Determine the null and alternative hypotheses for the study that produced the data in the table.
A car insurance company performed a study to determine whether an association exists between age and the frequency of car accidents. They obtained the following sample data.
![](data:image/png;base64, /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCACCAZgDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9U6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAPNPj7q18ng2y8NaPe3FhrvjDU7fw7aT2UrQ3MMUpL309vMCBFPBYRXtxG7HHmQIArsVjc8B/F6G5+A0Hj3xnJb6TcaTplxL4pFpDI0On3tlvj1ONFG9nWGeC4QFC+4RgqzghjlePvgZffFP4oaTqfi++8L+Jfh1psNxHH4K1bwy12JJZUhxcvLJdNEZ43icRyfZwViuJ4+TIXHFa78H/F/wt+HHxS0vQLvw/f+DNe85dN8KaP4QIHh6C4EFtNJDbm4mhu4oYVuLt7NLZTdzvKF2mbZQB1WsftW+G/B+neIZPGWg+IPBOp6LZW+oT6ZrMds2YLm4FraObyCeWyi8643xKJriMjypJHCRI0g6v4KfG7w38efCt1rnhuXdHZXr6feQfara6+zzqkcmzz7WWa3kzHNE+YpXA37WKurovz/APCnwDqvi+LXPDi3GoX8c32HWR4w1rwv4g024sr/AE++gutOtJRrd3NcX1s8izOY4JYlhEc4yj3ayD6g8FaV4i0rSpR4o1+38Q6vPMZXmsdOFhaQrtVVjghMkrquF3EySysXeQhlTZGgB5VZ2Ft8Z9F8ReMvFOpeKLPSNI1PV9MsNF8J6vqVi0MWn3txaSysNPkSa8nne2aQIQwRTFFFHvEss/P/AA7/AGhtA8DeBPDGnf2n8QPirqeveJta0ix1G58K3dreXF4kt1dm2mE8UEUXlAfZQ37uJWhkO2GK3n8j0rVvhx4q0PVb26+HPifR/DFnqUz3d/pWuaHLqloLpmLPPbLFd2xgaVmZpV3Ojv8AvAqSPO83PxfAPXNO/wCFa/2d4s0+L/hGfE2o+K9V+1aK8v8AaV1ffbPtKQbbpPssX/EyvNgfz2X9xuZ/LfzQDq9f+MNv4f8A7Nt28M+INR1qWyj1PUtE0uCG7vNGs2yGmuVjlKthldFigaWWZopfs8c4ikK8/wCJf2mtB8O6V4+1OHRNY13TfCPh+x8VPeaRJYzQ6rpd0s7Lc2bm5AdUW0uCwkMbER5jEm5N3QeMfhpqmpeKn8SeFfEv/CJ61f2UOkatctYLe/aLKJ5ZIjCrsFhuYmuLgxysJI/37+bBOBH5fn/xD/ZS/tzwrrHhjwV4p/4QbQdY8GW/ge8gOn/2jLFYWqXS2a28kso2Y+2TJMZBK0ke0I8Eg86gDq/EH7Q+l6L8R9a8FWvhTxhr2q6JZWep6lNpejM9vb2dwZh5yO7J9o2eQcxW4llcsVhjleKdYvStJ1ax1/SrLU9MvbfUdNvYUubW8tJVlhnidQySI6khlZSCGBIIIIr51TQPF+oftNeJ7DQ/FfiDRvJ8GaFpd5r+qeFDPb6mYbjUHuJYLnyYrVb6Nbu2ZCm+AGeYNay+WVh9/wDCfhbS/A3hXRvDeiWv2LRdHsodPsbbzGk8mCJBHGm5yWbCqBliScckmgDWooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK8K0nSfGHxK+JPxTjj+KfijwrpugeILfSrDTdEstIaFIjpGnXTMWubCaRmMt1Kcl8YwABivda8q+Df/ACUX47f9jnbf+o9o1AB/wpvxd/0Xb4gf+APh7/5VUf8ACm/F3/RdviB/4A+Hv/lVWT+1V4dTVPBegX66r4g0m7h8TaDp4k0LxBfaXvgvNZsba5SQW00Yk3Qu6gvkpuYoVJJrK1f4b2Fh+018PbKDW/GC2DeGdT1CSybxjq7W809hcaNDavJEbopJhJ5g4YETGRmlEjEmgDq/+FN+Lv8Aou3xA/8AAHw9/wDKqj/hTfi7/ou3xA/8AfD3/wAqqqfD39p3w78R9V023stA8UaXp+p6nf6HZarrelmyhuNRtGuTLaiKRhOG8q0nm3tEIwEMbuk6tCvK/H34vTXS+H7Dw1J4os7O28c+H9NufEejQxnTLqY6xbQ3WmTSjdKFCPIJJEVIfMjNs05kMluwB2v/AApvxd/0Xb4gf+APh7/5VUf8Kb8Xf9F2+IH/AIA+Hv8A5VVz9h+2Z8OtR+KGpeBobm4m1KzmvrRWtJLa7mubqzSV7qBLCCaS/DILe4w0lsiSGICNn82Hze1+DPxht/jb4VtPE2l+GfEGi+H7+ytb7T77XYIbf7akybiI4hK0o8s/KWdFR8q8TSxsHIBlf8Kb8Xf9F2+IH/gD4e/+VVH/AApvxd/0Xb4gf+APh7/5VVz/AIk8P6t4D8W6LqGneKdY8RfEHXvEGTpUt7cHT5tEN8n2kGwMrW9utnYyR4uo1ieSeGAMztdtBPlazpXibRfi5c+KfiTHcR+EZ/EFnYeHbvwz421OJdPWR4ILOK+0yJLeCZZrssXkJuGVryOJw1vEZYwDtf8AhTfi7/ou3xA/8AfD3/yqrivgh4Q8efEr4L+AfF+p/HHxxBqWv+H9P1W6itNP8PrCks9tHK6oG0tiFDOQASTjGSetfRVeVfsnf8msfBv/ALEzRv8A0hhoAP8AhTfi7/ou3xA/8AfD3/yqo/4U34u/6Lt8QP8AwB8Pf/Kquq+IXgm48e2el6cNd1DRdKS98/U4tLuJrS4v4BDKFgS6gkjmt8TNBKXjYFhCYzlJGryCH/hYvjX4R63pvgC9t9U0hvEFvbaDr2ua3c2U+o+HFS3kuGW9igmmdnf7XaQ3QVZGh8q6WaV9s04B2v8Awpvxd/0Xb4gf+APh7/5VUf8ACm/F3/RdviB/4A+Hv/lVVr4ENp1r4e1nSLaLWLPWNI1NrPW7DWfEF7rjWt6beCXbDd3UjvJA8MtvLHjZ8sw3xxSmWNeA+Ovj/wARa5d6K/g/VrjTfCeieLdDsNZ1SzIjOpXsmvafbPYRSYJeCOOS7W5Kbf3vkwiRtl5CoB2v/Cm/F3/RdviB/wCAPh7/AOVVH/Cm/F3/AEXb4gf+APh7/wCVVcV8cNK8TW/jLWfFni+O4/4U3oemRSmTwz421PSdTsFQSyX19JbWiQi5UK0OYmuHZI7R3hV5JjC30VQB866T4Q8eX/xo8VeEJPjj44Gm6V4f0jVYJV0/w/5zS3VzqUUisf7LwVC2URUAAgs+ScgDtf8AhTfi7/ou3xA/8AfD3/yqo8Of8nT/ABD/AOxM8Nf+l2u1q/FvxTqmkS+DvD2j3X9l3/i/Wm0VdXWNZX05Fsbu8kmjjcFHlKWbxpvBRHlV2SVUMUgBlf8ACm/F3/RdviB/4A+Hv/lVR/wpvxd/0Xb4gf8AgD4e/wDlVWT4i8Op+z9FpXiHw9qviDULC81rS9F1PSPEPiC+1dLhL2+gs45opLuaV7eWF7gSfuzslQSI6FjFLAaD+07Fr3/CJ4+HXjCy/wCEj8TX/hSH7S+l/wCjXVn532h5tl837pfsl7gpvY/ZJMKd8PmgGt/wpvxd/wBF2+IH/gD4e/8AlVR/wpvxd/0Xb4gf+APh7/5VV5/pP/BQL4Wa3oXi3V7GTUNQtNA0WbxCselta6jcX9hEyK8yQWs8sttgzQZW9W2ZRISwURTmL3XwV4sm8Z6VLqD+H9Y8PW5mKWqa3FHDNdw7VZLgRLIzxKwb/VzrFMpUh4kPFAHFf8Kb8Xf9F2+IH/gD4e/+VVH/AApvxd/0Xb4gf+APh7/5VVxWveP/ABF4x+M3wl1jRdWuLP4Z3niCTTbNbciNfEDHRdYnmun4JktFaC0+zsCiyMJ5dssZtJqNZ0rxNovxcufFPxJjuI/CM/iCzsPDt34Z8banEunrI8EFnFfaZElvBMs12WLyE3DK15HE4a3iMsYAfF7wh488AeFLDU9P+OPjia4n8QaHpTLc6f4fZRFeara2crALpYO4R3DlTnAYKSCMg9r/AMKb8Xf9F2+IH/gD4e/+VVH7S3/JOtI/7HPwn/6kOnV6rQB5V/wpvxd/0Xb4gf8AgD4e/wDlVR/wpvxd/wBF2+IH/gD4e/8AlVWr8Q/hGnxJ8VaDf3/iPxBp2i6ZZXsEukaFrV9pX2ueZ7Zop5JrS4iZvKWCZQjbgftLHgrz5V+zJ4PTw/8ACz4a/FbVvHniAWlz8P4rvxHH4m8SX19ZzzzwWVyb5jdXLxW/lCG5zsRRtuG5UJggHoH/AApvxd/0Xb4gf+APh7/5VUf8Kb8Xf9F2+IH/AIA+Hv8A5VVz/wATP2l5vDHwj+IPiDS/CmsWXifQ/D93r2k6R4hto7dtStIk4vljM6nyI2ZGmhZo7qJSoeFHlhWTV8a/tIWnw28MxeIPFngjxR4d0iCEXWtXd8dPWHRIWnaGN55RdlJ2coWENm1xNgxgxh5YkcAt/wDCm/F3/RdviB/4A+Hv/lVR/wAKb8Xf9F2+IH/gD4e/+VVHwVutUfxp8arLUtb1DW47HxmsdkdQdT9kgk0bS7gW8SoqqsSNO4UAZOSzl3Z3b1WgDzT9njXNZ1/4bSya/rFx4g1Ky8Qa9pR1K7hgimnitNXvLWFnWCOOPd5UMYJVFBIJxzRVX9mn/knWr/8AY5+LP/Uh1GigD1WiiigAooooAKKKKACiiigAooooA5/xr8QvCvw10qLU/F/ibR/CumyzC2jvNbv4rOF5SrMIw8jKCxVHO3OcKT2NcV/w1j8EP+iyfD//AMKix/8AjtHxk/5KL8Cf+xzuf/Ue1mvVaAPKv+Gsfgh/0WT4f/8AhUWP/wAdo/4ax+CH/RZPh/8A+FRY/wDx2vVaydR8WaHo+u6Rol/rOn2Wtax539m6dcXSR3F95Sh5vJjJDSbFIZtoO0HJwKAOA/4ax+CH/RZPh/8A+FRY/wDx2j/hrH4If9Fk+H//AIVFj/8AHa9VooA8q/4ax+CH/RZPh/8A+FRY/wDx2vNPhP8AtN/B7TvHnxnuLv4r+B7W3v8Axbb3NnLN4js0W5iGhaTEZIyZMOokikTcMjdG46qQPqCvir4Y/CfwP8UP27P2q/8AhMvBvh/xb9h/4RT7J/bulwXv2ffpb7/L81G27tiZxjO1c9BQB7B48+PnwC+IPhmfRb/40+B7ZGmt7uC7tPFWnia1uredLi2nTdIyFo5oopArqyMUAdXUsp5/wd8bvhZB4qTxX42/aC+F/iPxJa2U2l6e+japa6ZZ2drM8Uk4EL3s7vLK9vBud5SoWCMIkZMrS+gf8MnfBD/ojfw//wDCXsf/AI1R/wAMnfBD/ojfw/8A/CXsf/jVAHz/AOG/FngfRf8AhB/tX7UHwfu/+Ed8Z6r4un8kQRfa/t/2vzbdc6q3lbf7Svtrnf1t8qfKfzrfjzxB8KfEtjPoOgftS+B/B/hGXxBb+KRZ2mpaXdXsWoLqSahMEuJ5mTyJJlkmEbRMyTSA+Y1uv2U+6/8ADJ3wQ/6I38P/APwl7H/41R/wyd8EP+iN/D//AMJex/8AjVAHlXh34u/D/wAG3mq22hftM/C+08NyXuqavY2FxdWU1wL29mnuHF3P9tAmtkuLqWRYoY7eTCQqZyFkMvQfBT45/B74VfCPwh4L1D49fDfXbjw9pkGlLqNtrdnZrPFAgjiYxNdSlW8tUDHeQWDEBQQo7X/hk74If9Eb+H//AIS9j/8AGqP+GTvgh/0Rv4f/APhL2P8A8aoA8U074q+G9K8bavrNv+1V8HxbatrUN5dzyRW0mqPpsVyZItNW5bVDCkSws8AKW4x5ss23zpZJG6DU/jV8OvGPiFE8XftF/CfUPBtpqcOq2ei6TeW1lctLb3Cz2a3N0+oSiRYpEikIiihLyRJkiMyQyel/8MnfBD/ojfw//wDCXsf/AI1R/wAMnfBD/ojfw/8A/CXsf/jVAB/w1j8EP+iyfD//AMKix/8AjteafsyftN/B7QP2bfhRpmp/FfwPp2pWXhLSba6s7vxHZxTQSpZxK8bo0gKsrAgqQCCCDXpf/DJ3wQ/6I38P/wDwl7H/AONV5p+zJ+zJ8Htf/Zt+FGp6n8KPA+o6le+EtJubq8u/DlnLNPK9nEzyO7RkszMSSxJJJJNAFv41/G74WfE3wra6No37QXwv0WE3qS6lbatqlrqFnqlqEkDWc8Ud7buYmdomYCQK6xmORXikkRqll+0VpNr4ev0l/al+C954hudTFzFdTQW4sbWyFukf2aO3TVVkLGVGl8153/1jrtAC7fS/+GTvgh/0Rv4f/wDhL2P/AMao/wCGTvgh/wBEb+H/AP4S9j/8aoA80svGv7M2q+Hr+y8c/Ez4T+P77VtTGuarNrOqaZLbTagLdLZZYbaSV1hWOCOOGMAswjQb3kkaSR+V8ceG/wBi/wAVaLbWWn618B9AuItT06+a7tv7F3SRW97DcS252sp2zRxPC3ONsrZDDKn3X/hk74If9Eb+H/8A4S9j/wDGqP8Ahk74If8ARG/h/wD+EvY//GqAPNPH/wAavh18R7nVtC1T9ov4Tx/DXVoTaX+iW15bLqdxatGFmgN8dQKKsp3qzLbBxHIyoySBZl9L/wCGsfgh/wBFk+H/AP4VFj/8do/4ZO+CH/RG/h//AOEvY/8Axqj/AIZO+CH/AERv4f8A/hL2P/xqgDzTQP2m/g9D+0l461OT4r+B00258JeHraC8bxHZiGWWO81ppI1fzMMyLNEWUHIEiE43DPV+Nfj58AvHOlRWt18afA9jeWkwu9O1Wx8Vael3p10qsqzwM0jAMFd1KsrJIjyRyK8cjo3KaB+zJ8Hpv2kvHWmSfCjwO+m23hLw9cwWbeHLMwxSyXmtLJIqeXhWdYYgzAZIjQHO0Y9L/wCGTvgh/wBEb+H/AP4S9j/8aoA800n41fDrXNVsrr4jftF/CfxPZ6bMl3YaVod5baXaG6VgyT3Ky6hcmdomVWiXciI/7wq8iQPCaF8QvgFofxt1z4jJ8d/A8txqUMyrYN4l08LFLPDp0Nw5fzcspj0ew2LgFG+0EtIJEWH0v/hk74If9Eb+H/8A4S9j/wDGqP8Ahk74If8ARG/h/wD+EvY//GqAPn+68SfD+X4Ha38K4f2p/hfB4bbwy3hHRh5tkz29k0a25lvG+35ublbdNqPEbaMPJI7wyDYkfuuk/tWfB6HSrKPU/jZ8N7zUkhRbq4tPENnBDLKFG90ja4copbJCl3IBALNjJt/8MnfBD/ojfw//APCXsf8A41R/wyd8EP8Aojfw/wD/AAl7H/41QB4pf2P7HqeL/A3iDQfE/wAD/DN34Z1r+12bTpdHie7xaXMMcZdHUrsmniuFb5sPbJgA4Zeg1P41fDrxj4hRPF37Rfwn1DwbaanDqtnouk3ltZXLS29ws9mtzdPqEokWKRIpCIooS8kSZIjMkMnpf/DJ3wQ/6I38P/8Awl7H/wCNUf8ADJ3wQ/6I38P/APwl7H/41QB5p+0H+038Hta8B6Vb6f8AFfwPf3CeLfDFy0Vt4js5GWKLXbCWWQhZCQqRo7s3RVVicAE16X/w1j8EP+iyfD//AMKix/8AjtfOv7YvwQ+HXw11X9nfU/CHgHwv4V1KX4weHbaS80TRrazmeItOxjLxopKlkQ7c4yoPYV9v0AeKeKf2qPhZd6FdReG/jr8L9K1ptv2e81TWbW+t4/mBbfCl3Cz5XcBiRcEg8gbTwHwz+IvwY8P/AACg+FPjb48/C/xhosOir4b8zT9Yt9L8/TRapbeXKPt0rGVlD7pEdPvDaqlcn6qooA+P/E/iz4SePvCvi+w8VftLfD/Wda1PwzqfhHSdXXVNPt/7PsrxEWWWaFLkLcXMjRW7SOvlRn7Ogihtw0nmcr8Vz8N/i5/aB1f9qn4XyTaj4Zn0J764XTJ7rTZpvtnnzaazXmy0imS7jt5U2STSW9rGhuPNAnX7qooA+X/hB8avh14F1rx1qfif9ov4T+IrjxRqcGqldIvLbTVtpUsoLNlxJqFwXVo7SAgZBDeYcsGUJ6X/AMNY/BD/AKLJ8P8A/wAKix/+O16rRQB4/wDsp6tY6/8ACW71PTL231HTb3xb4pubW8tJVlhnifxBqDJIjqSGVlIIYEgggiirf7NP/JOtX/7HPxZ/6kOo0UAcV8SPA01h+1f4O8ReCLXR9I8YXnhLXrm/nms44115YbrRI47a9nWNpQoRyElXc0TBG2yoHgl80i1vwP4b8bfFb45eEvhl4fuNa0f4f6V4r+x39tBpt/bXTXOujVElmjhmaG+2wyQzDBZpIfKkYAFl+itc+DFzrXxc0vx8PiB4osLjTYZLS30a2i002K2sr2z3EB32bTFZns4WZvN3r8wjaMHFW9T+BfhDWdd+IOp3uneb/wAJ5ottoXiC2jIhS8ghW5jDM0YWTzWiu2iLl87Iogu3ZyAcp8Tf2hNU+Gn/AAt95PBv9tR+BfDNl4ntE0/VFWXUYJ/tiuJRLGi2/lNYTMxVpi0eGVWfERyvEf7Svifwl/wlX9rfDb7J/wAIvoqeLtX/AOJ7E/2bRH+07V+WM79SP2O5/wBFTdbfu/8Aj9+Zc29X/ZJ0nxBbeOH1Tx5441DWPGfh+Pwzq2rTajb7nslkmYiO2EAtI2aOd4tywDapdk2SyzSyWvFX7MUXjL/hNv7U+IvjCX/hL/DNr4U1PYmlpm1h8zLpix+WWT7Rebj93/S5Nqpsh8oAwLq/8ReE/wBq/wCIk/hbwpceK3vvCXhy+1EXOti3WGOO61iMxWqylh58iqpjhAht2ZZnlmhZ90h46/bDttH1XRI/B3hDWPH2m3vh+x8Uy3Gl6dqUs0mn3bTfZhbR29jODO620xEd29ouTGPM5kMXf638EV1nVbbU18aeKNM1KTTLbR9avNNmtYJtdtYGlaNZ3Fvm3YNcXR8yyNs4NwxDDZF5ZrfwI0m81W2u9B1nWPA1uNMttDvLHwu1vaw3unW7Sm3tcmFntljFxcBXtHgkAmOHykRQAq+B/i54n8d/Ezxf4eh8B/2RoPhXWm0i+1rVNYiEtxmyguYZLa3hSXfu+0IWWV4tsckTAtIZYYeg8fePr7w/quk+HPDmk2+veMNXhuLuzsL69axtEtbdoVuJ57gRSlFVriBAqRyOzzx/KEEskZ4C+GK+A/E3jjWk8R6xrL+LNTXVbi01IWohtJVgjtwsHkwRvt8mG3jxIznEKnO5pGe146+Htv41+w3cOqah4a8QafvFjr+j+SLy1STb50QE0ckUkUgRN0csboWSNwokiidADwDxnq3/AAv742fC/TpPBHh/xX4Fn0XXpdR0TxjdZ+x39nqen2d47Wv2aeCS5tC00MbrIVk8+5CyomHm+n9J0yHRdKstPt3uJLe0hS3je7uZLmZlVQoLyyMzyNgcu7FmOSSSSa81H7Pen6f428J+IdB8UeIPDUfh2ynsItJsTZzW95HcXMVzeNcyXNvLcSy3EkEJlm84SMVLBg7yO/qtAHlXxk/5KL8Cf+xzuf8A1HtZr1WvFP2jdZvPD/ij4J39hoWoeJruHxnNs0vS5LdLifOgawp2G4liiG0Esd0i8KcZOAdb/hcni7/ohPxA/wDA7w9/8taAPVa+Vfij+/8Aht+2Jq8n7zVdI8z+zr5uZ7L7J4csL6z8l/vR+RdzTXMe0jy5pXkXDsWPqv8AwuTxd/0Qn4gf+B3h7/5a1ymv6nP4o8Vab4i1P9nb4gXGq2Hl7HGraGkU3lOZIPtEK6wI7jyZWaWHzlfyZGZ49jksQD6Aoryr/hcni7/ohPxA/wDA7w9/8taP+FyeLv8AohPxA/8AA7w9/wDLWgD1WvlX9nj/AJPs/a5/7lH/ANNcleq/8Lk8Xf8ARCfiB/4HeHv/AJa181fAn4l+I7L9s79qK/h+E/jDULu+/wCEW+0aXb3ejC40/Zp0ir5xfUFiPmD5l8qSTAHz7DxQB91UV5V/wuTxd/0Qn4gf+B3h7/5a0f8AC5PF3/RCfiB/4HeHv/lrQB6rXhX7SPwz8BQ+DfFPjTU/h94X8a+NpoY7LRT4s01NSWXUZilrp9mpmz5EElzJCpRGjjDTSyMVLySHoP8Ahcni7/ohPxA/8DvD3/y1rn/Fni/xB4zufD76h8DviQbfRtTTVVs01Dw55F3LHHIsSzo2qEOsckiToOCs1vA4OUFAHhX7UPjnwP4P+A/ir4Gab8RNP8PWngTwZNp15batrcFrqmtSJoziw0+KINHLJuL2txLKgWN9qW4WYTXKQfb+k6tY6/pVlqemXtvqOm3sKXNreWkqywzxOoZJEdSQyspBDAkEEEV4r8QvF/iD4leAPEvhDU/gd8SINN1/TLnSrqW01Dw4syRTxNE7IW1RgGCuSCQRnGQeldB/wuTxd/0Qn4gf+B3h7/5a0Aeq0V5V/wALk8Xf9EJ+IH/gd4e/+WtH/C5PF3/RCfiB/wCB3h7/AOWtAHqteVfsnf8AJrHwb/7EzRv/AEhho/4XJ4u/6IT8QP8AwO8Pf/LWvNP2ZPix4o079m34UWlv8GPHGqW8HhLSYo760vNCWG5VbOICRBJqaOFYDIDorYIyoOQAD6goryr/AIXJ4u/6IT8QP/A7w9/8taP+FyeLv+iE/ED/AMDvD3/y1oA8U+F1l/wrb4mfC7wzZeFNQ0n4k6ne38vxJ1q107ybPW/9Cup571peFuopNQktpIpYlb7Itwtu/wBja4+zSa3wm/4l/h/9m3x1b/uvFvxI+z/8Jfqo/wBbrfneH73UD9o7N5dxbxGHj/R4w0MPlwu8bdB4K1DxB4R1WXW7z4QfFjxZ4nmhNtJruv6v4ckmERZSY4YY9Tjt7VW8uHetvFEJTDG0m91D1U8LQal4U121voPgn8ULvTtL3f2BoV3qXhprDQN6lJPsaDUgy5VmRfMaTyI2eGDyYXaNgD6Voryr/hcni7/ohPxA/wDA7w9/8taP+FyeLv8AohPxA/8AA7w9/wDLWgA8Of8AJ0/xD/7Ezw1/6Xa7XqtfL+gfFjxQn7SXjq7X4MeOJLiXwl4eiexW80LzoVW81orIxOphCrl2ChXLZifcqgoX9L/4XJ4u/wCiE/ED/wADvD3/AMtaAPVa5T4sWP8Aafws8ZWf/CT/APCFfaNFvYv+Em83yv7I3QOPtm/em3ys+ZneuNmdy9Ryv/C5PF3/AEQn4gf+B3h7/wCWtZPizx3rXjnwrrPhvW/gB8QL3RdYsptPvrb+0tAj86CVDHIm5NXDLlWIypBGeCDQB5V4U8W+B/glrFz45ufA+n/A/SrPwyDc+G7Kzg07/hJJrq8tIoboZWCMRW8uyFHu/Kmh/tNjcxWCMpm1v2Y/HOh+J/2ifiRLF8RPD/jjxBqvhnRtQuf7C1tNQt7fbqGsZtbfa2PKtYZ7KEssce8ss0iJJcNu1fB1z4x8O+Kk8Sa18OvjB441q3sptPsbnXbvwfF9igmeKS4SNbO8t1bzGtrYkyByPJXYUDPu6Cy8X+ILDx/rPi+P4HfEg6lqumWOlTxNqHhzyVitZbuWNlH9qZDFr2UMSSCFTAGCSAe60V5V/wALk8Xf9EJ+IH/gd4e/+WtH/C5PF3/RCfiB/wCB3h7/AOWtAHlX7fX/ADbl/wBlm8Of+3FfVVfCv7bfxL8R6z/woP7X8J/GGhfZfizoF1D/AGhd6M32yRfP220Xk6hJiV8naZNkfB3OvGfpX/hcni7/AKIT8QP/AAO8Pf8Ay1oA9Vr5/wBf+Geh+HfiFpqeCoPP+LF5rUeuar4mlRDeQ6NJfmS5gvrhVBe2a3WaztLeQOd0MDIo+xvPb9X/AMLk8Xf9EJ+IH/gd4e/+WteP2Xhzxvp3iG/1C08N/Hi1sb/xAPEV5pUOoeC0iuZRcJMIJLgXH2p4AsUcGwzk/Z40h3eWoUAHP3H7Qvgf4u/Hv4M+J7L4l+H5dMfxMbHRPDMWvQG4SOTR9Xja+urdJAUluZpbOGKGVWkhCxjMUt1PAmr/AMInof8AwsLzv7G0/wDtv/hYG7/hdH2VPN2/b/tH9jfacef5uP8AiTY3/ZfL/ded5/8AxL69L8TeL/EHirWvCep3fwO+JEdx4a1N9Vs1h1Dw4FklayubMrIDqhJXy7uQ4BB3KhzgEHiv+Ef17+2M/wDCsfjB/wAIp/bX/CQ/8Id9v8Jf2d9v+2fb/O837b9r/wCP3/Sdv2jbu+THlfuqAPqqivKv+FyeLv8AohPxA/8AA7w9/wDLWj/hcni7/ohPxA/8DvD3/wAtaAD9mn/knWr/APY5+LP/AFIdRoqp+ynezaj8Jbu7uLC40u4n8W+KZZLG7aNprZm8QagTG5jd0LKTglHZcg4YjBJQB7BRXxr+29pWreJ9V16y0TwbrGoeI9N8JHUNA1vTPDNxq139u3XbKmnXb/6LpU8LW8MksgBubhJYUg2zQ25rtdJ0/QNV+NWta54i8C+INY8SarrWnah4P1waBdxXGn6T/Z9iHQ37ogsIluE1F5rKWWJ3DzKYJDchJgD6Vqppkl9LbO2oW9va3AmmVUtrhplMQkYROWZEIZowjMuCFZmUM4UO3gHwh8OaNpfxLv31jwRrB+KB8Qa5c3fipNJnhVtLku7p7FZ9TISK8gFq9lGlqsszRMsGYUNqzQef/DvQrab4baND4l8KeKNc+Fem+IPFY1Xw5rfh7Uru9uJbjV3udJvbizuIjc38At5ZN3yzETXEMjoXt3ltwD6V+D3xGm+KvggeILjQ7jw3cDU9T02TS7ueOaaBrO/uLQ72jJTcTb7iEZ1BYgO4AY9rXwBD8LbzxF4L8IWHjrwz8QPC3gXSta8Z+bY3OgW/iu8murjWUn06aa1kg1Myf6O98ovGj3blkxMUuUa4tfEX4e21pc/Fi6Phn4ka74s034WaLD4evtcsNS1a5j16CO9jjmhmhWS1OoRNc2DGe1Y+XJLdyI65umoA+37bxTpd34q1Hw3Fdb9a0+yttQubby2HlwXDzxwvuI2nc1rOMAkjZyACudavnXw/4Z8O3f7YN/4yT4cXFxea34S0a6sPFM/hs27WUinVUuXluJ0R4ZzC9hA0OftBV4gY/LikaOp+xv4Ys9J/4STVbTwhqGkf2hZaak3iDXdBuNE1jU5E+0s0OpW8zH7VfReaHm1GMCO5e7ZVH7g0AfRUcl8dVuI5Le3XTVhiaC4W4YzPKWk8xGj2AKqqIirB2LF3BVNgL26+Nf2jdFGp6r+1Dp9tofji/uNd+HOmWto+naZrE0N3qMTaiq29rLEhQrm7sPMhhby2ElwZFIF0R6V8EYNI8O/HHxjpHhnQPEGi+Fr3wzoupRSX+h6ja293qJkvWvLiWe5iUS3zwz6d5zyMZ3KYkLNBIEAOr+Mn/JRfgT/2Odz/AOo9rNeq15V8ZP8AkovwJ/7HO5/9R7Wa9VoAK8/8ZfFO88JfEzwJ4U/4RTULuw8UXsll/wAJF9pt0s7aRLK8uvK2eYZ3lIs+nlLHtkz5m5dh9Arx/wCN9+1r8SfgaqabrF8kXi2e5uJ9N0i6vIbWJtI1C0Ek8kMbJCpmvLdd0hUYZm+7HIygHsFFFFABXyr+zx/yfZ+1z/3KP/prkr6qr5V/Z4/5Ps/a5/7lH/01yUAfVVFFFABXn/xc+Kd58LovDksPhTUPEFpq2tafpFxf29zbw2+m/ar62tFkm3yCVubnKrFHJkphzGDvHoFeP/tTX7WHw20ho9N1jVXHi3w7ctBomkXWpTLFb6vaXc8hjto5HCpDbytuIwSAoyzKpANXxr8T/EWmeP4vDHhHwlb+Lriy0wazrgl1YWE1pbyStHapbq8TJcTzmC92K0kMam2/eyxiRGPa+E/FOl+OfCujeJNEuvtui6xZQ6hY3PltH50EqCSN9rgMuVYHDAEZ5ANeQftA6TfazqrWXgiy8UW/xFvNMNt/aWjRNaabJZs0gjj1K9cKnkRzNuK2kn9owrLK9tsEsrN6r8PfBVj8NfAHhrwhpktxPpugaZbaVay3bK0zxQRLEjOVVQWKoCSABnOAOlAHQUUUUAFeVfsnf8msfBv/ALEzRv8A0hhr1WvKv2Tv+TWPg3/2Jmjf+kMNAHqtFFFAHn/xD+IeuaF4q0Hwp4U0HT9d8SatZXuqKms6o+m2cdravbRzEzR29w5lL3tvtTytpXzCXUqqvq/DHx1/wsXwhHq72P8AZt3Fe3ul3lqsvnJHdWd3NaXAjk2qZIvOgk2OVRmTaWRCSo8//aERLnXfBsWv2HiCXwLD9tu7q/8ACVjfXGqQ6kqxxWcaPYK93bxPDPqBeWEJnykieUJM8U/V/ARNUg+E+hW2qWH9m/ZPPtLCBrFbF202KeSPT5JLZVRYJZLRLeR4hHF5buy+VFt8tQD0CiiigDyrw5/ydP8AEP8A7Ezw1/6Xa7XqteVeHP8Ak6f4h/8AYmeGv/S7Xa9VoAKKKKAPKvCHxyvPEXhr4latf+AvEGj3fgq9ktH8Pq1ve6pe7NNtb4COO3leIyuLoIkayvnC5ZSxVdXwd8Q9cn8VJ4U8baDp/hzxJdWU2qaemjao+p2d5awvFHORM9vA6SxPcQbkeIKVnjKPIRKsXFfDzxe3h3X/ANovWn8N+KLpLLxANVt7SPQbqKbVYodEsLcrY+ciJcs01jcRqI2IJCHO2SNmPgz41tvGfj9r/VtH8UXHjC70yeV9Qv8AwvqWmaRolqssAGm2st9bwF2kZ1d5FTfcNbM7iJIreCIA91ooooA+Vf2+v+bcv+yzeHP/AG4r6qr5V/b6/wCbcv8Ass3hz/24r6qoAK5/xrqviLStKiPhfQLfxDq88wiSG+1EWFpCu1maSeYRyuq4XaBHFKxd4wVVN8idBXKfEzxNpHhrwrP/AG3D4gmsNQ3WDf8ACM6bqN5eLvR8sv2CN54cAHEy7drbcMGK0Aef/wDC/Nck8K7Lfwnp9346l8Tf8IpZaVDrTnSb+6RPPuXh1E2oJit7dLsyloFYTWVxbqrOq7/QPh746/4TWz1SG7sf7K8QaJe/2XrOmrL56Wt15MU4Ec21RLE8M8MqPtVikqh0ikDxp4r4c8J2fhL4Ptp8mjeMLfw/DrUf/Ct9O061uLvXtEhWyjjt8vMHNrvmW8K/bnEMcF0lvc+VGXtk9A/Z1+G+qfD/AMK65e6/cahceIvFGtT67qA1O7W5njLJFbwLIyZjWX7NbW5lSEmBJjKsG2ARIoB6rRRRQB5V+zT/AMk61f8A7HPxZ/6kOo0Ufs0/8k61f/sc/Fn/AKkOo0UAeq0V5/8AG74p3nwg8IWOt2XhTUPGElzrWm6QbHTrm3gdPtd3HbLIWnkRThpVVVB5d0DGNN8seUfjLqmmaF4sg1zw/p+meM/DVlBqN7pw1tf7LWzuGlWG9OoSxRbLZfs9yZmeESx/ZZisMo8kzAHqtFfOtl+13De/DS/8RDSdHt7yw8QDw9dX95rclt4bgZrRLyO7bVJLVXFpJDLCkc/2bbLPPCke6OVJ21f2dfiP8UfHviv4hQ+O/DGj+HbHTNTgt4rG21z7bc6ZK+labc/YyEtI0lUG5lkabzSRI7RqrxqshAPdaK8U/aU+HOn+ItCGsw/CTT/i94p/dafY2Wsw2d5b6ZGzMZLpYL2eKIbQcusTxyXBSCN3VUWSHWTxlceFv2ZbDxT4Ag1D4qfYPDNtqGlLql3Ml/r0C26OrvIIHka5liG4AxZeRgpCbiVAPVaK8Ks/2kr63j8d6zqegaPd+CfCPhK38S3Wv+FtfbVBdSyWrXL2cCtbQxsyxRmQMZQWiuLKQqouMRngr9ozXvEfg3xjquqeAbjQL7w/DDciTUXvtN0qWKQuDI93qdjZuiwCJ5bhlgkEcRRk86RvKAB7rRXzVo/7X2qeJIPD1poXw/8A+Eg1rVPE1x4Wkn0/WlXR4p10s6lBcR3U8UU09tJA0b+cltgos7xecBbi67XxR8avEXh7x/4P8Gx+FtHm13VYbO4vYbrxGLQOskpS6GleZbg6i1nHHLPMhEDLEYCAWmCqAVP2jbbXLvxR8E4vDeo6fpWtN4zm+z3mqWD31vH/AMSDWC2+FJoWfK7gMSLgkHkDadb/AIRz43/9FD+H/wD4Qd9/8uaPjJ/yUX4E/wDY53P/AKj2s1a+N/imbwPpWma0vxN8L/DW3EzWbzeM7aObTbtnXeqjNzbOJ1ETFNs23a026NzsaMAq/wDCOfG//oofw/8A/CDvv/lzR/wjnxv/AOih/D//AMIO+/8AlzXQfCHx3q3xF8Gx6xrPhq48L3jTSRfZZhcBZVU8SRrcwW9wF5K4nt4W3I5VXjMcsnE/GTwzZ/8AC7/gT4h87UPt/wDwk1zYeT/aVx9j8v8AsHWX3fZPM8jzc8eds8zb8u7bxQBrf8I58b/+ih/D/wD8IO+/+XNH/COfG/8A6KH8P/8Awg77/wCXNeq0UAeVf8I58b/+ih/D/wD8IO+/+XNfNXwJ0X4py/tnftRRWHjLwfba1F/wi39pXlx4Supre5zp0hh8mEamjQ7VyG3SS7zyNg+WvuqvlX9nj/k+z9rn/uUf/TXJQB6r/wAI58b/APoofw//APCDvv8A5c0f8I58b/8Aoofw/wD/AAg77/5c16rRQB5V/wAI58b/APoofw//APCDvv8A5c0f8I58b/8Aoofw/wD/AAg77/5c16rWT4p8LaX410K60XWrX7dpV1tFzaNIypcIGDGKQKRvibbteNspIhZHVkZlIBwH/COfG/8A6KH8P/8Awg77/wCXNH/COfG//oofw/8A/CDvv/lzXKfCz4T+B9B/aO8V6r4K8G+H/Clh4X0WHw9LN4e0uCw+03940d7dw3ARFMvk28WlPEwAUfbJ1y7ZEX0BQB5V/wAI58b/APoofw//APCDvv8A5c0f8I58b/8Aoofw/wD/AAg77/5c16rRQB5V/wAI58b/APoofw//APCDvv8A5c15p+zJoHxhm/Zt+FEmmeOvA9npr+EtJa1t7vwXeTzRRGzi2I8i6sgdguAWCICQSFXOB9QV5V+yd/yax8G/+xM0b/0hhoAP+Ec+N/8A0UP4f/8AhB33/wAuaP8AhHPjf/0UP4f/APhB33/y5r1WigDyr/hHPjf/ANFD+H//AIQd9/8ALmj/AIRz43/9FD+H/wD4Qd9/8uatfGfwN4C1+2s/EHxHtbfWvD2iwzRLomq2aX9jPcXEkCxSC0aNzNdhk8mARgyH7XLGisZQK1vg3pniLSPh3p9r4ne4OpLNdPDDe3Iubm2smuZWsre4mDN5s8VsYIpJN8m+SN282XPmMAc//wAI58b/APoofw//APCDvv8A5c0f8I58b/8Aoofw/wD/AAg77/5c16rRQB8v6BoHxhP7SXjqOPx14HXUl8JeHmnuG8F3hheI3mteWix/2sCrKwlLMXYMHQBU2Ev6X/wjnxv/AOih/D//AMIO+/8AlzR4c/5On+If/YmeGv8A0u12vVaAPKv+Ec+N/wD0UP4f/wDhB33/AMuaP+Ec+N//AEUP4f8A/hB33/y5r1WigDyr/hHPjf8A9FD+H/8A4Qd9/wDLmj/hHPjf/wBFD+H/AP4Qd9/8ua8K/bj+N/hXWvA3xP8Ah0fH2j+F7jRPD9/Lq1jd6zFZX2r3UmmSyWem20JdZnUvNbTySLhH2pbATiW5WH6/0nVrHX9KstT0y9t9R029hS5tby0lWWGeJ1DJIjqSGVlIIYEgggigDzX/AIRz43/9FD+H/wD4Qd9/8uaP+Ec+N/8A0UP4f/8AhB33/wAua9VooA+Ff229F+Kdt/woP+2/GXg/UPM+LOgR2P8AZ/hK6tPIuj5/lyy79Tl82Jed0S+WzZGJFxz9K/8ACOfG/wD6KH8P/wDwg77/AOXNeVft9f8ANuX/AGWbw5/7cV9VUAeVf8I58b/+ih/D/wD8IO+/+XNH/COfG/8A6KH8P/8Awg77/wCXNeq1k+KfDNn4w0K60i/m1C3tLjbvk0vUrjT7gbWDDZPbyRypyoztYZGQcgkEA4D/AIRz43/9FD+H/wD4Qd9/8uaP+Ec+N/8A0UP4f/8AhB33/wAua5T4NeDdD8bfsX/CK18QeGv+EysLXwZpF6PDzlGi1CRNOTZE8UrpBNkkFVnPlrII5Mq0auur+yla2+n+Cdeshon/AAhuq2+tP/afgm3SFLLw1O9tbyrZWggZoTEYZILhpI2xLLczSFIXkaCIA1v+Ec+N/wD0UP4f/wDhB33/AMuaP+Ec+N//AEUP4f8A/hB33/y5r1WigDx/9lOO+h+Et3Hqdxb3mpJ4t8UrdXFpbtBDLKPEGob3SNncopbJCl3IBALNjJKt/s0/8k61f/sc/Fn/AKkOo0UAVP2qfDms+L/hVBo2h+G9Y8T3E/iDRbm4ttD1CCwuYrW21G3u55EnluLco3l27KjRyBxI8ZG0AutvVf2e9P1vwhqOl3/ijxBdeINQvdOv7jxhIbM6o0lhdx3Vmqj7P9mSKKSMYhWAR/PK5UyTSyP6rRQB4pp37Mz6HLq9xpHxV+IGl3+q61Dr93eR3djM8t4tibKUss1o6NFKgjcwMpijeGLyEgVAtdB8LfgD4d+D2tand+HL3WIdNu4bW3t9CmvS9jYrBZWlmpjXAeRjDYWo3zvKy7H2FPNlD+l0UAcV41+HWo+M9VimTx94o8PaQYRb3Wi6I1lDDdruYuTO1s11EzK2zfBPEyhQUKP89aupuvgDwakfh3wrcapb6ZDDbWXh7QFtbdhEpWNY4VmlhhRUTnaXUBUIXJwp6CigDx/4Xfs8aN4V+Efibwdrljbz2/i+a+n1ywsrqf7NHFcp5KWNu+UZILezW3s4zGsI8u2RljiJ2i3qvwFfxD4Q1HRta+IfjDWL+6vdOvotcuJLFbiyexu47u2EMEdqtoMTR5ZmgZ5AdrsypGE9VooA8K0n9k+00bxvZeJofiR44nuIPECeKJrS7m0+eG61H7ALCaV2ezMqrLb70MUbpHGHIhSELGE7Xxd8Hrfxr42s9c1HxN4g/sqD7BJJ4VjnhGl3E9lcvdWtwymIzJKszRuTFKgk8iJZA6KVPoFFAHin7RvizQ/A3ij4J634k1nT/D+i2vjOb7RqOqXSW1vDu0DWEXfI5CrlmVRk8lgOpq3J+038AptVt9Tk+K/w3fUraGW2gvG8R6eZoopGjaSNX8zKq7QxFlBwTGhOdoxb+Mn/ACUX4E/9jnc/+o9rNdB41+N/w6+GuqxaZ4v8feF/CupSwi5js9b1m2s5niLMokCSOpKlkcbsYypHY0Ac/wD8NY/BD/osnw//APCosf8A47XFePfjF8DvHnibwPrT/tD+F9Gfwnqbarb2mm+J9HMN3K0EluVn85ZH2+TNcR4jZDiZjncsbJ6/4F+LHgf4ofbv+EN8ZeH/ABb9h2fa/wCwtUgvfs+/ds8zynbbu2PjOM7Wx0NdXQB5V/w1j8EP+iyfD/8A8Kix/wDjtH/DWPwQ/wCiyfD/AP8ACosf/jteq1U0zVrHWrZ7jT723v7dJprZpbaVZFWWKRopYyVJAZJEdGXqrKwOCCKAPNf+Gsfgh/0WT4f/APhUWP8A8dr4/wDAX7aHwV+En7Z37Smt+JPH+npoviT/AIRr+ydR0uKbU7e8+z6cyT7JLVJV+RnVTkjnI6g4/RWvKvg3/wAlF+O3/Y523/qPaNQB5V/w9H/Zi/6Kb/5QNU/+RqP+Ho/7MX/RTf8Aygap/wDI1fVVFAHyr/w9H/Zi/wCim/8AlA1T/wCRqP8Ah6P+zF/0U3/ygap/8jV9VVUstWsdRub+3tL23uriwmFteRQyq7W0pjSURyAHKMY5Y32nB2yIejAkA+QPBv8AwUR/ZU8E22qpafFK4u7jVNTutVvLy80LUnnmlmkLBWcWgLLFH5cEYOSkMEKZIQV0H/D0f9mL/opv/lA1T/5Gr6U0DxZofiv+0v7E1nT9Z/s29k02+/s+6Sf7LdR48y3l2E7JV3DcjYYZGRzRoHizQ/Ff9pf2JrOn6z/Zt7Jpt9/Z90k/2W6jx5lvLsJ2SruG5GwwyMjmgD5r/wCHo/7MX/RTf/KBqn/yNR/w9H/Zi/6Kb/5QNU/+Rq+qqKAPlX/h6P8Asxf9FN/8oGqf/I1ef/s9f8FHv2dvA3wC+GnhvW/iH9i1rR/DOmaffW39iajJ5M8VrHHIm5Lcq2GUjKkg44JFfdVeVfsnf8msfBv/ALEzRv8A0hhoA8q/4ej/ALMX/RTf/KBqn/yNR/w9H/Zi/wCim/8AlA1T/wCRq+qqqatq1joGlXup6ne2+nabZQvc3V5dyrFDBEilnkd2ICqqgksSAACTQB8QfEv9uz9mX4ia74a1i3+P3iDwnf6B9pNq2jeHZZkZ5lVGlaO80y4QSqiuiSIFdUnnXdtlYHoPAf8AwUb/AGaPBPhmDSbj426x4puEmuLiTVte0a/ku5mmneYhjHZRoqqZNiIiKqIqKAAor608U+LND8DaFda34k1nT/D+i2u37RqOqXSW1vDuYIu+RyFXLMqjJ5LAdTR4p8WaH4G0K61vxJrOn+H9Ftdv2jUdUuktreHcwRd8jkKuWZVGTyWA6mgD5r/4ej/sxf8ARTf/ACgap/8AI1H/AA9H/Zi/6Kb/AOUDVP8A5Gr6qooA+FdF/wCCj37O1p8ffGXiSX4h7NF1Dwzoen21z/YmonzJ7e61aSZNot9w2rdQHJAB38EkNj0D/h6P+zF/0U3/AMoGqf8AyNXqvhz/AJOn+If/AGJnhr/0u12vVaAPlX/h6P8Asxf9FN/8oGqf/I1H/D0f9mL/AKKb/wCUDVP/AJGr6qqpqerWOi2yXGoXtvYW7zQ2yy3Mqxq0ssixRRgsQCzyOiKvVmZQMkgUAfIHxC/4KI/sqfErwB4l8Ian8UriDTdf0y50q6ltNC1JZkiniaJ2QtaMAwVyQSCM4yD0roP+Ho/7MX/RTf8Aygap/wDI1fSmv+LND8Kf2b/bes6fo39pXsem2P8AaF0kH2q6kz5dvFvI3yttO1FyxwcDijX/ABZofhT+zf7b1nT9G/tK9j02x/tC6SD7VdSZ8u3i3kb5W2nai5Y4OBxQB81/8PR/2Yv+im/+UDVP/kaj/h6P+zF/0U3/AMoGqf8AyNX1VRQB+cH7U37cXwP+NWq/AjT/AAh48t7+40j4p6DrOoPd2N1Yw2tlE0qyzvLcRRoqqZEz83AJPQEj7K/4ax+CH/RZPh//AOFRY/8Ax2j9pb/knWkf9jn4T/8AUh06vVaAPKv+Gsfgh/0WT4f/APhUWP8A8dqpq37UnwW1HSr20t/jn4H0u4nheKO+tPE2mtNbMykCRBIzoWUnIDoy5AypGQfYK5T/AIWx4H/4Tv8A4Qn/AITLw/8A8Jn/ANC5/akH9o/6rzv+Pff5n+q/efd+783TmgDwrw/8Sfgz4Q+EfhfwD4f/AGpNH0a38PQxWltrMPiPw/LfS2sSMkUEnmwPCVVCi7liVz5SEsSXLdX4K+PnwC8DaVLa2vxp8D315dzG71HVb7xVp73eo3TKqtPOyyKCxVEUKqqkaJHHGqRxoi+v/wDCWaH/AMJV/wAIx/bOn/8ACSfYv7S/sf7Un2z7Lv8AL+0eTnf5W/5N+Nu7jOaP+Es0P/hKv+EY/tnT/wDhJPsX9pf2P9qT7Z9l3+X9o8nO/wArf8m/G3dxnNAHAf8ADWPwQ/6LJ8P/APwqLH/47R/w1j8EP+iyfD//AMKix/8Ajteq0UAeP/sp6tY6/wDCW71PTL231HTb3xb4pubW8tJVlhnifxBqDJIjqSGVlIIYEgggiirf7NP/ACTrV/8Asc/Fn/qQ6jRQB6rRRRQAUUUUAFFFFABRRRQAUUUUAeVfGT/kovwJ/wCxzuf/AFHtZrJ/ao8LaXafAL46+JIrXZrWofD/AFDT7m58xj5kFva3skKbSdo2tdTnIAJ38kgLjoPjP4S8Va/ffD/WfCFno+o6l4Y8QPqsljreoy2EM8T6bfWZUTR285DBrxGx5ZBCEZHFcV8TPCnxQ+LvhWfw34n+HHg+40W43C4ttP8AijrOn/aEZHjaKVrbSo2kiZXYNGxKNxlSQMAHoHxG1HS/hfFqnju30j7f4k1X+yPDaBrlokuHkvmt7CORvmEUS3GpOXkSNnCOx2yFESvH/jH4++ItroE/g+PxBo+meNtI8QeELufXtO0u5SyvtP1HWxbRoLf7YJIWEtvKk0RmlWWFcB1NwVt+r0zR/itp3g1/Csvw28D6zoUsM1tPb6/8SdU1VrmKUt5kc0l1pMjyqQ7LtdmG3C/dAA5+b4V+PLnwJeeEZfhf4Pl0q8vYNSubh/irrZ1Ge6hlilhuHvzpn2ppY2t4ArmXcqwxoCERVABb8a/HXxl4D8f6Ppcj6P4ksYNT0bRNag0fQ7tRHJfS21u11LfvceRZMst5E66eFurhojC5cRztJB1X7Kek2OgfCW70zTLK307TbLxb4ptrWztIlihgiTxBqCpGiKAFVVAAUAAAACvKtZ/Zs1vXbm5ln+DPge3SWazuo7XT/iprlnbWdxaRwRWtxaQQ6YkdpPHFawRLNAscgjUpu2u4btfhv4U+KHwm0K40fw38OPB8VhcXs+oSLqPxR1nUXM8zb5nElzpUjje5Z2AOC7u2NzsSAfQFeVfBv/kovx2/7HO2/wDUe0aj/hI/jf8A9E8+H/8A4Xl9/wDKauU8G6R8b/CXiPx3qv8AwhXw/u/+Eo1qPV/J/wCE3vk+zbNOs7Ly8/2Od+fse/dhf9Ztx8uSAfQFFeVf8JH8b/8Aonnw/wD/AAvL7/5TUf8ACR/G/wD6J58P/wDwvL7/AOU1AHqtfJV9pNj8KPgr+2Jb+CLK38HW+kTahc6dFoES2K2Uo8KaZKJIREFEbeYS+5cHcSevNewf8JH8b/8Aonnw/wD/AAvL7/5TVyng/wAKfFDwJrvinWNH+HHg9L/xNejUNUa8+KOs3aSzhdgdI5tKdIcIETEQUbI4lxtjQKAcr+0//wAW1/tn/hEf+KV+zfBnxf5H9if6H5X2H+zfsG3y9u37N9puPJx/qvPl2bd7Z9Kk0mx8KftJeANM0Syt9H02TwNrNs9nYRLBC0VneaQtnGUQAFYFurkRLjEYuJQuN7Z5/wAC+EPiR8Nft3/CO/Cn4f2H2vYjbviJqc3lQx7vJtofM0hvJtot8nl20e2GLzH2Iu9sngXwh8SPhr9u/wCEd+FPw/sPtexG3fETU5vKhj3eTbQ+ZpDeTbRb5PLto9sMXmPsRd7ZAPoCivKv+Ej+N/8A0Tz4f/8AheX3/wApqP8AhI/jf/0Tz4f/APheX3/ymoA9Vryr9k7/AJNY+Df/AGJmjf8ApDDR/wAJH8b/APonnw//APC8vv8A5TVynwn0j43/AAv+Fng3wb/whXw/1P8A4R3RbLSPtv8Awm99F9o+zwJF5mz+x227tmdu44zjJ60AfQFeKftoeE9D8V/ssfFL+29G0/Wf7N8M6rqVj/aFqk/2W6jsZ/LuIt4OyVdx2uuGGTg81rf8JH8b/wDonnw//wDC8vv/AJTVz/j/AEf4rfE/wbq3hXxF8NvA91oWqwm2vbe2+JOqWjTREjdGZIdJRwrAbWUMAyllbKsQQDoPFf8Apf7TXw2tJ/31pB4Z8RalFBJ8yR3SXGkQJcKp4Eqw3V1GHHzBLiVQcSMD5V8Ef3/xJ+H2kSfvNK0j/hYv9nWLcwWX2TxHbWNn5Kfdj8i0mmto9oHlwyvGuEYqeq1/wp8UPE/hXTdA1L4ceD5rTTfLNleJ8UdZi1G3dEMYlS+TShcrKY2dGkEm91kkV2YSOGNf8IfEjxH4V03w7N8Kfh/YaVpfl/2amjfETU9Nl07y0MafZZrbSI5LfETPF+6Zcxu6HKOykA6v9mb918Lri0T5LTT/ABN4k02zgXhLa1t9bvoLe3jXokUUMccaIMKiIqqAABXqteP6Te/GHQNKstM0z4YfDfTtNsoUtrWztPG95FDBEihUjRF0UBVVQAFAAAAAq3/wkfxv/wCiefD/AP8AC8vv/lNQAeHP+Tp/iH/2Jnhr/wBLtdr1Wvn/AE3SPjfp/wAU/EPjL/hCvh/J/a+i6ZpH2L/hN74eV9knv5fM3/2P82/7fjbtG3ys5O7C9X/wkfxv/wCiefD/AP8AC8vv/lNQB6rXin7U/hPQ9Y8L+ENbv9G0+91rR/Gfhn+zdRuLVJLix83X9OSbyZCC0e9QFbaRuAwcitb/AISP43/9E8+H/wD4Xl9/8pq5T4keFPih8WdCt9H8SfDjwfLYW97BqEa6d8UdZ05xPC2+FzJbaVG52OFdQTgOiNjcikAHQR6TY+K/2kvH+ma3ZW+sabH4G0a2Szv4lnhWK8vNXW8jCOCAs62tsJVxiQW8QbOxcea/swf8XK/sb/hLv+Kq+0/Bnwh5/wDbf+meb9u/tL7fu8zdu+0/Zrfzs/63yIt+7YuOq8deEPiR8SvsP/CRfCn4f3/2Tei7fiJqcPmwybfOtpvL0hfOtpdkfmW0m6GXy03o2xcHjrwh8SPiV9h/4SL4U/D+/wDsm9F2/ETU4fNhk2+dbTeXpC+dbS7I/MtpN0MvlpvRti4AO1/Zk1a+1/8AZt+FGp6ne3Go6le+EtJubq8u5WlmnleziZ5HdiSzMxJLEkkkk16XXlX/AAkfxv8A+iefD/8A8Ly+/wDlNR/wkfxv/wCiefD/AP8AC8vv/lNQAftLf8k60j/sc/Cf/qQ6dXqtfP8A8S9I+N/xE8OWelf8IV8P9P8As+taTq/nf8JvfS7vsWo2975eP7HXG/7Ps3Z+Xfuw2MHq/wDhI/jf/wBE8+H/AP4Xl9/8pqAPVa8K+NFlfeHtc8GxyaFo8XwkTxBYXOqRaddNBqU+tXOrQ/YpBAIPLaBL6aK5mYTJJIx3HcqSQ3XQf8JH8b/+iefD/wD8Ly+/+U1cVpngH4laZ4yfxT/wrvwvqGr+dNcwjVvi1rt/bWksgYPJbW0+mPDbtseSMNEiFY5HjXCOykA5/wD5ov8A8JB/zHv+Fzf8hT/l6/5HL+zP9b97/kH/AOh9f+Pf9z/q/lo/5ov/AMJB/wAx7/hc3/IU/wCXr/kcv7M/1v3v+Qf/AKH1/wCPf9z/AKv5a6r/AIRD4kf8J3/wmP8Awqn4f/299/zP+Fian5HneV5P2n7P/ZHk/afJ/cfadnneT+63+X8tH/CIfEj/AITv/hMf+FU/D/8At77/AJn/AAsTU/I87yvJ+0/Z/wCyPJ+0+T+4+07PO8n91v8AL+WgD6Aoryr/AISP43/9E8+H/wD4Xl9/8pqP+Ej+N/8A0Tz4f/8AheX3/wApqAD9mn/knWr/APY5+LP/AFIdRorV+Bfg7XPA3w/aw8SJp8OtXWtazq9xDpd09zbw/bdTurxY0leKJn2rcKpYxrkqeMUUAegUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAH//2Q==)
◦ H
0: Number of accidents in the past three years and age group are somehow related.
H
a: Number of accidents in the past three years and age group are independent.
◦ H
0: Number of accidents in the past three years and age group are independent.
H
a: Number of accidents in the past three years and age group are not related.
◦ H
0: Number of accidents in the past three years and age group are independent.
H
a: Number of accidents in the past three years and age group are somehow related.
◦ H
0: Number of accidents in the past three years and age group are somehow related.
H
a: Number of accidents in the past three years and age group are not independent.