![](data:image/png;base64, /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAEAARIDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9U6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigDP1nVLfQ9JvNSvHMdpZwvPM4UttRFLMcDk8A8V4h8Ev2mdU+LnjXTdJu/B0OgaXrXhaPxdpGopq/2qSe0kuPKjSaHyU8qTaUcgO4G/aCSCR7rfWcN/aTWtzCs9vMhjkjlUMrqRgqQeoIJGK+UPGX7MXif4Wf2tqvwpv77UJ7rw1D4M0rS9SvC40eCbUAzzRSN9yK3gdtq4dv3afe2gEA+uAc0teRfs0Wnivw/8OP+EU8ZITq3hq8m0q3unvlupb2wjb/Q7iRwqku0JRWLKpZo2baAwFeu0AFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSHpS0h6UAfMvwA/5PN/ao/67eGP/AE2NX03XzJ8AP+Tzf2qP+u3hj/02NX03QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIelLSHpQB8y/AD/k839qj/rt4Y/9NjV9N18yfAD/AJPN/ao/67eGP/TY1fTdABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUh6UtIelAHzL8AP8Ak839qj/rt4Y/9NjV9N18yfAD/k839qj/AK7eGP8A02NX03QAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQBieK/FWleCfD97rmu30WmaXZpvmuZScLkgAADJZmYhVUAliQACSBXM6f8cvBWpeGtY1tNZa2sdIZEvkvrOe1uIGfHlg28say5ckBAEO88LuPFafxN1Sw8P+CNR1fUdAu/E8Om+Xex6XYaeb65mmjkVofKiCsS4kCMGA+Ujdkbcj58Sy1Dxfp//CwLiw1nVvEthr2k6prek/2HfWca2Nv54jtbJLiGNro25uJJ94UvJIhwEzEigHu8nxn8HReC4vFZ1jdo80/2SMx20zXL3G4qbcWwQzGYMGBi2bxtbKjBro/DviLTfFuiWesaPew6hpl3GJYLqBspIp7j+RB5BBBwRXzlDpeq2Xia3+KD+HNVTw2/i671M6VFYTPfQ2kumQ2CX32MJ5u8yQtIYwnmhLliRkOKv6T8IviR4n+HGn/8I5491L4QTXmu6prctimkW15OtrdTySwW7LKSsTKGDsAOC7KRkZoAh+AH/J5v7VH/AF28Mf8ApsavpuvgD9lvxvP8Kv29fjP8LPGfimfxb4n8Q2uk3dt4hvLWK0a8kt7IMYTFENgbypsjGMiFs8mvv+gAooooAKillWGNndtqKCxPoBUtVNTjaXT7lEG6RonCj1JU4oA4rwH8cfBnxLumt/D2pzXU32Rb+OO40+5tWntzjEsImjTzU+Zfmj3AblzjcM9H4S8WaX458M6b4g0O7+26RqVulza3AjdPMjYZU7WAZfoQCO4r5e/Zn8Jz6Vf/AA7Nhp3iwnT/AAoum+J28aW96lvZEwx4gsvtYBVjNGAywZiMaDdysVavxz8KzaX8SdIuND0/V7+Sys7CLTNCt9J1IWQCTkbLW9sp44LJtuN5uEYYWPHy5FAH0jq/iTTvD9zpUF/dC2l1S6FjZqwJM05jeQIMDg7IpDzgfLWtuGM14d+1RoMOu6P4COo6TrWr6FZ+KoLnVItBguZriO2FpdqXK2370oHeMNsySDjBzivGPHnhf4lXnw+8AxXM/iK1s4rHVfs8UOnXmo38F21yraV5i29zCyTJa5US3DtEjgiXDHdQB9slgKydH8R6dr1xqkFjcmeXS7s2V2oRl8uYRpIV+YDPyyocjI565Bx81+P/AAzq8Hxu8PanjX9c1N5tGQ2s+maiIokEgW4lhvrS4W0gVVMkskc0bbyrKMq649A+EdhD4Z+LfxRsD4f1WxvNY1o6qL82s4sprcWlqiP5zHyi7SmcbIzuwmXUYBIB7VkA4oyK8AX4U3/ir4v/ABC8QXtz4gtLnTrywl8OOL+eCzRksozIUjz5bq8mUkyrAhSvHOfK/hf4L8ZN8LPHdnrupeLoJrnR7FdR+zaHexONTV2N40azXbzXTMMLI1qYopI8CI7z8oB9pZ47/lSkgV8Z2sUGn+BPDem+IbLXI/C83ji4ga10ux1i0uNWtDpUz747KaaS8jjWYNuiUsG8kuFw1WfFWh+NrrwF4Uh8QWPi68C6NrC6TDp73DXdvqrXKnR2umgbcrrbZBknPlq27zG3HJAPsPIzijPOK+VL3wL4vPj3WfFV3FrsviOw1fwtb2lxbz3H2ZrdzbR6nshUiJ4yr3HmNsOMZ4KAhPDGi67o/wAfNbl0a21vVbm7l1hp7zUtN1OxNnnLW4N1LM9jdRF9iRLHCCqBGPKvkA+rAc0tfNf7JmieK9Ln1h9fuNZeSWytPt8d/pVzZQnU/n+0sGurmZppPuhpYFS3Ybdm48J9KUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFJgUtFACYFB6UtIelAH51/Ez4U+IPiT8c/wBqPUfBMslv8QvCGqeFPEnhuSPGXu4dLfdDg8ESxl0w3yklc8V9p/Av4xaL8ePhXoHjfQn/ANC1SHc8DfftplO2WFx2ZHDL74BHBFeS/AAZ/bN/ao/67eGP/TY1c/8ADq3g/ZY/az1X4fJEbL4ffFDzNe8OjcfKs9YjUfbbVcngSLtlUdAcKB6AH15RRWJ4u8VaV4G8Nap4g1u+i07SNNt3urq6ncIkUSDLEk/5JwKANuuC+Lvxs8FfAnwrN4i8b6/baHpqcJ5xLSztwNkUa5eRskcKDjOTgc18PfCr/gqdr/xq1TxJ4S8FfDyTWvHt/qkg8JWM06W9sbAJuaS8kLja8ao7kKcNvCgjbk/Qvwk/ZElj8UW3xD+M+un4nfE1CzW0lwp/snRgSfksrYgKnGMuwySMgKckgHGnwr8Uv227l5/FS6r8JPgk+yS18OqBBr+uKCrZu3Bb7NHuQMEX5iDg5BDD7GjQIgXJbAAyxyT9akAxS0AFJgUtFACYFGBS0UAFJgUtFAFK7061vZrSW4toriS2l86B5Ywxik2Mu9CfuttZlyOcMR0Jq5gUtFABSYFLRQAmMUtFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUh6UtIelAHzL8AP+Tzf2qP8Art4Y/wDTY1dN+2J8GNR+MXwavI/DcjWvjnw/cR6/4avIziSK/tzuRVPbeu6P0+YE9K5n4Af8nm/tUf8AXbwx/wCmxq+miMigDy79nf426d8dvgt4f8cwlLRru2I1C2c7fsd1HlbiJgeV2urde2D3r5i/aY8CfFv9vK2tfDfgiT/hAvg9HL5lzrWtmSGfxAf4HitQvmfZ1K5XzCgkLB8EKtdR4cuk/ZQ/bFuvCJhS1+HXxhnfU9IKnbFp+uRoBcQhQMATgow6fMVA74+xhgjjpQB8K/Av/gkz8Pfg/wCINN8RXfi7xNrfiPT2EsF5Z3I02OOUbhvVYsuByPlMhHBB3AkV910UUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSZGM9qAFpD0o3DGc8UdRQB8y/AD/k839qj/rt4Y/8ATY1fTdfMnwA/5PN/ao/67eGP/TY1fTdAHjH7WfwhufjL8Etc0rRw0Xi6wUat4cvYJfJmtdTgPmQOkn8JLDYT6OenUW/2XPjWnx9+C2h+KJY/sutKrWGtWJXa1pqMJ2XETL/D8w3Af3XWvW+tfJVqjfs1/tnzWxX7P4A+MeZoiBiO08RQr84Pp9oi55+849jQB9bUUUUAFFFJ0oAWivn/AOKvxg8RR+MbfRPD9iLbS9L8U6DpOraq12EmL3U8EjRRw7CHiMMqKzF1bMnCkKTXv46UALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAMddykZIyMZHUV8oWVoNM+DGneHpbu8bwxc/EvUNH1i4ubqSWR7FtXu1EcszEsVllEELkn5llZSQGyPrKsS48KaNc6Nf6PLpVnLpV+Zjd2TW6mGczMzTF0xht7MxbPUsSetAHzBb6Zp154hsfh7MFufhQvjm80mGwnGbSXytMjnj01s8NbreG6UREbc26R9F2nb8K+PviR4a+Emnn4deBB8UbWPXdUsLN73xFHp5TTIbmVbWTzZVbzRtURqeDtVTz1r3if4deFrjwYPCM3hzTJfCwiEA0Z7RDaCMHIXysbcAgHp1561t6fY22lWFvZ2kEdraW8axQwQqFSNFACqqjgAAAAD0oA/LG0/bo1z9m/wDaj+OVz49+G8Gia74ji0qRtMGviaG2ubexVYIDcxwMp85ZN5chQmDnPJH194Z/aO+LHjvw1fa54T+EWgeJ9PWztpbG50rx/ZzwXl0xjFxbiRYyE8rdJ8x4by+g3DHB6X8GvDvx3/aP/a08KeJIZTbS3Hha4try1fy7mxuU01jFcQP/AASIeQe/IOQSK8Vtfh1dfCr4yN4R8S+L5/gn8VdQlRPDfxB8MW3k6F4yXDc39mxNuLndtDrhNzyA/NlSwB9i6z8VvjrZXurRab8CbPUbe3vIIrOdvGdtF9qgZWMspUxEoUIQbTy24kdOfKf2mdK+OXx7+Gl74Yh+CtppGqQ60lxo2up4ztjJp727q9vqCqIs5J3KYh8wBPNXtP8A2kfjJ+zvbJb/AB88Cf2/4dhcxHx/4FjNzCijGJbu0wHjHPLqAMggJ0J+i/hd8afA/wAa9COs+CPE+n+I9PB2vJZzZeI+kkZw8Z9mA45oA+d/gJ+1X8ZPi/8ADbQtas/g5Y6u+29sdXu08UwWjQ31qCm0wNHuQyyr93PyBwcsME+hWXxY+O8sBaf4C2dvJ/ZMl3sHjS1fN6HIS0yIujKFbzegzjHFefXRu/2af23TfSn7P8OPjEI7ZmyBDa+IYkwnHYzxqRn+Jm5+7XvfxJ+N3hz4VeJ/Dem+Jb220mz1mG7ddRvLhYoomgER2HPUsJSeOgQk8UAee3Xxe+P8dvdtB+z/AGU0kdhBPDGfG9qvm3LGMSwZ8r5QgaQ7zw2wYxu4+fv21/jp+1d4Y8K2134R+HLeCtJttQjjn1nStSt9ZuLoMFMamER7oU3gqzYO7KgkA/N+gcUyXMSSRsHjYBlZTkEHoQa8T/bP1OXSP2b/ABVdwzeIreRJLECXwpOYdRXN7AP3TgHA5+b1TcO9AB4L+DCeOtB8EeL/AB3bahp/jdrPS9T1vTbS7a2tZtVt442WWaCNtjPGylRzjAUHOxNvuI4FA6UtABVW5uYbSISTTJEm5U3uwUZYhVGT3JIA9SRVqvnX9pfVNZ8b6xYfDzwzpmr6pcw239u6i+iS2qS2jI5GnFzcTxKFNyhmxklhaEYwSQAe/S6jawXdvayXMUdzcbjDC7gPIFwW2qTk4yM46Zq5XiVlqsXxU+E+lfEmeGDw14y0XRtSETak2YNF1HymhuvNUEgiKSJ1Oc/Lu9ay/wBlr4hap4yXxVp+reI5/EtzprWj/al1Gx1G3USxMdsdzaQQKxyhLI0eVyp3EPgAHvFtdRXSuYZUl8tzGxRg21gcFTjoQeoqzXyL8IPG19pPxjudF03xWNQ/tLx34htdV8LeRFJ9gtVWedLv5FEyEyrCnmSMYyJwoUMVNQ/Dr4xfEXxNo/xBmu/FWg2dxD4fuNQVru7inGg3wcqqSLFbqLaJQHDRXLSyhoifmAegD62ubmK1QPNKsSF1QM7BQWYhVHPckgAdyatV8V3fjHUvHfwT8RRap421Bv7G8Y+HjLrsWoabfRWsJvbKRmW8hto4GWMMXbfF+7ZeSy17v8afiFd2PwIv/FPgnXLdrqVbQ6fqyolxAwkuoY/M28K6kOemMg8EcEAHrtFfKnxy8UeP/hDZ6Xp0fxDS4jvXvr+PWNZey0142ijt/LtGkNu8Uyl2uH8pI1lZAFDkoWaH4kfFbxf4d+InhV73xfaafbXFroxn8PaPeW0V0Z559k2bK6tmuLiNiwC7JImRUfI3DkA+saK+VvAHxf8AEGofGa403/hM28RTzeKdc0m68JmG2xpdhaxSvbzjy0EyEyRwpvlZlb7QABu2muUs/j54zi+H3iS/tvF/9rag3hiz1a+uGtLf/imtVmuxDJZbVQBBGrN+6n3SDyiS2CcAH2pRXyx4y8eeMfD+leOvDlv47t4JvD+vabBHr2t3VnYXU1tc26zvbmdrdrdJcthGaHlMKRuIY8r43+O/jS1+GXw/u9K8UCwjvodalu/EOq31jbie5s7hY4IfP+zPBPG+ZWAhiR50iDJs+YUAfaNFY/hm7vNR8PaVdagIhfz2sUs/kI6RiRkBbasgDgZJwGAYDrzmtigAooooAKKKKACiiigDxD4/+LfFdv4g8L+D/CdvqxutZtb+/ubnRHtY7pIbZrZCiSXX7qIs12pLkMQEIUZbI4fxR8WfFXji+8KeGvB9r4rCrpd1dax/Z0+nQan59tdiyaB5rg+SpWaObcYgfMIXaVTJPunjz4a6f49k0+5lvdT0bVLASJbapo12ba5jjkKGWPcAQUcxxkqQQTGp6gV5z8U/hl4N+HPgAeIfP8UaS3h+2mja98O6iyalerPOHkSSR2xK0k7+ZucjDsTuXJoA9At720+Mfw30/UNC17V9GstWghu7fUdPKQ3arkNt/eI4UnBVgVPfHrXh/hf9ojwt8DvD9/4h+JHxI1BvCXiDWZrTwtea7F9plmhtowksu+3hACSSLIyBl+5sIJ34HY2Ot6F4d8Jaj/anhDxh8PfDfhzRf7IhtbuaEw3UdwyRqsC21xMZLgNGiKxw2ZuCS5rs/hb4m8OX/gq20yzsbjQItAKaNLo2sLHHcWEkUSbYn2syMfLaNgyMysrAgnmgD4/+B37Yvwdsv2nP2jfFU3ja3TQNYTQ7ywvRa3BWeG1sfKuHAEe4bHdQQQCc8ZFejfG/9oP9mT47fDzW9B8V+NYhY6fbWmrjUYLO7judMMxi+y3lvJ5OVfM8eNueGIYY3CtT4BXemr+2J+1I7TWwgMvhkI5ZNp/4lrZwenWvpj7VpZJHm2hO4RY3J97sv19qAPgv4C/t26b8KPHWufBr4yeOIPE9zpMoTSvHMFrOw1FJMMtvcx7CyzgOoyAynkFiQGY+I8f7KPivxWuseDfH03wn+I39sSaTDr3hG0urSR7/AHLvhmhEQjlG4ruBAByfm5NfX/xe+F/gv44+AdU8KeI0tJ7LUYnjSdPKM9tKF4mhYg7ZU4IYdPpXzn8Mvj9qv7MGtW/w0+P/AIhs9R09oDN4d+JhVvst/EpYC2vJCMJdKqZzk7h1YnDMAfM3xr/bMs9e+Ds3gf4k+ItM+Iulaostx4b+Inge1ltr+1vbRkaGe5sZhEEYSEAtFIAVLAA9a9u/Z2/aR139tPT/AA34i8O6Po58Z+C7G70vX9L1vUGt4rn7bBEi3du0cMh2b4HLIyjGdu45Br7I8PeLvAnxR8IJqOlaloviTw5qULp5sbxTW88ZJR1IPBGcqQR7Gvyu8D/sweCfBPjH4c3zP4x8GeG/HMV5oS+Ibsf2VrGia3HdS/ZXYJIyxw3EZEaochwgbg80AfrD8OPCR8A/Dzwv4Ya6F7/YulWum/aQmzzvJhWPftyduducZOM9a81/bPlkj/Zv8VvFB4huZBJY4i8KzGHUT/psGfKcI+BjlvlOUDDjOR5RpXiT9o39mtJYfEUVl+0H4Ls32G/0ZltPElvHjjzLdjsuGwPuqS5xkt1xz3x9/b0+C/jz9mvX57Txdq9lqpuLC3n0DTrttI162n+0Ru8YLxtt2BHEjKGQhXXdlhQB90A5pa+efg9rel6z8TNQudR17xBc+Nbi81OX7DHPdPpjaV53+gyCMA2yobc2zJIuGZncFmbeB9DUAFReUglaQKN5ABbHJAzjn8T+dS0UAV47eOJWRY1VGJYgAYJJySfqSag03R7HRoTBYWVvZQk7jHbxLGpPrhQBngVezivDvHH7Y/wr8FfCS/8AiG/iOHWNEtr6XSY4NMG+6ur+NiptYom2kyZGRnA24fO0g0Adj8W/id4L+A3gzVvHfi66t9IsLSPbJcCNTPcMSSkMY6u7HOF+pOACR53+zVrvxE+KWq+IPiD4m02Pwd4F16GNNA8IXFmgv2jBJ+33kg5EsqkDyuQFC+mW4j4f/AbxN+0b8Q9M+LvxvslttKtAZvCXw3nUtFpALhkubznEl0yqCVIwucHoFX67AxQBmw6Bptrp0mnw6daRWEmQ9skCLE2euVAwc/SrP2OH7KsHkp5CgARbRtAHQY6cYH5VaooAqXlhb30ca3MMVwsbiVRKgcK4OQwz0IPQ9qjuNHsLy8gu57K3mu4P9VcSQq0kf+6xGR+FX6KAOe8O+CNF8JS6hLpNglrNfXU97cy5LPJLNIZJDuOTgsSdvQZ4ArTj0uzh+0hLWFBctvm2xgea2MZbj5jgDk+lXqKAKN3pdnfwTQXNrDcQTkGWOWNWWTGMbgRg9B19BSPpNjPawWz2du9vAVaKFoVKRlfulRjAI7Y6VfooAKKKKACiiigAooooAKKKKACuQ+K2hT+Jvh5r+mQaLp/iSS5tmQaTqjFbe75BMbEdMgEA9jg119FAHylZfCbXL6DWb/wn4LvPBmkWc2j6np/hjWrqJXvdQs7xriZwI5Zkj8yEpCHLjc6qWAVQT0kf7O3h747v4l1r4p+CVktNX1K3u9P8P6rIDNZpb232dJJjDIVEr7pTtV2UKU53Zx9EdKD0oA+Bfgh+yV8I9U/aS/aO8G3Xgewn8MaPdeG5LDTWeXy7dmsJJWK4fPLux5PevpCD9jb4M22opfw+AdOS9j1ca6kwebct8DkTff65GcdPauP+AH/J5v7VH/Xbwx/6bGr6boA+XPiF+zp8A/hBoun6vP8AC2K8+zXlxc2yaeWUxSSxgzyvLNPHFGuyIZMsijgKuWIB8d/aO/ZA+C/xD/Y6k8Y/DvwbPZXFpoa6t4ffSVkNzJG26ZYCjl8qzSsWAy3oa+wfi38Km+J8egPFrdxot1o1+L6B0t47mNm2MhJikBXzFDFo5CCY3AYA9D538cfhxaeB/wBivxN4MhhGvWOl+GzYKmoahHYm5RAoHmXDELGSBksSBn60AfHP7P3wN+Hfwb1Hwr4B+Mfwss5dI+IGmxTaR45vZpIfMkkWO7/su/QuFjnjkXarLjfsT5fvEezfCz9ivwX8Rf2S/E+gxeELzwH4i8VQTWVxeapqv9qXW62u2ezkklQKjopjjIVVXCfLk9T774a+EHhb4tfsr+D/AAV4t0C2u9AufDmnxSaeLoXItytum0xXCE5ZD92VDzjIODXyB+xV8fNU/ZT8LeD/AId/FAaPH8PNcubuPwx400e8iurK2uBcyCWzvJ4iYwxfLB8/Luw3AJQA9j/ZT+H3gP42fDvUpvG3guxX4l6R4jjTxgheRXk1yw3JDeYDAfMkhkG0BT5jcGuQ/bt/Yd+EN78LLrxesd74Kl0zU21G8utB0/7fNeyXtxDHJ5kTyKWyxUjDqFyxwelegfEv/jHD9rPw58R4H+zeB/ib5PhnxIRxFb6ogP8AZ94xHA3ruhLHgDk9a9A/bVu7i0/Zp8WTWusa34fnWSw26j4cgaa+i/06AERoskZORlW+cYVmPOMEA8007wl+0B+yfpUGm+D4rH45fDTTLfyrLRL6VNM17ToI0wkccyqYrhVVcAFd7cAAV6P8Hf2y/h38W75tClu7vwT42hA+0+EvF0B07UYjjoEkwJB3+Qk46gV71Xm3xi/Z7+H/AMe9EOl+OfC9jrsShvJuZU2XNuT3imXDxnp904OOQaAPSAc0tfHtp8Ffjx+zLbRn4XeMf+FteEbfOfBfjeYR3kUe44Szvx0IXaoWT5RtyBzgdn8N/wBt/wAFeKNftfC3jOz1H4UeOJy4GgeL4TaNJiQophnYCOXdjI2nntnuAYX/AAUX/aeX9nH4C38elXxtfG3iRX03RfLOJIsgCa4B7eWjcH++yV+ff/BP79lj44f8LU8KfEdfAlpP4Xtbprov4zkNvFKXXBnhQq8nm8ApMIyAQDmv1X/4Z28Kat8YL/4leIrZPFHiMxQ22lf2nCkkOjW8YJC2yEHazOzu0hyxJAG0DB9YAxQADgUtFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSHpS0h6UAfMvwA/5PN/ao/67eGP/AE2NX03XxT4K+OHgD4N/toftLL428X6P4WbUZfDjWi6pdrD54TTSHK564LLn6ivZv+G3vgJ/0Vzwj/4NI6APcK8X/bFdI/2YviQ00On3UQ0eUtDqzulq4yvEhRlYL9CD71X/AOG3vgJ/0Vzwj/4NI688+Pv7XnwU8U/BbxjpWl/FPwBd6hdadJHBBrExvbR2JGBJBGjvIv8AsqjH2oA9w+AAR/gV8OiiWcKHw5p22LT2ZrZR9mj4iLEkoP4SSTjGSa8T/Zw+GfhD43/seReE/Etl4X8QeHtQu9RSRPDFtLb2aMLuXa8XmIjpKh/jwPmBIJHJ1vhb+2N8DtG+GnhLT7z4reBra7tNJtIJodPuxbW6OsKqyxROFaNAQcIygqMAgYrkv2ZP2vPg94c+DulWeufGfwve6h9oupGea0t9DdVa4kKqbSMBUwMfNjL53H71AHnHjDwxqXws8N69+zv8YLme5+DPiTGn+BfiLfXCyvpdyf3lrZ3j4Xa0bx5SQgDChc7T8nRT/G7UfiZ+w54s0/xGviKP4keDryz8P+JrDwxOYtUW7hvoUE0b7W+WVF3lgpBXzAOma9f8Y/tVfs1/EDw1qHh7xD8SfBOr6LqELW91Y3WoxtHKhHIPp7EYIOCCCK/NT4k/EjRv2b/iv4hbw18U5viP8NfGllb2M134U12CHxBYrZvG9qss/ls26MDyw5BEsRZSQRwAftvRXgemft0/ATVdOtLxfir4Zt0uIlmEV1frFKgYZ2ujcqwzgqeQauf8NvfAT/ornhH/AMGkdAHuFcd8SvhJ4O+MXh2TQvGnhyw8RaW+SIL6EOYz/ejb70bf7SEH3rgP+G3vgJ/0Vzwj/wCDSOj/AIbe+An/AEVzwj/4NI6APNJf2dvjB+z1azN8DfHg8ReGYiJY/Afjn/SVQBhmK1vsh4lK5UK+QPXPI2/Cv7dnhnTNai8L/GHRNR+C3jFiEW28RDdp10cgbra9UeXImT95tuK7D/ht74Cf9Fc8I/8Ag0jrnvGv7Tv7MfxH8P3Gh+KPiF4E1/SLgYksr+8hljPvg9D6EYI9aAPoayvbfULWG5tZo7i3mQSRzROGR1IyGUjggjuKt1+b51j4X/A6RtQ/Z5/aX8NeGoA5kbwP4p1j7foVxlidqkky2x5xuQk8DPcn0H4Sf8FRPh9quqw+F/iddaZ4Q8SLEC+r6XfxajoV2+8IDFPC7tFu5bbMBtUfM3IyAfb9FeH/APDb3wE/6K54R/8ABpHR/wANvfAT/ornhH/waR0Ae4UV4f8A8NvfAT/ornhH/wAGkdH/AA298BP+iueEf/BpHQB7hRXh/wDw298BP+iueEf/AAaR0f8ADb3wE/6K54R/8GkdAHuFFeH/APDb3wE/6K54R/8ABpHR/wANvfAT/ornhH/waR0Ae4UV86/Fn9reLwDd+IV0Dw1/wlll4d0aw17VbtdSW1Vba8nMcBgzG/nHaksjZKgBQAWLYH0QGz6/lQA6iiigAooooAKKKKACiiigAooooA5vU/h94Z1u/kvdQ8O6Tf3kuN9xc2EUkjYGBlmUk4AAqD/hVPgz/oUtC/8ABZB/8RXV0UAeI+NPEnwT+HuvPomu6bodrqiQJdPbx6D57JE5cIzeVCwGTG+M9dprhv2pfCHw+8WfCTWvAOhweF9I8aeMNL8nQ0uLSO2LSSEeUWcR/ut5BVd2CzAquSMVofHe20/RvHmtaosnjvw94iu9FgTTdQ8M/aZ7TVJ4mn8qGSKGORVeN5Fz5u1XWbuFbGD4qtPEaeH/AIkeHNf8KXl742+INhYDTJrK1ea2Wc6fBbyI86Bo7dbS5Sa4+d1GJAYyzE0AesfBv4FaD4R+EngjQ9d8LaFNremaJZWV9ILGGXdPHAiyHeUy3zA89+tcV+yJ+zcnwx+AugeGfHXhTQJvEdncXxnmEEN0ZEkvJpY2MhTn5HXjtgD2H0VaxtDBEjuZXVQGc9WOOT+NWKAPOvFXhn4ZeBdIOq6/onhnStPWWOH7RdafbopkkcJGg+TlmZgABySa+fv24PgX8NfGXhvwRolzp/hTR9TPiWxuQbpFs2exWVVvF8yJQVVkZVJYqu4oNwbbXt37TuiT698F9etrSwl1G9D20kEMMJlkDrcxHcoAJyBu5HQZrj/ic8vhL4h+OLvVPDWoeJrLxb4bg0jSY7Oye6WSeM3KyWMm1WEKym4R98m2MgOWPy0AdXqtj8HvA2uaJ4W1DSvDOnalfIkVjZzafEWK52Rhm2HaGI2KXI3MNoyeK7L/AIVT4M/6FLQv/BZB/wDEV8y6r4O8QeE/CfjbwHrGmX/iDxX4w0TSNO0fVre3muIXnhsYrWRpLjaRB9nnSS7zIy5Eu5CXLAfYMaFY1UncQMEnvQBzH/CqfBn/AEKWhf8Agsg/+Io/4VT4M/6FLQv/AAWQf/EV1dFAHKf8Kp8Gf9CloX/gsg/+Io/4VT4M/wChS0L/AMFkH/xFdXRQB5f42034WfDnS4b/AMQ6H4e063nlEEIOkxySSyEE7UjSNmc4BJ2g4AJPAJrw39rLwp8PvGnwD0fU/DC+ErJLzXNMu7a7lgjt1uI4LpZJ0BSIvkJHJuUr8oVtwGDXtnx28bWHw+0jTNcHh9tZ8TebJZ6RMNNuLpLN5VxJJK8EUjxRbVG4qMtgKuSRXlegnTfh9qvhDx40WteK9Alttai1HUoNBuVuRq13cW8zTCx8vzYkk8iWFcKQoKBmIcuQD07xTP8AB3wVFo8ut2nhSyh1ds2UsljAyTIcHzAyoQIxvTMhwg3LlhkZ7H/hVXgv/oUtC/8ABZB/8RXzToGhap8JtEiTxX4S1LWv7c8DJoVhp9jZtffZ7r7TdynTH2hliDx3dtHvbbDi1IZgEWvpn4Z6FqHhb4c+FtG1e4+1app+lWlpdz7y/mTRwojtuPLZZScnk5oAZ/wqnwZ/0KWhf+CyD/4ij/hVPgz/AKFLQv8AwWQf/EV1dFAHKf8ACqfBn/QpaF/4LIP/AIij/hVPgz/oUtC/8FkH/wARXV0UAcp/wqnwZ/0KWhf+CyD/AOIpD8KfBbDB8JaFg/8AUMg/+IrrKKAPA/2hf2VdK+M2i6z/AGVqNx4V1/UdOg0ua5spGS2uoIZ1liS5hQjzRH+8CjI4kYHKnA87+Hfwy+INl+1fqfiC90bV7TQx4i1i7kv7m5gFnPp81lbx2qx7JDK7edG58qQbFBLAK3J+wKTaM5xQAtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAIQDXI/FTxufh18P9c8RLbtdy2NuWht1jZ/MlYhI1KoCxG9lyFBbGcAnArr6wPGvhO18b+G73RrySeCC5CkTWz7JInV1eN1PqrqrYIIOMEEEggHgp+P2v+Evh1ryag2o6n8QY9Rs7a3sNU8OGy8sXsywwSR20UzmaAOJcYlLkoUd1PzD0z4I+MbjxP4YntNV1LULvxLpsxi1GPVtNTTrqFnG+PdAjMoQoQVZWYEDklg2Mp/2ff7UXU73X/F2ra14luGsmtdbaC2gex+yTtcW4jijjEbATO7HerFg208AVt+F/hNL4bt9XnbxPql94h1i7tbq+1x4oI5ZI4CgSBY0jESIY0aM7V3ESMc5wQAcl4bk8d6P8bdN8N3HjmbxTp0GmyalrMU+j21slvG5MdookiAPmPIsrAdNkL57V7njNcx4W8D2vhXWPE+qRzzXl5r9+t9cST4JQLDHCkS4H3FWPIHq7etdRQAmBS0UUAFFFFABRRRQAmM0YFLRQAhANLRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB//2Q==)
The above figure shows the reaction functions for two pizza shops in a small isolated town. Collusion would result in
◦ firm A monopolizing the market by selling 50 pizzas.
◦ each firm producing 40 pizzas.
◦ each firm producing 25 pizzas.
◦ the firms splitting the production of 100 making 50 pizzas each.