Sw3tpbMzgqPsRMcrmR1KHcqhFO99xC2/h54M8H+Bvhfd694I+MfjDwz4QOoywSWui+ENCsXmvlkFsyLZpoayyTl0WMKsZZ9qhd3Fdz4E8Oan8R9Kn1DQ/j78SXjtrhrS4gv9C0WxuraZQrGOW3uNGSWNtrowDqMq6sMhgTT3f3g7OTfVnmNx+yP48nh1fwlJJ4YuPCF18RD4+h8RyX9wusLiVLkW7W/2Yx+YZEMH2jzvliYN5TFdhf8ABX9lDx58N7r4PXt/aeEjeeEtc8RX2qtZarcv9oh1PO2SJmtF3SRq2wowVWESHeN2F9v/AOFN+Lv+i7fED/wB8Pf/ACqo/wCFN+Lv+i7fED/wB8Pf/KqhXSsiuZ/1/Xmc78QvgFceLPib4x1JJJV0nxz4NfwpqF1Ay+ZpzoZmin2ll3ownkUhcncEyCrMUv8Awi0n4u+C/Cnh7w34k03wjJp3h/T0tX1LRdQubm71ZIY/LjRLWWGCO1dwFYu08qqVK7SH3x6f/Cm/F3/RdviB/wCAPh7/AOVVH/CmvF3/AEXb4gf+APh7/wCVVTFcqsv6/q7E3fV/1/Vif9nv4VzfCX4dvpF7KsuqX+qX+t33lNujjnu7mSdo0PdUDhM99ueM4r06vKv+FN+Lv+i7fED/AMAfD3/yqo/4U34u/wCi7fED/wAAfD3/AMqqrV6sQeHP+Tp/iH/2Jnhr/wBLtdr1WvCvhN4Z1Hwr+0l8SLTU/FmseMbh/CXhuVb7W4rKOaNTea4BGBaW8CbQVJyULZY5YjAHutAHlXiP/k6f4ef9iZ4l/wDS7Qq9Vrwr4s3viqw/aS+G8nhDRtH1zUj4S8SLJb63q8umwrF9s0PLiSO2uCW3BBt2AEEncMAHoP8AhI/jf/0Tz4f/APheX3/ymoAxvjbqviHxf4s0f4e+GzNpPmodV1HWNU8KX2qaTLFCwZLNpInhj3yMCxUzDKxlCp80A87+wQdY0j4Fnwrrul6vpt94e1nUrWKTVdDu9LF3aveTSwTRR3Cg7GSQYAZioADHPXuj4k+N4/5p78P/APwvL7/5TUv/AAkfxv8A+iefD/8A8Ly+/wDlNSWl0Gp6rRXlX/CR/G//AKJ58P8A/wALy+/+U1H/AAkfxv8A+iefD/8A8Ly+/wDlNTAPjJ/yUX4E/wDY53P/AKj2s16rXy/8WNf+ML+PPgw134F8DwXCeLbhrNIfGl5Is0v9hasCkjHSVMa+WZG3AOdyou0Bi6el/wDCR/G//onnw/8A/C8vv/lNQB6rRXlX/CR/G/8A6J58P/8AwvL7/wCU1H/CR/G//onnw/8A/C8vv/lNQBhftE+IF0zxn8I1Gj+INTWy8ULqN1Lo/h++1GO3txY3kJeR7eF1T95PEMMQcMTjarEYPh/SFvPi5pV34OPxG0nU4dau7nxNa+ITqcWjG1kE5kjjjn/0Jz5zRbGsstxuLMpct3X/AAknxvJI/wCFe/D/AI/6ny+/+U1H/CSfG8j/AJJ78P8A/wALy+/+U1LXRN7X/T/IHr/Xr/merUV5V/wkfxv/AOiefD//AMLy+/8AlNR/wkfxv/6J58P/APwvL7/5TUwPVaK8q/4SP43/APRPPh//AOF5ff8Aymo/4SP43/8ARPPh/wD+F5ff/KagD1WivKv+Ej+N/wD0Tz4f/wDheX3/AMpqP+Ej+N//AETz4f8A/heX3/ymoA9Vryrw5/ydP8Q/+xM8Nf8ApdrtH/CR/G//AKJ58P8A/wALy+/+U1eaaBr/AMYR+0l46kj8C+B21JvCXh5Z7dvGl4IUiF5rXlusn9kkszMZQylFChEIZ95CAH1BRXlX/CR/G/8A6J58P/8AwvL7/wCU1H/CR/G//onnw/8A/C8vv/lNQB6rRXlX/CR/G/8A6J58P/8AwvL7/wCU1H/CR/G//onnw/8A/C8vv/lNQB6rUN5cLaWsszq7JGpciONnYgc8KoJJ9gMntXmH/CR/G/8A6J58P/8AwvL7/wCU1IfEnxuA5+Hvw/8A/C8vv/lNSew0eTeChpvif4LeM59W0/x9oM2l+M9R8Q2E9h4VvodVQyalLPaTWtvcWjeeWR13L5UiqrkSBecek/s3fDzxN4Tt/F2v+MLzVrjXPE2prdLBrN1bz3VvaxQpDCs32ZVtllIVnZbceWNwALEF2vnxJ8bkH/JPPh+B/wBj5ff/ACmpR4i+N64H/CvPh+B/2Pl9/wDKakrr7l+n+QPX7z1aivKv+Ej+N/8A0Tz4f/8AheX3/wApqP8AhI/jf/0Tz4f/APheX3/ymqhHqtFeVf8ACR/G/wD6J58P/wDwvL7/AOU1H/CR/G//AKJ58P8A/wALy+/+U1AHqtFeVf8ACR/G/wD6J58P/wDwvL7/AOU1H/CR/G//AKJ58P8A/wALy+/+U1AB4c/5On+If/YmeGv/AEu12vVa8K+E174qv/2kviRJ4v0bR9D1IeEvDax2+iavLqULRfbNcw5kktrchtxcbdhAAB3HJA91oA8q8R/8nT/Dz/sTPEv/AKXaFXqteFfFnxxp3gD9pL4b6hqdtrF1by+EvEluqaJol7qswY3mhsCYrSKV1XCn5yoUHAJywB6D/hpbwj/0CPiB/wCG48Q//INAHlX7dXhyL4lXHwi+H9v4b0fxVrOs+KY75LDWXEUJs7KNrm6Dz+TK0KOqxxMyISRKFwd2Ku/sO6JpWl2/xbk03RrbwtP/AMJnc2V74e0TadDsZ7eKKH/QWVEEgZVTzHMcTeYrKY12Atq+NvFvwP8AiXfwX3i/4W614rvYI/Jhudb+EOs3kkceSditLpzELkk4HGSa6PQPjr8PPCejWmkaJ4V8aaNpNonl21hp/wAMdfgghT+6kaWAVR7AUR0vfr/wP8getj2WivKv+GlvCP8A0CPiB/4bjxD/APINH/DS3hH/AKBHxA/8Nx4h/wDkGgA+Mn/JRfgT/wBjnc/+o9rNeq18v/Fj9oPwvf8Ajz4MTxaV44VLLxbcXEom8A67EzKdC1aPEavZAytukU7EDMFDvjajMPS/+GlvCP8A0CPiB/4bjxD/APINAHqtFeVf8NLeEf8AoEfED/w3HiH/AOQaP+GlvCP/AECPiB/4bjxD/wDINAHnP7YngrTNb8F654ptPBnhrxfqPh+AzXupX+tGz1TRVg8u4A05zbzCG5dDuHzQ8mJm3ggVyXw60jQNbT4U/EjSNLt7f4j654zv4dX1J1WPU5osXy3VnctyzJDHGqiFsrGYI9u0qpHpmsfEX4PeIvFun+KdV+HXiPU/E+nKqWWtXnwm1uW9tVVmZRHM2nF0AZ2ICkYLE9zUmnfE34R6P4wv/Flh8P8AxNY+KtQi8i81y2+FGuR31zH8nySTjTw7r+7j4JI+RfQVHLb+v63Drc94oryr/hpbwj/0CPiB/wCG48Q//INH/DS3hH/oEfED/wANx4h/+QasD1WivKv+GlvCP/QI+IH/AIbjxD/8g0f8NLeEf+gR8QP/AA3HiH/5BoA9Voryr/hpbwj/ANAj4gf+G48Q/wDyDR/w0t4R/wCgR8QP/DceIf8A5BoA9Vryrw5/ydP8Q/8AsTPDX/pdrtH/AA0t4R/6BHxA/wDDceIf/kGvNNA/aD8LxftJeOtQbSvHBt5/CXh63RF8A660waO81pmLRCy3opEq7XZQrEOFJKOFAPqCivKv+GlvCP8A0CPiB/4bjxD/APINH/DS3hH/AKBHxA/8Nx4h/wDkGgD1WivKv+GlvCP/AECPiB/4bjxD/wDINH/DS3hH/oEfED/w3HiH/wCQaAPVay/E9jpep+H7+21vyzo8kLfbPPlMcZiAy4dsj5MA7snBGQeCRXn3/DS3hH/oEfED/wANx4h/+QazPEnxv+HPjLRLrRtf8JeMtc0i7ULcafqXww164t5gCCA8b2BVhkA8jsKT2GjD8D/CHwva+HPFyad4d0rTvCHi2eJ9D8CXwOm6ddSQ27Es9sEIiW58su8IifMcQd4y7SItn9kmwPhnTPiB4WPhWy8IPo/iaYtp2h3/ANs0iLz4IZwlm3kwmNVEg3xGNcSM7AAOAMCxuP2eNM0jUtKs/gve2ml6n5YvrKD4MaskN35bbo/NQabtfa3zLuBweRXZ+HPjj8OvB+iWmjaD4T8ZaJpFopS30/Tvhhr1vbwqSSQkaWAVRkk4A6k0K66iep7PRXlX/DS3hH/oEfED/wANx4h/+QaP+GlvCP8A0CPiB/4bjxD/APINMD1WivKv+GlvCP8A0CPiB/4bjxD/APINH/DS3hH/AKBHxA/8Nx4h/wDkGgD1WivKv+GlvCP/AECPiB/4bjxD/wDINH/DS3hH/oEfED/w3HiH/wCQaADw5/ydP8Q/+xM8Nf8Apdrteq14V8JvHGneP/2kviRqGmW2sWtvF4S8N27JreiXulTFhea4xIiu4onZcMPnClScgHKkD3WgDyrxH/ydP8PP+xM8S/8ApdoVeq15V4j/AOTp/h5/2JniX/0u0KvVaAPJ/i98TL3SvGfgf4d+H76DTPE/jCa6KX88Qm+xWdtF5lzMkZIDS/NGkYYFAz7mV1Qo2/8AD7wV4q8I61rTa38QNV8b6Rcw232GPWbSxhntJVMvnndaW0CsrhocbgSCh6Z5p/Fb4JaZ8VdT8Maw2s6z4X8SeGrmS40rXNBmiS5t/MTZNGVmjlieORQoZXjYHaOldJ4K8Iy+EdOlhu/EOs+KL+eTzbjU9amjMshxtUCKFI4IgFCrthiQHG5gzszskNnQ0UUUxHlXxk/5KL8Cf+xzuf8A1HtZr1WvKvjJ/wAlF+BP/Y53P/qPazXqtABRRRQB5L8dvHeveHYNFs/DN0ljcvreiRaldyQCQx2dzqlvaskYYFPMkEkgBOdqo5wDtNcroni7xLpHxotofE2o/Eiw0XUdYvbHTUvLHQz4fuWHneTEGhiOoRgom5HmKB2QDewdQ+38ef2SvAf7QVxZ3muWdvp2qwSRO+rWejaXc3k6xOHjieW8tJz5YYcouAwLK25WZT0HhP4KR+HNV0251Dxj4j8VWelMZNJ0zWjZ/Z9PfY0YdDBbRSSERu6DznkwGyBkAiIq17jb00PSaKKKsQUUUUAFFFFABXlXhz/k6f4h/wDYmeGv/S7Xa9Vryrw5/wAnT/EP/sTPDX/pdrtAHqtFFFABRRRQAVn69ZXmoaRdW2n6idJvJYykd8sSytATxvVW+UsBnG4EZxkMMg6FYvjDw9P4r8NahpNvrepeHJruIxLqekGIXVvnq0ZljkQNjIyVOM5GDghPYa3PKvCuifEDW18Y+Hm+JWqvpVlqNtHpnjJdP046k+1R9ttdothavsddglEHyl5EILxE10/wOt9cfw9fanqvjDVvGGn6hdGXSLrWILKKUWYVVV8WtrbqRIweRcqfkaPnOaz9F+AcmmeA9R8HXPxC8Vapod1bRWUcMkOl2jWcCt88cJtbKHAkTMbFtxCk7CjfNXqlvbxWkEcEEaQwxKEjjjUKqKBgAAcAAdqEu4ElFFFMQUUUUAFFFFAHlXhz/k6f4h/9iZ4a/wDS7Xa9Vryrw5/ydP8AEP8A7Ezw1/6Xa7XqtAHhXxZ+HvhX4lftJfDfTPF/hnR/FWmxeEvElzHZ63YRXkKSi80NRIEkVgGCu43YzhiO5roP+GTvgh/0Rv4f/wDhL2P/AMao8R/8nT/Dz/sTPEv/AKXaFXqtAHyn+0N8MPhX8GtC8O3mhfs7fDHxVfazrlnoUNheabaaeWmuZBHGVdbKYEAks2QuFVjkkYMHw1+Hnwp8Q/FbxB8OPGH7OPw18M+J9L06HV4JNJ02y1OxvLORvL3LK9nA6OsgKlGjHYgkV3nx5+G3j/xr8TvhjrnhvSvDGr6D4PvLjVpbHXNansJLm9eCSCAgx2VwAsQld89WYgYAXLb3wt+Emo6V8QvE/wAS/GD2EnjbX7eDTltdKlkltNL0+HLR20csio0zNIzyPKUjyWUBFCZaVe+v9af5jfkSf8MnfBD/AKI38P8A/wAJex/+NUf8MnfBD/ojfw//APCXsf8A41XqtFUI+X/ix+zJ8HtO8efBi3tPhR4Htbe/8W3FteRQ+HLNFuYhoWrSiOQCPDqJIo32nI3Roeqgj0v/AIZO+CH/AERv4f8A/hL2P/xqj4yf8lF+BP8A2Odz/wCo9rNeq0AeVf8ADJ3wQ/6I38P/APwl7H/41R/wyd8EP+iN/D//AMJex/8AjVeq0UAfN3jX4J/CDTfEMfhbwn8Avhv4k8XSWov3tL7RrOxs7S1LlRLcTraysgdkdEVIpGZlPCqruvJ6L4I+Fmp+KtFM37NXw5g8Ca5rFzoena/HplnLeGaETBZZrP7EFjgke3lVHWZ2+aIsihm2dX8bP2Y5/iF8QNf12Hwv4R8Vp4g0m20v7V4ou545dAki88C7tIkglEkmLjcNr2zqYgBL8+5Lnw4+Bvjbw7D4Q8I+IL3SNV8HeENSk1W01/7ZNJq2qSDzDClxbGBYoirTszSrM+4wrhE3nZGozsf+GTvgh/0Rv4f/APhL2P8A8ao/4ZO+CH/RG/h//wCEvY//ABqvVaKsR5V/wyd8EP8Aojfw/wD/AAl7H/41R/wyd8EP+iN/D/8A8Jex/wDjVeq0UAeVf8MnfBD/AKI38P8A/wAJex/+NUf8MnfBD/ojfw//APCXsf8A41XqtFAHlX/DJ3wQ/wCiN/D/AP8ACXsf/jVeaaB+zJ8Hpv2kvHWmSfCjwO+m23hLw9cwWbeHLMwxSyXmtLJIqeXhWdYYgzAZIjQHO0Y+oK8q8Of8nT/EP/sTPDX/AKXa7QAf8MnfBD/ojfw//wDCXsf/AI1R/wAMnfBD/ojfw/8A/CXsf/jVeq0UAeVf8MnfBD/ojfw//wDCXsf/AI1R/wAMnfBD/ojfw/8A/CXsf/jVeq0UAeVf8MnfBD/ojfw//wDCXsf/AI1VHWv2Wvg1YaVdXFl8DvAOo3ccZaKzTw3p8Zmbsu5owq59T0r2OsrxOdZXQ7p/D0VhPrCAPbwanI8dvKQQTG8iKzR7hlQ4V9hIbY+NpT2A+bfC3wY8D6kvi/T9X/Ze+Glt4h0NrZbeLSLOyvLC9MybgPtMtlAY2j4Mi+WSqMjKHLqp6H4PfA74JfFb4WeFfGL/AAL+H2kvrmnQ35sR4esZxAXUNs8zyF3Yz12jPoKt/Cv4Iaj8M9T8X+LdF8G+D/COt6vYW9nH4Q8N6hJDpEskLzOLia4FnGfNfztpZbbKqnJkyNvX/s3+C/E3w3+DHhjwn4rt9Jh1XQ7SPTxJo1/LdwTxxqAsm6SCFlY85TaQMD5jnhxWjv5fr/wAK3/DJ3wQ/wCiN/D/AP8ACXsf/jVH/DJ3wQ/6I38P/wDwl7H/AONV6rRQB5V/wyd8EP8Aojfw/wD/AAl7H/41R/wyd8EP+iN/D/8A8Jex/wDjVeq0UAeVf8MnfBD/AKI38P8A/wAJex/+NUf8MnfBD/ojfw//APCXsf8A41XqtFAHhXwm+HvhX4a/tJfEjTPCHhnR/Cumy+EvDdzJZ6JYRWcLym81xTIUjVQWKog3YzhQOwr3WvKvDn/J0/xD/wCxM8Nf+l2u16rQB4V8WfDOo+Kv2kvhvaaZ4s1jwdcJ4S8SStfaJFZSTSKLzQwYyLu3nTaSwOQgbKjDAZB6D/hTfi7/AKLt8QP/AAB8Pf8Ayqo8R/8AJ0/w8/7EzxL/AOl2hV6rQB85/Fff8FNEtdX8XftAfE6x065uY7OOez8N6TfgTOQsasLfRZCpZiFXcBuYhRkkCtHwHoGq/EnT7280b46fFONLK6NncRav4Z0nS545fLSTBhutFjkxslQhtu054PBxx/7Z9xf+JPGfwp8JRxeMrDw9FrB8Qa3rvhbwtdav9lW2jkNpH8lpcRM73Gw7GRsBNzLgru99+FOsnXPA1hdNdeIr8BpYhfeK9LGm6hchJGXzJLYQweWDj5cwxkqFbbzkpbf1/XcGmmcx/wAKb8Xf9F2+IH/gD4e/+VVH/Cm/F3/RdviB/wCAPh7/AOVVeq0UwPl/4sfCfxRa+PPgxFL8Z/HF49z4tuIopprPQg1qw0LVn8yPZpigsVRo8OHXbI52hgrL6X/wpvxd/wBF2+IH/gD4e/8AlVR8ZP8AkovwJ/7HO5/9R7Wa9VoA8q/4U34u/wCi7fED/wAAfD3/AMqqP+FN+Lv+i7fED/wB8Pf/ACqr1WigD5l8c6x/wrvWLzTdY+OnxhkuLO2W7uX0nwRY6nBBEwYhpJrXQZI04RjhmBAGSMYqx4euLrxT4mTQtP8AjZ8ZmvHklhFxceBbO3sg8YbeDdyaAsAwUZeZBlhtGWIFeo+NDd+LPGuk+Ek066OhrF/ams30tufss0SMVis1cjazySAO6gnEcTBgBKpPmWhaYL/4vaVd+D/+FjaTqcOsXVx4ltfEP9pRaMbV1mMkccc/+hOfOMWxrLLH75dlMhaExtWO5/4U34u/6Lt8QP8AwB8Pf/Kqj/hTfi7/AKLt8QP/AAB8Pf8Ayqr1WirEeVf8Kb8Xf9F2+IH/AIA+Hv8A5VUf8Kb8Xf8ARdviB/4A+Hv/AJVV6rRQB5V/wpvxd/0Xb4gf+APh7/5VUf8ACm/F3/RdviB/4A+Hv/lVXqtFAHlX/Cm/F3/RdviB/wCAPh7/AOVVeaaB8KPFEn7SXju0X4z+OI54vCXh6V79bPQvOmVrzWgsbA6YUCoUYqVRWzK+5mAQJ9QV5V4c/wCTp/iH/wBiZ4a/9LtdoAP+FN+Lv+i7fED/AMAfD3/yqo/4U34u/wCi7fED/wAAfD3/AMqq9VooA8q/4U34u/6Lt8QP/AHw9/8AKqj/AIU34u/6Lt8QP/AHw9/8qq9VooA8q/4U34u/6Lt8QP8AwB8Pf/KqqWs/DPxD4f0u61LUfj949tbG1jMs0z2Ph7CKOp/5BP6dTXsVZXifXU8M6FdapLZ3+oQ2oDywaXbNc3GzcAzJEmXk2gltiBnIUhVZiFKbsgPnjStei1nRde1K2+PfxaH9hyQRX+n3Hg3T4NRiaYgQ4spNCW4cOThSkbA4bH3TjpvBPhPXfH+lS6hpnxt+LFrBFMYGTW/C2laVMWCqxIiu9Eidlww+cKVJyAcqQOG8PWuoPeePNY1q++Ivin4e6omlE6nd+GpNN8RRXcM0hdIYbW1trs2yKsHKQblaV2jY/vXX1j9n/S7/AE3TvEUq3niSfwnc36y6BD4ulupNShg8mMS7zef6SqGYSFVnJcDPRCgAtb3Y2O/4U34u/wCi7fED/wAAfD3/AMqqP+FN+Lv+i7fED/wB8Pf/ACqr1WimI8q/4U34u/6Lt8QP/AHw9/8AKqj/AIU34u/6Lt8QP/AHw9/8qq9VooA8q/4U34u/6Lt8QP8AwB8Pf/Kqj/hTfi7/AKLt8QP/AAB8Pf8Ayqr1WigDwr4TeGdR8K/tJfEi01PxZrHjG4fwl4blW+1uKyjmjU3muARgWlvAm0FSclC2WOWIwB7rXlXhz/k6f4h/9iZ4a/8AS7Xa9VoA8K+LN74qsP2kvhvJ4Q0bR9c1I+EvEiyW+t6vLpsKxfbNDy4kjtrgltwQbdgBBJ3DAB6D/hI/jf8A9E8+H/8A4Xl9/wDKajxH/wAnT/Dz/sTPEv8A6XaFXqtAHlP/AAknxuHH/CvPh+PT/ivL7/5TUv8Awkfxv/6J58P/APwvL7/5TV5J+3Rpdl8R9W+EHw1i8OaN4r1/XPEq6jFpusyCGE2dlG1xdB5hDK0KOBHGzIhLB9mCGIr6D+FvgjTvh/4NtNL07wxovg5WLXE+jeHn32NvM5y4iPlRZUnnPlpn+6KmLvcbVjl/+Ej+N/8A0Tz4f/8AheX3/wApqP8AhI/jf/0Tz4f/APheX3/ymr1WiqEfL/xY1/4wv48+DDXfgXwPBcJ4tuGs0h8aXkizS/2FqwKSMdJUxr5ZkbcA53Ki7QGLp6X/AMJH8b/+iefD/wD8Ly+/+U1Hxk/5KL8Cf+xzuf8A1HtZr1WgDyr/AISP43/9E8+H/wD4Xl9/8pqP+Ej+N/8A0Tz4f/8AheX3/wApq9VooA8p/wCEk+N5JA+Hvw/yP+p8vv8A5TUDxJ8bzyPh78PyP+x8vv8A5TV4n+2D4UvNK1bXfEMvh/wd4yvtZ06HTPCket3Eg1rS9SAlAGlQLCxkkdnil3xzW7IYy7PtjDJV+GXhi2Fp8IvG17bWE3xj1PxfeWHiHXIFWK9vSiXyXltKSC7QxRwrtgb5YxDFtC7FIm/f+v8AhupVuh7v/wAJH8b/APonnw//APC8vv8A5TUf8JH8b/8Aonnw/wD/AAvL7/5TV6rRVEnlX/CR/G//AKJ58P8A/wALy+/+U1H/AAkfxv8A+iefD/8A8Ly+/wDlNXqtFAHlX/CR/G//AKJ58P8A/wALy+/+U1H/AAkfxv8A+iefD/8A8Ly+/wDlNXqtFAHlX/CR/G//AKJ58P8A/wALy+/+U1eaaBr/AMYR+0l46kj8C+B21JvCXh5Z7dvGl4IUiF5rXlusn9kkszMZQylFChEIZ95CfUFeVeHP+Tp/iH/2Jnhr/wBLtdoAP+Ej+N//AETz4f8A/heX3/ymo/4SP43/APRPPh//AOF5ff8Aymr1WigDyr/hI/jf/wBE8+H/AP4Xl9/8pqP+Ej+N/wD0Tz4f/wDheX3/AMpq9VooA8q/4SP43/8ARPPh/wD+F5ff/Kaj/hJPjf8A9E8+H/8A4Xl9/wDKavVayvE8GnXmiXFpq0yQ6fd7bSTfcGDeZGCLGHUgguzKoAOSWAHWk3ZXA8+PiT43Dr8Pfh+P+58vv/lNR/wknxvHJ+Hvw/x/2Pl9/wDKavn6w+FeoRa18S/BeneAPBvgmJW0TxHc6Bpuqs3hfUbJJJUmtbrbZxG3klWBy58h0dFiDK6o+70z9jM3Vzo3ji7s9E0Pw74IuNaB8P6f4ZZn0nYsEa3EtlIUjEkDzKxDpFEjN5jKp3F3I+9dg9Dtv+Ej+N//AETz4f8A/heX3/ymo/4SP43/APRPPh//AOF5ff8Aymr1WimB5V/wkfxv/wCiefD/AP8AC8vv/lNR/wAJH8b/APonnw//APC8vv8A5TV6rRQB5V/wkfxv/wCiefD/AP8AC8vv/lNR/wAJH8b/APonnw//APC8vv8A5TV6rRQB4V8Jr3xVf/tJfEiTxfo2j6HqQ8JeG1jt9E1eXUoWi+2a5hzJJbW5Dbi427CAADuOSB7rXlXhz/k6f4h/9iZ4a/8AS7Xa9VoA8U+KniJPA3x9+H/iS/0rxBe6LH4Z8QafLc6F4fvtW8meW60eSJJFtIZWTctvMQWAB8tuc1rf8NLeEf8AoEfED/w3HiH/AOQa9VooA+fNc8b/AAW8T+LLHxRrPwy17VvE1i0TWmtX3wj1qa8tzG2+MxzNpxdNjfMuCMHkYNdd/wANLeEf+gR8QP8Aw3HiH/5Br1WigDyr/hpbwj/0CPiB/wCG48Q//INH/DS3hH/oEfED/wANx4h/+Qa9VooA+aviX8bdF8QeNPhPf2Hh74gXFpofiafUNQk/4V5r6+RA2janbB8GyBb99cwrhcn584wCR6B/w0t4R/6BHxA/8Nx4h/8AkGvVaKAPKv8Ahpbwj/0CPiB/4bjxD/8AINH/AA0t4R/6BHxA/wDDceIf/kGvVaKAPFj8bPhufE48SHwh4xPiIWZ08av/AMKv177WLYuJDB532Df5e8BtmcZGcZqhp3xN+Eej+ML/AMWWHw/8TWPirUIvIvNctvhRrkd9cx/J8kk408O6/u4+CSPkX0Fe8UUrAeVf8NLeEf8AoEfED/w3HiH/AOQaP+GlvCP/AECPiB/4bjxD/wDINeq0UwPKv+GlvCP/AECPiB/4bjxD/wDINH/DS3hH/oEfED/w3HiH/wCQa9VooA8q/wCGlvCP/QI+IH/huPEP/wAg0f8ADS3hH/oEfED/AMNx4h/+Qa9VooA8q/4aW8I/9Aj4gf8AhuPEP/yDXn+i/G3RbT4++MvEkvh74gJouoeGdD0+2uf+Fea+fMnt7rVpJk2iy3Dat1AckAHfwSQ2PpWigDyr/hpbwj/0CPiB/wCG48Q//INH/DS3hH/oEfED/wANx4h/+Qa9VooA8q/4aW8I/wDQI+IH/huPEP8A8g0f8NLeEf8AoEfED/w3HiH/AOQa9VooA8q/4aW8I/8AQI+IH/huPEP/AMg1S1r4+eAfEek3mlat4Z8bappd5E0FzZXvwy1+aGeNhhkdGsCrKQSCCMGvYqKAPnm08ZfBKw8F3Xg+1+F+uW3hK7fzbjQYfhFrK2Ez5VtzwDTtjHKKcleqj0Fdj/w0t4RH/MH+IH/huPEP/wAg16rRSsB5V/w0t4R/6BHxA/8ADceIf/kGj/hpbwj/ANAj4gf+G48Q/wDyDXqtFMDyr/hpbwj/ANAj4gf+G48Q/wDyDR/w0t4R/wCgR8QP/DceIf8A5Br1WigDyr/hpbwj/wBAj4gf+G48Q/8AyDR/w0t4R/6BHxA/8Nx4h/8AkGvVaKAPFPhX4iTxz8ffiB4ksNK8QWWiyeGdA0+K513w/faT508V1rEkqRrdwxM+1biEkqCB5i85r2uiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/2Q==)
The data in the table was used to estimate the following consumption function:
C = 20 + 0.2
Y
Refer to Table 36.3. The error for point
D is equal to
◦ -2.
◦ -1.
◦ +1.
◦ +2.
Question 2
Refer to the information provided in Table 36.3 below to answer the question(s) that follow.
![](data:image/png;base64, /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCACxAR0DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9U6KKKACiiigAooooAKKKKACiiigAooooAKKKwPGvg608c6N/Zt9e6tZWvmCV20bVLjTZ3wDhfPt3SVVyQSFcZ2gHIyCAb9FfHX7I8dtpvgPxt8QfE/i7xVdyeGfFOv2Sy654xvprMWNvLJHHHJHd3Jt8KuMSPggqCX654vx3+1nr/wASdd0C203Q9V8Pa/4Z8eeHLY22j6zf29trllqAnKoy3NvZl42+zkHzInTA3IzKcmVJSty9f1HaybfS/wCB980V8aePfjl4g8c6p4PgurG/8C+KPDHxY0vwxq1no2vzT2N7BMglPzosInikjeM7JYgV5GBk57zwv+19d+MvjAPC+jfDvXNQ8MLrdzoE/iO3tL5hazQhg00uLP7KIDIoQMLsyDepaJeQHezs/wCtv8xPT+vNr9D6Por5d/bbj1Twp4T/AOE30u58eW02lvaz3OqeGtb8ix0azguUkuJp7H7TELvfE0g2GOUnZgmMcng/Hn7ROsX/AMTvE3iC/wBOvb34YeEPEOi6JGNJ8VXOjzJJdrbyfbHghQNeDN1GpgmlSMKgwjszlWveV1/W1vvbE2lufb1FfL37bcWp+EvCX/CcaXcePYJNMe2nuNT8Na55Fjo1pBcpJcTT2JuYlu98TSDYY5SQmCYxyfpnT7+DVLC2vbV/NtrmJZonwRuRgCpweRwR1oWquHWxYooooGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcp46+LHgj4X/Yf+Ey8ZeH/AAl9u3/ZP7d1SCy+0bNu/wAvzXXdt3pnGcblz1Fcr/w1j8EP+iyfD/8A8Kix/wDjtHiP/k6f4ef9iZ4l/wDS7Qq8s/aK/aF8a/Cf40aZ4ct/FfgPwr4Vv/D95rP9p+KtJnk+zSW7wxiJpVv4VbzXmULhQQcAByRUt2aQ0r3Z6n/w1j8EP+iyfD//AMKix/8AjtH/AA1j8EP+iyfD/wD8Kix/+O1yXgv9rXSbD4V+DdX+Jttd+GvGWqaB/bmo6DpOjX+oS2cCHa91JDBDJJbwE4IabAGSu5ijGtHwP+0xoninVfiZqy69pup+B/DFpYXsEukaXqEl7HBNbtK8soMW2dGC7ozbBxsBLc4qpe7e/QS1Nz/hrH4If9Fk+H//AIVFj/8AHaP+Gsfgh/0WT4f/APhUWP8A8drzT4jf8FBPh14a8FjWvCgv/GV88en3cGnDTNQsxcWV1cJCLqOR7Vg6KWYHaG+dfLOHIFfSuk6nDrWl2eoW6XEcF3Ck8aXdtJbTKrKGAeKRVeNsHlHUMpyCAQRQtdRX1sea/wDDWPwQ/wCiyfD/AP8ACosf/jtH/DWPwQ/6LJ8P/wDwqLH/AOO0fGT/AJKL8Cf+xzuf/Ue1muZ+NH7Sd58Jfi/4C0FtIin8H6lfwad4h1yQnOmy3glTTwvIXDzQt5jHOxShIG9SV1S7j8zpv+Gsfgh/0WT4f/8AhUWP/wAdo/4ax+CH/RZPh/8A+FRY/wDx2tD4j/tA+CPhRqo03xDf6gL8WEmqS22laLe6m9vZo21riYWsMphizkb5NoJVsE7TjkL/APba+EGm6RJqk2u6w2nQ2ltfXN1B4V1aWO0huM/Z2uClqfIMowyLLtLKyMAVdSWtdg8jf/4ax+CH/RZPh/8A+FRY/wDx2j/hrH4If9Fk+H//AIVFj/8AHah8FftX/Crx/rmt6LpXitYdY0O2uLzVdP1ewutMn0+CDyvOlnS6ijaJF8+P5nAB+bGdj7YB+1x8LhBcNJreoQXMUlrGmnT6BqMd9dG5Zxbm2tWtxNcrJ5cm1oUdSEY5wCaV9kHS5d/4ax+CH/RZPh//AOFRY/8Ax2obr9qj4HXltLA/xm8BKkilGMXiuzRsEYOGWYFT7ggiqtr+118M73Qda1iC+1+Sy0W5ktNRH/CJauJrWSNd02+E2vmbYht8xtu2PfGHKl0zT0/9qzw/e/GmbwU1nNBoH/CLQeKoPFkkVytk1vIHcl3MAiihEabvOeUKWzHjcCKTa2YzivC+s/smeDvAvinwbp3xM8Fv4a8T+edWsNQ+IP25bhpgwmcNPduyM+4lmQqScEnIBHNt4V/Yye5luW+JPhpryWSzme8PxUuftDS2hb7JIZft+8vCHYRvncinapCgCvpD4e/G3wf8UdT1DTvD+oXb6jYQQ3U1nqOl3enzGCUsIp0S5ijMkTlHAkQMhx1ruqrzF0sfLms+IP2UNf0bQdKu/ih4NFpomojV7Q23xC+zzNfAgi6mmju1kuJsjPmTM7EkknJObGg+L/2WvC3jzU/GGjfFfwlpGs6netqN/HYfEUwWN3csgRppbJLwW0jlQMlozkjcfm5r6aIyCPWlpWsD1PmvxP48/Zf8Z+KJNd1n4reDb24mSKO4sj4/VNPuxGSU+0WS3Qt58Z/5aRt0HoMV/Enir9lDxd40fxVqvxG8BXGrym3e4VPG0UVpdvBn7PLcWqXIgnli3fJJKjOm1NpGxNv05XlPh04/al+Ih9PBnhr/ANLteo2Dc8h0Rf2QPDttY2en/EfwdBpVpCluukH4is+nTxq7OouLRrww3GGdjmZHPQdFGPX/APhrH4If9Fk+H/8A4VFj/wDHa5j4aftK3PjH9ovxd8OdU0qPTNOjsf7R8LagAwbVYYJ3tr5mLHHyTquwKPmTL5Iwa29f/a0+GfhrXZtIu9U1ia5i1VdCabT/AAzql7anUDj/AERbiC2eJ5snBjVywIIIBBAfZ99Qso6di5/w1j8EP+iyfD//AMKix/8AjtH/AA1j8EP+iyfD/wD8Kix/+O1g3P7a3wltWtv+JvrtzDdm5FpdWXhHWLm2vBb7vPe3mjtGjnRArEvGzKAM5xzW34e/ap+Fvi/wIfGOg+K49a0H7dHpiSafZ3E88928Mc620NusZmlm8uVWMaIzLhwQCjhVfqC1dh//AA1j8EP+iyfD/wD8Kix/+O0f8NY/BD/osnw//wDCosf/AI7WZc/thfCm2sYrtNd1G+VrW5vZoNO8PaleXFlDbymGd7uCG3aS1CSK6Hz1TlG/unGpYftO/DvUn8K+TqeprD4nkhh0u6n8P6jDbyyzZMMUkzwBIZJFwyJKyMyOjgFXUkuFxv8Aw1j8EM/8lk+H/wD4VFj/APHaX/hrH4If9Fk+H/8A4VFj/wDHa5n4Z/tf+GfG3hfxLrWr6fqXhtNI8QTaBBbvpt9PNqMiuyxi3j+zK80zCN2aCFZHjC5bFes+AfiDoHxP8Nxa94bvjf6a8stuWkgkt5YpYnaOWKSKVVkjdXVlKOoYEcihNPYDjP8AhrH4If8ARZPh/wD+FRY//HaP+Gsfgh/0WT4f/wDhUWP/AMdr1WimB5V/w1j8EP8Aosnw/wD/AAqLH/47R/w1j8EP+iyfD/8A8Kix/wDjteq0UAeVf8NY/BD/AKLJ8P8A/wAKix/+O0f8NY/BD/osnw//APCosf8A47XqtFAHKeBfix4H+KH27/hDfGXh/wAW/Ydn2v8AsLVIL37Pv3bPM8p227tj4zjO1sdDXV15V4c/5On+If8A2Jnhr/0u12vVaAPKvEf/ACdP8PP+xM8S/wDpdoVUPEvwP8Qa5+0j4X+J8HivTbTTtC0240tdDk0WSSWaK4KNMTci6UBt0a7T5RAGchsgi/4j/wCTp/h5/wBiZ4l/9LtCr1WlbVPsHkeF/Ej9nnX9e+K+oePvBnjKw8Mapq3htvDOqW+r6G2qwTQiUyRTRhbmAxypvkXkujBhlMjJ5b4Yfsb33wj0v4h6T4f8Y2X9leJtBstCsY77RZJZ7FbW2NtFLLIt0qzsyO7OFSIFmBXYo219O0VPIrOPR/1+o7s+OfEP7Aur63oHg/T4/iJp1rP4f8KWPhjzU8MtsuBaXsd1DPsF4NhJiRXXJ3ZcgpkBfrzS472HTLRNSuILvUFhRbme1gaCKSUAb2SNncopOSFLsQMDc3U2qK0cm1ZshRSd1/XQ8p+Moz8RPgSP+pzuf/Ue1mvMPiL+xLH8WfB3ju38U33g7UfHHiO7M1n4zbwd/pukwYRUiiY3ZkJjVAEZZEA6sj5bd6f8ZTj4ifAo+njO5/8AUe1mua8DftQ/bvFPxNsvHtj4c+HugeCNTh0mTXrzxMGiuppY1lj4lt4VjBjkTq5O4lQDjdUO1/68i72R84ftP2/ifTPHmgaBf+PfhzY65YeFobPVNX+Ilzf+FrTxBE8soxBcWd4JboDb+/tZnaJTKjhSZSE8jvPHfxB8TXVzruo2Xwh8HeJIra0S6+HniqTVdGk1ZrZA1k1nptvcKNUhkjEIhW5jZ1kVoVUBAW/T/QPif4N8V2er3mh+LNC1m10h2j1KfT9ShnSyZQSyzMjERkAEkNjABrNk+O3w0g8IReLJPiF4Uj8LTXP2OPXG1u2Fk8+CfKE+/YXwrHbnPB44oStf+upV/I8k+Df7Pfie++DvxB034j6zYvd/E7drOpWGjaU9hLo93dWkcVxAJHuJvOEflxhSyg5Rt24MFXw/4r/AGf8AZ2+Enh7TY7/4X6fq8+o2Vpb+Mf8AhCv+Ebt4ngimbzdT1K3vDLbGTG1Li3EbiVlUECUsv2De/tFfCjTI0kvPid4NtUktE1BHm1+0QNbOwVJwTJzGzFVD9CSADzWzp3xU8E6zca1BYeL9Avp9DiE+qx2+pwSNp8ZUsHnAYmJSoJy+BgE0WS1jpt+BN3sfBnwk+Anjz9o6w1nStc134eReCdHM0NveeHLW+8SaL4hur1C1xe+deXeZ761ICrdOZQjyOmCYyK960H9i6+0+3tbG/wDGtpe6dN4Bi8AauINEeGe6toVlW3nt5DdMIJF3oWDrMrFWwE34X6E8J/EDwv490Nta8M+JNI8R6OrtG2oaRfRXVuHUAspkjYrkAjIzxmvLvFH7RGqW/wAAtR+LHhHwlB4t0a286+gtP7Ue2mvdLi3bruP/AEd/nYIXSE4zGQS6sdgU0nv5f5fqx7v+v66B+zT+zifgBpr2048D3lz9igsjqvhnwWmhX10I85e7kS4lWYtweFQA5POePcK8ek/aU0V5vD+o2lobjwZqUtjZz+IZJwi213ehDaQiPad/34xIxZRGZ4QPMzL5XsNaNNashNPYKKKKQwrxDUdN1jWPj38WLHQNVh0LWbnwJ4citdSntDdJaub3XgJPKDpvI6gbhzjr0Pt9eIal4w0v4ffHj4ueJtbuRZ6PpHgHw/fXc5GdkUd3r7scDknAOAOSeKmVuV32GtXocTc/sRxaRrnwu8Q+CtQ8H+BfFHhCXz9S1fSvBxSXXWMXlSJMUvEcRurOWDtKxYht45DfMvjbxv420X4seKPEfgb/AIVj4j1Kz8T3Nzp3w51+61K28SNeLMYjKmiW9x9lkmI3TJeNGZGiYTOy8hfuD4dfFT4ieOU8P6zd/DK00fwfrhMsEz+Ilk1a1tnVmgmubP7OsSbgE3JHcyunmAYYhsdE/wAevhja6rq+lSfEbwlHqWjpLJqVk+uWomsljOJWmTzMxhDwxYDHfFTLV/15Arbs/Of4fjx94g1zRNJ8H6t8JNfXxBLLpS6aJdSuvEHhWwvNwu55dEW7+x6bJFGSkywiNN+I9zbxu+xPGP7IVz44/Z7+HXw61TxPpdzqXgmaxktdQuPDiz6ZeLaqYkjudNknZXVoDtbEg+bLLsB2V7D4X+L/AIB8ZTXsHh3xv4c12WytkvLqPTNWt7loIGUMssgRztQqQQxwCCCDVPTPj78Mdat9NuNP+I3hK/t9Tv8A+yrGW11y1kW6vMIfs0RVyHlxJH+7XLfOvHIzVlbb+umo7tu6Phv4+eC7n4d+N9N8LaVq3wX8AzW+iH7d/btre+B9G1eKe4lPl2r2V6ZLoIExPbTO0Q8yNwpMpCdb8OP2T/iB8aNI8KfErxdrnhzwr4lXVNP13T9IfwpPcHREspAILK1klu0kt7KVI1ma3VI2Dy8sQCG+uT8dfhqunW+on4heFRYXN+2lw3Z1q28qW8XGbZX34MoyPkB3cjio7D4//C/VX09bL4keEbttRSWWzWDXbVzdJFu81o8SfOE2PuK527TnGDTXdEtniHin9iC68V+F9Y0K68YaRcWh8aP4z0iPUfCyXcMEkssj3FreQvceXdwssgRdqwMm3OWPT3r4R/D2P4Y+C7fQ0svDNiySySyR+EdB/sawJY5ytt50u1sYBbeckZ46DK079pH4Ua28kek/EvwjrNyltLefZdO160nlaGJWaSQKshJVVRiT0AU5Iwa4vwt+2D4T+I3gb4feKPB0mm38Xi3W4dIOmarr1lY3tlu/1uY/McSTxq0TfZkJkYSp0zUxSirL+ug3rqe+UVxuofGf4f6T4uPhS+8deGrLxQACdEuNXt470Ap5gPkFw/3Pm6fd56VH4W+N/wAOvHOq2umeG/H3hfxBqV1A9zBZ6XrNtczTRKxVpERHJZQysCwGAVI7VYjtqK4fWfivpulePf8AhF/3Rms9Kl1zWLqaYxx6fZglI3J2kMzur4XK4WKRiRhFfi7b4yfEXxVpek+I/B/w007VPB+qzWws7nV/EcljqL20sioLs2qWcyrFtbzQDMJPL5ZEbKCVJS2Hse2UVyvw0+Imm/FHwjb+INLLJBJLNazW8uPMtriGV4Z4XxxuSSN1yODjI4IrqqoR5V4c/wCTp/iH/wBiZ4a/9Ltdr1WvKvDn/J0/xD/7Ezw1/wCl2u16rQB5V4j/AOTp/h5/2JniX/0u0KvVa8K+LPhnUfFX7SXw3tNM8Wax4OuE8JeJJWvtEispJpFF5oYMZF3bzptJYHIQNlRhgMg9B/wpvxd/0Xb4gf8AgD4e/wDlVQB6rRXkOo/CvxNpNhcXt38e/HsFrbxtLLK9l4eCoiglmJ/sroACayfAfhXUfid4O0nxV4Z/aF8f6noGrQLc2d2NM0GPzYz0O19IVl+jAEelAHulFeVf8Kb8Xf8ARdviB/4A+Hv/AJVUf8Kb8Xf9F2+IH/gD4e/+VVACfGXn4i/Aodv+Ezuf/Ue1mvBvG/7L/wAWvGPg79ovRPs/gu2b4l30Fzps39uXh+yJHHFCRMPsXXZCHG3PzMVzgBq6/wCK/wAKPFFr49+DEUvxn8cXb3Pi24iimms9CDWrDQtWfzI9mmKCxVGjw4ddsjnaGCsvpf8Awpvxd/0Xb4gf+APh7/5VULR3QdU+x4j47/ZM8f8Aiab4pvos3hbw8vieDw1eabCby5uIYbzShGfslwggj3WzlNvmqd+1QTHk4XtvGHwm+JPiH4i/Dn4mWei+D7TxL4ZbVILvwzJrty1hcRXcKILiO8FiHScGNQc27BkJXcODXcf8Kb8Xf9F2+IH/AIA+Hv8A5VUf8Kb8Xf8ARdviB/4A+Hv/AJVUmrh5nzPoH7EnxC8IS3X2O18Faql74Q13RmW41S5t0sb3VbpriT7Ogs5P3EIPkhiQ0ilmKx7vLqPxn+w18RPFPhjTtLsbjwp4dktvh/pnhkmx1S7VDf2F8l2jny7aNjDKY1VmDJIhbcA5UZ9x8QadP4X8X6F4X1L9on4gQ69rcnlWNnHpOhSlm2SON7Jo5WIMsMu0yFQ3luFJKkCnpSX2teMX8M2nxs+Mbagk81s1zJ4JsY9PDxbt4+3NoItsAowB8zBYBQSSAVbZ9v8Ag/5jkm9/62/yOq+B/wAIJvBmg+Jk1nQLbRNY12ZGv57TxfqXiNrzbAsSyNcX8aSIQo2hBuAVV+Y9Bl+APhr4y+HX7MEXw60Wy0278RaLYy6Jp9zrF4YLO7iAKxXLNFHK4GxgWjKA71dfu7XPQ/8ACm/F3/RdviB/4A+Hv/lVR/wpvxd/0Xb4gf8AgD4e/wDlVQ1zKzYLR3R5f4Y/Zf1m1/Zp+Fnwg1Ox03TI9Dv7C61e80a8a4tmFpcrdO6GSKJ/MuZVzjyyE3uS7FV3/UteVf8ACm/F3/RdviB/4A+Hv/lVR/wpvxd/0Xb4gf8AgD4e/wDlVWjk5Nt97kpJHqtFeVf8Kb8Xf9F2+IH/AIA+Hv8A5VUf8Kb8Xf8ARdviB/4A+Hv/AJVVIz1WvAfF/wAPdO+LHxh+M/g3VjImna58PNA0+d4Th0WS719dy/7S5yM8ZArqf+FN+Lv+i7fED/wB8Pf/ACqrzTQPhP4of9pLx1aL8Z/HEc8XhLw9K98tnoRmmVrzWgsbA6YUCoUYrtRWJlfczAIEmSTVmNOzujr/AIR+FfjJ4T8L6N4J8US+EtR0jS4fsA8XadfXUd/dWsY2QsbA24jimZAoZhcuqtlgrD5a8SsP2NviNB4B8B+Dp/8AhD2tfh2mrto2tW+pXKXOsPcxTwwrcRG0ItAVuBLMyPcFniCqMPuX6J/4U34u/wCi7fED/wAAfD3/AMqqP+FN+Lv+i7fED/wB8Pf/ACqpyXNe/UE+XRHguh/se+MNM0XRtNutG8H3tgnwsbwDqWnjW7yKOa4E3mCVZUtA/lyYyx+VkMrYD7fmt6L+yv8AFTR/hpptlP4nt/EniHSvG2m+KrO28V69LqReK22iSKXVFsYpmdwCFZrd/LVUQbl6e3/8Kb8Xf9F2+IH/AIA+Hv8A5VUf8Kb8Xf8ARdviB/4A+Hv/AJVU3re/9a3F/X4W/I8H1X9l74sap4ZudKvbfwNqxl+KEXj1vO1O6ihmtRKsr2jRmzkw2V2BssCDuOCNpW1/ZU+IkGonUzpPgeLUB8WR8QfMj1e43PaGJ0aBn+wg+aCwI4Knc3K4593/AOFN+Lv+i7fED/wB8Pf/ACqqnq/wh1+20q9m1T48+OItNjhdrp7uy8OCFYgp3ly2lYC7c5zxjOamyWv9aW/yQPVWf9b/AObPm/8AZD+CV98T/hR4E1PUrPSdI0Pw34p1/WbG+s7uWfUNRunu762ImjMUaW6JkcLJL5gjTIj6V2mk/s4fFTSvgf8AB7wV9n8Hzaj4C8U2Wqy3P9t3Sw3tpbMzgqPsRMcrmR1KHcqhFO99xC2/h54M8H+Bvhfd694I+MfjDwz4QOoywSWui+ENCsXmvlkFsyLZpoayyTl0WMKsZZ9qhd3Fdz4E8Oan8R9Kn1DQ/j78SXjtrhrS4gv9C0WxuraZQrGOW3uNGSWNtrowDqMq6sMhgTT3f3g7OTfVnmNx+yP48nh1fwlJJ4YuPCF18RD4+h8RyX9wusLiVLkW7W/2Yx+YZEMH2jzvliYN5TFdhf8ABX9lDx58N7r4PXt/aeEjeeEtc8RX2qtZarcv9oh1PO2SJmtF3SRq2wowVWESHeN2F9v/AOFN+Lv+i7fED/wB8Pf/ACqo/wCFN+Lv+i7fED/wB8Pf/KqhXSsiuZ/1/Xmc78QvgFceLPib4x1JJJV0nxz4NfwpqF1Ay+ZpzoZmin2ll3ownkUhcncEyCrMUv8Awi0n4u+C/Cnh7w34k03wjJp3h/T0tX1LRdQubm71ZIY/LjRLWWGCO1dwFYu08qqVK7SH3x6f/Cm/F3/RdviB/wCAPh7/AOVVH/CmvF3/AEXb4gf+APh7/wCVVTFcqsv6/q7E3fV/1/Vif9nv4VzfCX4dvpF7KsuqX+qX+t33lNujjnu7mSdo0PdUDhM99ueM4r06vKv+FN+Lv+i7fED/AMAfD3/yqo/4U34u/wCi7fED/wAAfD3/AMqqrV6sQeHP+Tp/iH/2Jnhr/wBLtdr1WvCvhN4Z1Hwr+0l8SLTU/FmseMbh/CXhuVb7W4rKOaNTea4BGBaW8CbQVJyULZY5YjAHutAHlXiP/k6f4ef9iZ4l/wDS7Qq9Vrwr4s3viqw/aS+G8nhDRtH1zUj4S8SLJb63q8umwrF9s0PLiSO2uCW3BBt2AEEncMAHoP8AhI/jf/0Tz4f/APheX3/ymoAxvjbqviHxf4s0f4e+GzNpPmodV1HWNU8KX2qaTLFCwZLNpInhj3yMCxUzDKxlCp80A87+wQdY0j4Fnwrrul6vpt94e1nUrWKTVdDu9LF3aveTSwTRR3Cg7GSQYAZioADHPXuj4k+N4/5p78P/APwvL7/5TUv/AAkfxv8A+iefD/8A8Ly+/wDlNSWl0Gp6rRXlX/CR/G//AKJ58P8A/wALy+/+U1H/AAkfxv8A+iefD/8A8Ly+/wDlNTAPjJ/yUX4E/wDY53P/AKj2s16rXy/8WNf+ML+PPgw134F8DwXCeLbhrNIfGl5Is0v9hasCkjHSVMa+WZG3AOdyou0Bi6el/wDCR/G//onnw/8A/C8vv/lNQB6rRXlX/CR/G/8A6J58P/8AwvL7/wCU1H/CR/G//onnw/8A/C8vv/lNQBhftE+IF0zxn8I1Gj+INTWy8ULqN1Lo/h++1GO3txY3kJeR7eF1T95PEMMQcMTjarEYPh/SFvPi5pV34OPxG0nU4dau7nxNa+ITqcWjG1kE5kjjjn/0Jz5zRbGsstxuLMpct3X/AAknxvJI/wCFe/D/AI/6ny+/+U1H/CSfG8j/AJJ78P8A/wALy+/+U1LXRN7X/T/IHr/Xr/merUV5V/wkfxv/AOiefD//AMLy+/8AlNR/wkfxv/6J58P/APwvL7/5TUwPVaK8q/4SP43/APRPPh//AOF5ff8Aymo/4SP43/8ARPPh/wD+F5ff/KagD1WivKv+Ej+N/wD0Tz4f/wDheX3/AMpqP+Ej+N//AETz4f8A/heX3/ymoA9Vryrw5/ydP8Q/+xM8Nf8ApdrtH/CR/G//AKJ58P8A/wALy+/+U1eaaBr/AMYR+0l46kj8C+B21JvCXh5Z7dvGl4IUiF5rXlusn9kkszMZQylFChEIZ95CAH1BRXlX/CR/G/8A6J58P/8AwvL7/wCU1H/CR/G//onnw/8A/C8vv/lNQB6rRXlX/CR/G/8A6J58P/8AwvL7/wCU1H/CR/G//onnw/8A/C8vv/lNQB6rUN5cLaWsszq7JGpciONnYgc8KoJJ9gMntXmH/CR/G/8A6J58P/8AwvL7/wCU1IfEnxuA5+Hvw/8A/C8vv/lNSew0eTeChpvif4LeM59W0/x9oM2l+M9R8Q2E9h4VvodVQyalLPaTWtvcWjeeWR13L5UiqrkSBecek/s3fDzxN4Tt/F2v+MLzVrjXPE2prdLBrN1bz3VvaxQpDCs32ZVtllIVnZbceWNwALEF2vnxJ8bkH/JPPh+B/wBj5ff/ACmpR4i+N64H/CvPh+B/2Pl9/wDKakrr7l+n+QPX7z1aivKv+Ej+N/8A0Tz4f/8AheX3/wApqP8AhI/jf/0Tz4f/APheX3/ymqhHqtFeVf8ACR/G/wD6J58P/wDwvL7/AOU1H/CR/G//AKJ58P8A/wALy+/+U1AHqtFeVf8ACR/G/wD6J58P/wDwvL7/AOU1H/CR/G//AKJ58P8A/wALy+/+U1AB4c/5On+If/YmeGv/AEu12vVa8K+E174qv/2kviRJ4v0bR9D1IeEvDax2+iavLqULRfbNcw5kktrchtxcbdhAAB3HJA91oA8q8R/8nT/Dz/sTPEv/AKXaFXqteFfFnxxp3gD9pL4b6hqdtrF1by+EvEluqaJol7qswY3mhsCYrSKV1XCn5yoUHAJywB6D/hpbwj/0CPiB/wCG48Q//INAHlX7dXhyL4lXHwi+H9v4b0fxVrOs+KY75LDWXEUJs7KNrm6Dz+TK0KOqxxMyISRKFwd2Ku/sO6JpWl2/xbk03RrbwtP/AMJnc2V74e0TadDsZ7eKKH/QWVEEgZVTzHMcTeYrKY12Atq+NvFvwP8AiXfwX3i/4W614rvYI/Jhudb+EOs3kkceSditLpzELkk4HGSa6PQPjr8PPCejWmkaJ4V8aaNpNonl21hp/wAMdfgghT+6kaWAVR7AUR0vfr/wP8getj2WivKv+GlvCP8A0CPiB/4bjxD/APINH/DS3hH/AKBHxA/8Nx4h/wDkGgA+Mn/JRfgT/wBjnc/+o9rNeq18v/Fj9oPwvf8Ajz4MTxaV44VLLxbcXEom8A67EzKdC1aPEavZAytukU7EDMFDvjajMPS/+GlvCP8A0CPiB/4bjxD/APINAHqtFeVf8NLeEf8AoEfED/w3HiH/AOQaP+GlvCP/AECPiB/4bjxD/wDINAHnP7YngrTNb8F654ptPBnhrxfqPh+AzXupX+tGz1TRVg8u4A05zbzCG5dDuHzQ8mJm3ggVyXw60jQNbT4U/EjSNLt7f4j654zv4dX1J1WPU5osXy3VnctyzJDHGqiFsrGYI9u0qpHpmsfEX4PeIvFun+KdV+HXiPU/E+nKqWWtXnwm1uW9tVVmZRHM2nF0AZ2ICkYLE9zUmnfE34R6P4wv/Flh8P8AxNY+KtQi8i81y2+FGuR31zH8nySTjTw7r+7j4JI+RfQVHLb+v63Drc94oryr/hpbwj/0CPiB/wCG48Q//INH/DS3hH/oEfED/wANx4h/+QasD1WivKv+GlvCP/QI+IH/AIbjxD/8g0f8NLeEf+gR8QP/AA3HiH/5BoA9Voryr/hpbwj/ANAj4gf+G48Q/wDyDR/w0t4R/wCgR8QP/DceIf8A5BoA9Vryrw5/ydP8Q/8AsTPDX/pdrtH/AA0t4R/6BHxA/wDDceIf/kGvNNA/aD8LxftJeOtQbSvHBt5/CXh63RF8A660waO81pmLRCy3opEq7XZQrEOFJKOFAPqCivKv+GlvCP8A0CPiB/4bjxD/APINH/DS3hH/AKBHxA/8Nx4h/wDkGgD1WivKv+GlvCP/AECPiB/4bjxD/wDINH/DS3hH/oEfED/w3HiH/wCQaAPVay/E9jpep+H7+21vyzo8kLfbPPlMcZiAy4dsj5MA7snBGQeCRXn3/DS3hH/oEfED/wANx4h/+QazPEnxv+HPjLRLrRtf8JeMtc0i7ULcafqXww164t5gCCA8b2BVhkA8jsKT2GjD8D/CHwva+HPFyad4d0rTvCHi2eJ9D8CXwOm6ddSQ27Es9sEIiW58su8IifMcQd4y7SItn9kmwPhnTPiB4WPhWy8IPo/iaYtp2h3/ANs0iLz4IZwlm3kwmNVEg3xGNcSM7AAOAMCxuP2eNM0jUtKs/gve2ml6n5YvrKD4MaskN35bbo/NQabtfa3zLuBweRXZ+HPjj8OvB+iWmjaD4T8ZaJpFopS30/Tvhhr1vbwqSSQkaWAVRkk4A6k0K66iep7PRXlX/DS3hH/oEfED/wANx4h/+QaP+GlvCP8A0CPiB/4bjxD/APINMD1WivKv+GlvCP8A0CPiB/4bjxD/APINH/DS3hH/AKBHxA/8Nx4h/wDkGgD1WivKv+GlvCP/AECPiB/4bjxD/wDINH/DS3hH/oEfED/w3HiH/wCQaADw5/ydP8Q/+xM8Nf8Apdrteq14V8JvHGneP/2kviRqGmW2sWtvF4S8N27JreiXulTFhea4xIiu4onZcMPnClScgHKkD3WgDyrxH/ydP8PP+xM8S/8ApdoVeq15V4j/AOTp/h5/2JniX/0u0KvVaAPJ/i98TL3SvGfgf4d+H76DTPE/jCa6KX88Qm+xWdtF5lzMkZIDS/NGkYYFAz7mV1Qo2/8AD7wV4q8I61rTa38QNV8b6Rcw232GPWbSxhntJVMvnndaW0CsrhocbgSCh6Z5p/Fb4JaZ8VdT8Maw2s6z4X8SeGrmS40rXNBmiS5t/MTZNGVmjlieORQoZXjYHaOldJ4K8Iy+EdOlhu/EOs+KL+eTzbjU9amjMshxtUCKFI4IgFCrthiQHG5gzszskNnQ0UUUxHlXxk/5KL8Cf+xzuf8A1HtZr1WvKvjJ/wAlF+BP/Y53P/qPazXqtABRRRQB5L8dvHeveHYNFs/DN0ljcvreiRaldyQCQx2dzqlvaskYYFPMkEkgBOdqo5wDtNcroni7xLpHxotofE2o/Eiw0XUdYvbHTUvLHQz4fuWHneTEGhiOoRgom5HmKB2QDewdQ+38ef2SvAf7QVxZ3muWdvp2qwSRO+rWejaXc3k6xOHjieW8tJz5YYcouAwLK25WZT0HhP4KR+HNV0251Dxj4j8VWelMZNJ0zWjZ/Z9PfY0YdDBbRSSERu6DznkwGyBkAiIq17jb00PSaKKKsQUUUUAFFFFABXlXhz/k6f4h/wDYmeGv/S7Xa9Vryrw5/wAnT/EP/sTPDX/pdrtAHqtFFFABRRRQAVn69ZXmoaRdW2n6idJvJYykd8sSytATxvVW+UsBnG4EZxkMMg6FYvjDw9P4r8NahpNvrepeHJruIxLqekGIXVvnq0ZljkQNjIyVOM5GDghPYa3PKvCuifEDW18Y+Hm+JWqvpVlqNtHpnjJdP046k+1R9ttdothavsddglEHyl5EILxE10/wOt9cfw9fanqvjDVvGGn6hdGXSLrWILKKUWYVVV8WtrbqRIweRcqfkaPnOaz9F+AcmmeA9R8HXPxC8Vapod1bRWUcMkOl2jWcCt88cJtbKHAkTMbFtxCk7CjfNXqlvbxWkEcEEaQwxKEjjjUKqKBgAAcAAdqEu4ElFFFMQUUUUAFFFFAHlXhz/k6f4h/9iZ4a/wDS7Xa9Vryrw5/ydP8AEP8A7Ezw1/6Xa7XqtAHhXxZ+HvhX4lftJfDfTPF/hnR/FWmxeEvElzHZ63YRXkKSi80NRIEkVgGCu43YzhiO5roP+GTvgh/0Rv4f/wDhL2P/AMao8R/8nT/Dz/sTPEv/AKXaFXqtAHyn+0N8MPhX8GtC8O3mhfs7fDHxVfazrlnoUNheabaaeWmuZBHGVdbKYEAks2QuFVjkkYMHw1+Hnwp8Q/FbxB8OPGH7OPw18M+J9L06HV4JNJ02y1OxvLORvL3LK9nA6OsgKlGjHYgkV3nx5+G3j/xr8TvhjrnhvSvDGr6D4PvLjVpbHXNansJLm9eCSCAgx2VwAsQld89WYgYAXLb3wt+Emo6V8QvE/wAS/GD2EnjbX7eDTltdKlkltNL0+HLR20csio0zNIzyPKUjyWUBFCZaVe+v9af5jfkSf8MnfBD/AKI38P8A/wAJex/+NUf8MnfBD/ojfw//APCXsf8A41XqtFUI+X/ix+zJ8HtO8efBi3tPhR4Htbe/8W3FteRQ+HLNFuYhoWrSiOQCPDqJIo32nI3Roeqgj0v/AIZO+CH/AERv4f8A/hL2P/xqj4yf8lF+BP8A2Odz/wCo9rNeq0AeVf8ADJ3wQ/6I38P/APwl7H/41R/wyd8EP+iN/D//AMJex/8AjVeq0UAfN3jX4J/CDTfEMfhbwn8Avhv4k8XSWov3tL7RrOxs7S1LlRLcTraysgdkdEVIpGZlPCqruvJ6L4I+Fmp+KtFM37NXw5g8Ca5rFzoena/HplnLeGaETBZZrP7EFjgke3lVHWZ2+aIsihm2dX8bP2Y5/iF8QNf12Hwv4R8Vp4g0m20v7V4ou545dAki88C7tIkglEkmLjcNr2zqYgBL8+5Lnw4+Bvjbw7D4Q8I+IL3SNV8HeENSk1W01/7ZNJq2qSDzDClxbGBYoirTszSrM+4wrhE3nZGozsf+GTvgh/0Rv4f/APhL2P8A8ao/4ZO+CH/RG/h//wCEvY//ABqvVaKsR5V/wyd8EP8Aojfw/wD/AAl7H/41R/wyd8EP+iN/D/8A8Jex/wDjVeq0UAeVf8MnfBD/AKI38P8A/wAJex/+NUf8MnfBD/ojfw//APCXsf8A41XqtFAHlX/DJ3wQ/wCiN/D/AP8ACXsf/jVeaaB+zJ8Hpv2kvHWmSfCjwO+m23hLw9cwWbeHLMwxSyXmtLJIqeXhWdYYgzAZIjQHO0Y+oK8q8Of8nT/EP/sTPDX/AKXa7QAf8MnfBD/ojfw//wDCXsf/AI1R/wAMnfBD/ojfw/8A/CXsf/jVeq0UAeVf8MnfBD/ojfw//wDCXsf/AI1R/wAMnfBD/ojfw/8A/CXsf/jVeq0UAeVf8MnfBD/ojfw//wDCXsf/AI1VHWv2Wvg1YaVdXFl8DvAOo3ccZaKzTw3p8Zmbsu5owq59T0r2OsrxOdZXQ7p/D0VhPrCAPbwanI8dvKQQTG8iKzR7hlQ4V9hIbY+NpT2A+bfC3wY8D6kvi/T9X/Ze+Glt4h0NrZbeLSLOyvLC9MybgPtMtlAY2j4Mi+WSqMjKHLqp6H4PfA74JfFb4WeFfGL/AAL+H2kvrmnQ35sR4esZxAXUNs8zyF3Yz12jPoKt/Cv4Iaj8M9T8X+LdF8G+D/COt6vYW9nH4Q8N6hJDpEskLzOLia4FnGfNfztpZbbKqnJkyNvX/s3+C/E3w3+DHhjwn4rt9Jh1XQ7SPTxJo1/LdwTxxqAsm6SCFlY85TaQMD5jnhxWjv5fr/wAK3/DJ3wQ/wCiN/D/AP8ACXsf/jVH/DJ3wQ/6I38P/wDwl7H/AONV6rRQB5V/wyd8EP8Aojfw/wD/AAl7H/41R/wyd8EP+iN/D/8A8Jex/wDjVeq0UAeVf8MnfBD/AKI38P8A/wAJex/+NUf8MnfBD/ojfw//APCXsf8A41XqtFAHhXwm+HvhX4a/tJfEjTPCHhnR/Cumy+EvDdzJZ6JYRWcLym81xTIUjVQWKog3YzhQOwr3WvKvDn/J0/xD/wCxM8Nf+l2u16rQB4V8WfDOo+Kv2kvhvaaZ4s1jwdcJ4S8SStfaJFZSTSKLzQwYyLu3nTaSwOQgbKjDAZB6D/hTfi7/AKLt8QP/AAB8Pf8Ayqo8R/8AJ0/w8/7EzxL/AOl2hV6rQB85/Fff8FNEtdX8XftAfE6x065uY7OOez8N6TfgTOQsasLfRZCpZiFXcBuYhRkkCtHwHoGq/EnT7280b46fFONLK6NncRav4Z0nS545fLSTBhutFjkxslQhtu054PBxx/7Z9xf+JPGfwp8JRxeMrDw9FrB8Qa3rvhbwtdav9lW2jkNpH8lpcRM73Gw7GRsBNzLgru99+FOsnXPA1hdNdeIr8BpYhfeK9LGm6hchJGXzJLYQweWDj5cwxkqFbbzkpbf1/XcGmmcx/wAKb8Xf9F2+IH/gD4e/+VVH/Cm/F3/RdviB/wCAPh7/AOVVeq0UwPl/4sfCfxRa+PPgxFL8Z/HF49z4tuIopprPQg1qw0LVn8yPZpigsVRo8OHXbI52hgrL6X/wpvxd/wBF2+IH/gD4e/8AlVR8ZP8AkovwJ/7HO5/9R7Wa9VoA8q/4U34u/wCi7fED/wAAfD3/AMqqP+FN+Lv+i7fED/wB8Pf/ACqr1WigD5l8c6x/wrvWLzTdY+OnxhkuLO2W7uX0nwRY6nBBEwYhpJrXQZI04RjhmBAGSMYqx4euLrxT4mTQtP8AjZ8ZmvHklhFxceBbO3sg8YbeDdyaAsAwUZeZBlhtGWIFeo+NDd+LPGuk+Ek066OhrF/ams30tufss0SMVis1cjazySAO6gnEcTBgBKpPmWhaYL/4vaVd+D/+FjaTqcOsXVx4ltfEP9pRaMbV1mMkccc/+hOfOMWxrLLH75dlMhaExtWO5/4U34u/6Lt8QP8AwB8Pf/Kqj/hTfi7/AKLt8QP/AAB8Pf8Ayqr1WirEeVf8Kb8Xf9F2+IH/AIA+Hv8A5VUf8Kb8Xf8ARdviB/4A+Hv/AJVV6rRQB5V/wpvxd/0Xb4gf+APh7/5VUf8ACm/F3/RdviB/4A+Hv/lVXqtFAHlX/Cm/F3/RdviB/wCAPh7/AOVVeaaB8KPFEn7SXju0X4z+OI54vCXh6V79bPQvOmVrzWgsbA6YUCoUYqVRWzK+5mAQJ9QV5V4c/wCTp/iH/wBiZ4a/9LtdoAP+FN+Lv+i7fED/AMAfD3/yqo/4U34u/wCi7fED/wAAfD3/AMqq9VooA8q/4U34u/6Lt8QP/AHw9/8AKqj/AIU34u/6Lt8QP/AHw9/8qq9VooA8q/4U34u/6Lt8QP8AwB8Pf/KqqWs/DPxD4f0u61LUfj949tbG1jMs0z2Ph7CKOp/5BP6dTXsVZXifXU8M6FdapLZ3+oQ2oDywaXbNc3GzcAzJEmXk2gltiBnIUhVZiFKbsgPnjStei1nRde1K2+PfxaH9hyQRX+n3Hg3T4NRiaYgQ4spNCW4cOThSkbA4bH3TjpvBPhPXfH+lS6hpnxt+LFrBFMYGTW/C2laVMWCqxIiu9Eidlww+cKVJyAcqQOG8PWuoPeePNY1q++Ivin4e6omlE6nd+GpNN8RRXcM0hdIYbW1trs2yKsHKQblaV2jY/vXX1j9n/S7/AE3TvEUq3niSfwnc36y6BD4ulupNShg8mMS7zef6SqGYSFVnJcDPRCgAtb3Y2O/4U34u/wCi7fED/wAAfD3/AMqqP+FN+Lv+i7fED/wB8Pf/ACqr1WimI8q/4U34u/6Lt8QP/AHw9/8AKqj/AIU34u/6Lt8QP/AHw9/8qq9VooA8q/4U34u/6Lt8QP8AwB8Pf/Kqj/hTfi7/AKLt8QP/AAB8Pf8Ayqr1WigDwr4TeGdR8K/tJfEi01PxZrHjG4fwl4blW+1uKyjmjU3muARgWlvAm0FSclC2WOWIwB7rXlXhz/k6f4h/9iZ4a/8AS7Xa9VoA8K+LN74qsP2kvhvJ4Q0bR9c1I+EvEiyW+t6vLpsKxfbNDy4kjtrgltwQbdgBBJ3DAB6D/hI/jf8A9E8+H/8A4Xl9/wDKajxH/wAnT/Dz/sTPEv8A6XaFXqtAHlP/AAknxuHH/CvPh+PT/ivL7/5TUv8Awkfxv/6J58P/APwvL7/5TV5J+3Rpdl8R9W+EHw1i8OaN4r1/XPEq6jFpusyCGE2dlG1xdB5hDK0KOBHGzIhLB9mCGIr6D+FvgjTvh/4NtNL07wxovg5WLXE+jeHn32NvM5y4iPlRZUnnPlpn+6KmLvcbVjl/+Ej+N/8A0Tz4f/8AheX3/wApqP8AhI/jf/0Tz4f/APheX3/ymr1WiqEfL/xY1/4wv48+DDXfgXwPBcJ4tuGs0h8aXkizS/2FqwKSMdJUxr5ZkbcA53Ki7QGLp6X/AMJH8b/+iefD/wD8Ly+/+U1Hxk/5KL8Cf+xzuf8A1HtZr1WgDyr/AISP43/9E8+H/wD4Xl9/8pqP+Ej+N/8A0Tz4f/8AheX3/wApq9VooA8p/wCEk+N5JA+Hvw/yP+p8vv8A5TUDxJ8bzyPh78PyP+x8vv8A5TV4n+2D4UvNK1bXfEMvh/wd4yvtZ06HTPCket3Eg1rS9SAlAGlQLCxkkdnil3xzW7IYy7PtjDJV+GXhi2Fp8IvG17bWE3xj1PxfeWHiHXIFWK9vSiXyXltKSC7QxRwrtgb5YxDFtC7FIm/f+v8AhupVuh7v/wAJH8b/APonnw//APC8vv8A5TUf8JH8b/8Aonnw/wD/AAvL7/5TV6rRVEnlX/CR/G//AKJ58P8A/wALy+/+U1H/AAkfxv8A+iefD/8A8Ly+/wDlNXqtFAHlX/CR/G//AKJ58P8A/wALy+/+U1H/AAkfxv8A+iefD/8A8Ly+/wDlNXqtFAHlX/CR/G//AKJ58P8A/wALy+/+U1eaaBr/AMYR+0l46kj8C+B21JvCXh5Z7dvGl4IUiF5rXlusn9kkszMZQylFChEIZ95CfUFeVeHP+Tp/iH/2Jnhr/wBLtdoAP+Ej+N//AETz4f8A/heX3/ymo/4SP43/APRPPh//AOF5ff8Aymr1WigDyr/hI/jf/wBE8+H/AP4Xl9/8pqP+Ej+N/wD0Tz4f/wDheX3/AMpq9VooA8q/4SP43/8ARPPh/wD+F5ff/Kaj/hJPjf8A9E8+H/8A4Xl9/wDKavVayvE8GnXmiXFpq0yQ6fd7bSTfcGDeZGCLGHUgguzKoAOSWAHWk3ZXA8+PiT43Dr8Pfh+P+58vv/lNR/wknxvHJ+Hvw/x/2Pl9/wDKavn6w+FeoRa18S/BeneAPBvgmJW0TxHc6Bpuqs3hfUbJJJUmtbrbZxG3klWBy58h0dFiDK6o+70z9jM3Vzo3ji7s9E0Pw74IuNaB8P6f4ZZn0nYsEa3EtlIUjEkDzKxDpFEjN5jKp3F3I+9dg9Dtv+Ej+N//AETz4f8A/heX3/ymo/4SP43/APRPPh//AOF5ff8Aymr1WimB5V/wkfxv/wCiefD/AP8AC8vv/lNR/wAJH8b/APonnw//APC8vv8A5TV6rRQB5V/wkfxv/wCiefD/AP8AC8vv/lNR/wAJH8b/APonnw//APC8vv8A5TV6rRQB4V8Jr3xVf/tJfEiTxfo2j6HqQ8JeG1jt9E1eXUoWi+2a5hzJJbW5Dbi427CAADuOSB7rXlXhz/k6f4h/9iZ4a/8AS7Xa9VoA8U+KniJPA3x9+H/iS/0rxBe6LH4Z8QafLc6F4fvtW8meW60eSJJFtIZWTctvMQWAB8tuc1rf8NLeEf8AoEfED/w3HiH/AOQa9VooA+fNc8b/AAW8T+LLHxRrPwy17VvE1i0TWmtX3wj1qa8tzG2+MxzNpxdNjfMuCMHkYNdd/wANLeEf+gR8QP8Aw3HiH/5Br1WigDyr/hpbwj/0CPiB/wCG48Q//INH/DS3hH/oEfED/wANx4h/+Qa9VooA+aviX8bdF8QeNPhPf2Hh74gXFpofiafUNQk/4V5r6+RA2janbB8GyBb99cwrhcn584wCR6B/w0t4R/6BHxA/8Nx4h/8AkGvVaKAPKv8Ahpbwj/0CPiB/4bjxD/8AINH/AA0t4R/6BHxA/wDDceIf/kGvVaKAPFj8bPhufE48SHwh4xPiIWZ08av/AMKv177WLYuJDB532Df5e8BtmcZGcZqhp3xN+Eej+ML/AMWWHw/8TWPirUIvIvNctvhRrkd9cx/J8kk408O6/u4+CSPkX0Fe8UUrAeVf8NLeEf8AoEfED/w3HiH/AOQaP+GlvCP/AECPiB/4bjxD/wDINeq0UwPKv+GlvCP/AECPiB/4bjxD/wDINH/DS3hH/oEfED/w3HiH/wCQa9VooA8q/wCGlvCP/QI+IH/huPEP/wAg0f8ADS3hH/oEfED/AMNx4h/+Qa9VooA8q/4aW8I/9Aj4gf8AhuPEP/yDXn+i/G3RbT4++MvEkvh74gJouoeGdD0+2uf+Fea+fMnt7rVpJk2iy3Dat1AckAHfwSQ2PpWigDyr/hpbwj/0CPiB/wCG48Q//INH/DS3hH/oEfED/wANx4h/+Qa9VooA8q/4aW8I/wDQI+IH/huPEP8A8g0f8NLeEf8AoEfED/w3HiH/AOQa9VooA8q/4aW8I/8AQI+IH/huPEP/AMg1S1r4+eAfEek3mlat4Z8bappd5E0FzZXvwy1+aGeNhhkdGsCrKQSCCMGvYqKAPnm08ZfBKw8F3Xg+1+F+uW3hK7fzbjQYfhFrK2Ez5VtzwDTtjHKKcleqj0Fdj/w0t4RH/MH+IH/huPEP/wAg16rRSsB5V/w0t4R/6BHxA/8ADceIf/kGj/hpbwj/ANAj4gf+G48Q/wDyDXqtFMDyr/hpbwj/ANAj4gf+G48Q/wDyDR/w0t4R/wCgR8QP/DceIf8A5Br1WigDyr/hpbwj/wBAj4gf+G48Q/8AyDR/w0t4R/6BHxA/8Nx4h/8AkGvVaKAPFPhX4iTxz8ffiB4ksNK8QWWiyeGdA0+K513w/faT508V1rEkqRrdwxM+1biEkqCB5i85r2uiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD/2Q==)
The data in the table was used to estimate the following consumption function:
C = 20 + 0.2
Y
Refer to Table 36.3. The error for point
E is equal to
◦ -2.
◦ 0.
◦ +1.
◦ +3.