Question 1
Assume that an aqueous solution of a cation, represented by shaded spheres, is allowed to mix with a solution of an anion, represented by unshaded spheres. Three possible outcomes are represented by boxes (a)-(c).
![](data:image/png;base64, /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAE2AVoDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9UKKKKACiiigAooooAKKKKAPmnxZ4S8XfFv8AaM8b6FY/FTxV4F0fQNE0a4gs/DxtQksly96JGfzoZDnFumMEd6drH7OXiPw/p02oan+0z8RNPsYceZc3U2mRxpkgDLG1xySAPUkCuu8B/wDJ1nxe/wCxe8Nf+h6pXH/HTxHqFz8ctO8PzidNMsNFg1fTo4SU+1XT3M0M6qcjfIkawbQPuCViT86UAZmmfBy91nVk0u0/ao8fy6m4cpZGfTVncIAXKo1qGbaGUnAONy5xkV0P/DLPjL/o4z4mf99ad/8AIlee/EGUaT4Wt76y1ZNNubDTtGmttQsJfJCNGbgxYIA/dSsWiRMYYtIuBuOfrzQrq4vtE0+5u4/KupreOSWPaV2uVBYYPI5J4oA8F/4ZZ8Zf9HGfEz/vrTv/AJEo/wCGWfGX/RxnxM/7607/AORK+iKKAPnf/hlnxl/0cZ8TP++tO/8AkSj/AIZZ8Zf9HGfEz/vrTv8A5Er6IrwL4k/GrxLPf3tl4Jl061ht4box391bG+a6mhQnykiWWP77BlTLAt5Mh4XaWAKn/DLPjL/o4z4mf99ad/8AIlH/AAyz4y/6OM+Jn/fWnf8AyJXcfDX4p3ureIrjwp4lFpHrccQuLO8tPkh1KHahaSNGYspG7kdDhsE7Sa9QoA+d/wDhlnxl/wBHGfEz/vrTv/kSj/hlnxl/0cZ8TP8AvrTv/kSvoiigD53/AOGWfGX/AEcZ8TP++tO/+RK0f2KvFOv+LfgXDdeJtcu/Eeq22t6vp7alfbPOmjgv54Yy2xVXOxFHAFe7187/ALB//JBrj/safEH/AKdbmgD6IooooA+RNB8KeOfjd8cfjTbL8YvGPg/SvDWuW2nWGm6EbQQrG9hBMxPmwO2d7seveuz/AOGWfGX/AEcZ8TP++tO/+RKP2bP+S6ftKf8AY12X/prta+iKAPnf/hlnxl/0cZ8TP++tO/8AkSj/AIZZ8Zf9HGfEz/vrTv8A5Er6IrjfEuv63qWtSeHvCwt7e9hiSa91a+gaW3s1fOxFQMvmyttLbAw2rgsRvTcAeU/8Ms+Mv+jjPiZ/31p3/wAiUf8ADLPjL/o4z4mf99ad/wDIlejQa14o8CXVsfF+p6Xq+iXUqW/9qWdlJZvbTOQsayR75AYy2Bv3DBcZAAzXoVAHzv8A8Ms+Mv8Ao4z4mf8AfWnf/IlH/DLPjL/o4z4mf99ad/8AIlfRFFAHzv8A8Ms+Mv8Ao4z4mf8AfWnf/IlH/DLPjL/o4z4mf99ad/8AIlfRFFAHzv8A8Ms+Mv8Ao4z4mf8AfWnf/IlH/DLPjL/o4z4mf99ad/8AIlfRFFAHxT+018LPiH8EfgL408daT+0F8Qr7UtDsTdQW96bAwyNvVcNttgcc9iK+0rdi9vExOSVBJ/CvAP8AgoD/AMmafFf/ALBB/wDRiV79a/8AHrD/ALg/lQBLRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB4z4D/5Os+L3/YveGv8A0PVK7X4j/C/SviTZQLdvNZajabjaahbNh4t2NyMp+WWNtq7o3BU7VPDKrLxXgP8A5Os+L3/YveGv/Q9Ur2agDxbwt+zrdw6xaXvjLxjP4vgs7e3hi04afHa28skQcefPkyPJIwcA7XRGCAMjcY9poooAKKKKACvi3xlFYfBS7bw/4iuFsbQwaw1ne6ooh0+8E7ySrbiUnZmXzPniZld2hJUBVyftKkZQwwQCPegD53+Eumr8Q/ihH4y02W4bw9pKyRxXpiZINTmktoUE0ZYDzQVLAzJ8hCIFzya+iaAABgcCigDxDx78e9Xtr6e28HaZpt7DbzzWr3urzyRRyTwzCGdFVVzsRyFMmcbwy44BPW/Db4sJ4vvxoWq2TaT4mSwTUWtlDNDNAzlPMjcgYION0bfOm9c5DKx+d/C9pe+ANM8NfD/VbsHxP4ekdRCHTzLmNDHFbXUS7QSrQ5CnBUbZEbfIhcdt8GNHt/Fvj7w3r+gta3OheHtGi0ybULV2aJpUjkRbWMliGCecxJBZlOVdicBQD6Ur53/YP/5INcf9jT4g/wDTrc19EV87/sH/APJBrj/safEH/p1uaAPoiiiigD53/Zs/5Lp+0p/2Ndl/6a7Wvoivnf8AZs/5Lp+0p/2Ndl/6a7WvoigArgtT8UW/w28S6xd6+8en+GdTeG5j1mVsRW84iEUkc7dIk2wxMsjHBLOCVwu7vaCARgjI96APJPFni/QvjRpI8MeDtYs/EK3FzbyXmo6ZKLi0tYY5kkfM6ZjMuFGI9275gSACDXrdIqhRgAAe1LQAUUVznxCmvI/CV3Fp94+m3t48NjDexqGe2aeZIRKoPBKeZuAPBIoATUviX4Q0bxJb+Hr/AMVaJY6/cMiQ6Vc6jDHdSs5wgWIsGJY8DA57V0lYVp4F8PWWgXWiJo1nJpV2HF3azwiVbreMSGbfnzWf+JnyWzyTXPfDW8ls/EHjLwzu3afol7CtiuAPJhlt0lEIA/hQswGegIHAAAAO+ooooA+fP+CgP/JmnxX/AOwQf/RiV79a/wDHrD/uD+VeA/8ABQH/AJM0+K//AGCD/wCjEr361/49Yf8AcH8qAJaKKKACiiigAooooAKKKKACiiigAooooAKKKKAPGfAf/J1nxe/7F7w1/wCh6pXs1eM+A/8Ak6z4vf8AYveGv/Q9Ur2agAooooA8/wDi58Tj8P7XTbOyijudc1UzfZo5WASGKJN807DILhMou0EFmkQZVSzL4vL8R/H/AIVsG8Rp4ruvEjx2D30/h/U7WzitJPLlRZooZoYEljPzqI3cycbt65wa9N+Pfw21DxS2g+J9FhOo6v4dW7T+yTKIlvra4iCTIsm0skilIpEK43eW0ZIEhZfIp7PXNY8P6TpFn4T8QSaneWi2Dm60y4to4XNzCZGmdlWOJGUEs0bMYgpNv5hJwAfT/g7xRa+NfDGm63ZpJFBexCTyZgBJE3R43wSNysGU4JGVOCa2a574f+Eh4F8H6boguTePbIxluNmwSSu7PIwXJ2qXZsLk4GBk4yehoAKKKKAKGreH9L1+ONNU02z1JIzuRbuBJQp9QGBxVq0tILC2itraGO3t4lCRwxKFRFAwAAOAAO1S0UAFfO/7B/8AyQa4/wCxp8Qf+nW5r6Ir53/YP/5INcf9jT4g/wDTrc0AfRFFMeaOJo1d1RpG2oGOCxwTgepwCfoDT6APnf8AZs/5Lp+0p/2Ndl/6a7Wvoivnf9mz/kun7Sn/AGNdl/6a7WvoigAooooAKKKKACqWt6NZeI9HvdK1K3S70+9he3uIJPuyRsCGU/UE1dooA4628P8AjHTtMksbbxRYXAQMlteajpbzTovRPMKzoJGHGWwu7vitjwp4Zi8L6Y1uspurueVrm8vXRUe6nbG+RgoAGcAADgAADgVs0UAFFFFAHz5/wUB/5M0+K/8A2CD/AOjEr361/wCPWH/cH8q8B/4KA/8AJmnxX/7BB/8ARiV79a/8esP+4P5UAS0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeM+A/+TrPi9/2L3hr/wBD1SvZq8Z8B/8AJ1nxe/7F7w1/6HqlezUAFFePfHv4m3Phm90Lwnpks9nqeuJLcNfwkhre2ikgjkKHawMm64jwhwWG5VO8rXnOteIPFPhrWUuvDut311fLcXjpY6vfzNaXJit4ikD+azCNGyzGZcCNm8sgyEGgD6noqh4f1Zdf0HTdTSMxJe20VyIyclQ6hsZ74zV+gDH8X+K9O8D+G7/XNVmMNjZx732jLuxIVI0X+J3YqiqOWZgBya8Hn+Ivj/xBqMt7Z69aeHliv4LZdJktoZ4AHPSR+WkAyFLxuodwYl2H95XrHxt8AXPxP+F2u+HbK5jtNRuEjnspZ/8AVC5hlSeESYBPlmSJA2BnaWxzivnFvHuj+GdX1LTfEEt1oOtpq9o66Pc2ckl5OgnDK8MURczb3/dgReYf48lcoAD6L+D3xRg+KPhk3TW72Gr2b/Z9QspVClJBxvVQzYRsErk5GCrYdGUdzJIkMbSSMqIoLMzHAAHUk15B+zb4E1bwx4ev9Z1uA2F7rrRXMenOpWW0gwzrHMD0lDSyK2OMKvCnKjofj1/aw+FWsNo6GSdJLV7lAyLushcxG8BLcYNsJweCcZwCcCgCpN+0H4USSVoU1a+tIvmku7TTZpE2nO11QDzJEbB2OiMsn8Beu/0bWbHxDpVrqWm3UV7YXUYlhuIW3I6noQa+V9J22y3qwBZYk0mwSMsRBuVLUsjEPnYWJIZG+aIAPISrKK9T/Zss7yy07x6soddMk8W302nK0XlqI3WJp9oPJH2o3Xz9HOXX5WWgD2Gvnf8AYP8A+SDXH/Y0+IP/AE63NfRFfO/7B/8AyQa4/wCxp8Qf+nW5oA1fi5pHxEuPiJ8OJNO13w5HYjxLO1mk2g3Mr24/snURmZ1vFDjaWXhU+ZlPba3s+jx38WmWyarcW11qKoBPNZwNBC79yqM7lR7Fm+tXKKAPnf8AZs/5Lp+0p/2Ndl/6a7WvQtSjT4l+N9e8NX7Tp4e0WG2+0W0FxJA15PKGcrIUILwiPaChIDFnDKwC157+zZ/yXT9pT/sa7L/012ter6z4e1PR/FDeI/Dlra3c96sdvqtjdXDQCeNCdssbBWHnKpZQrABxtBdNoNAGJqXgGw+F2my654MgTRhavHNf6esjm1u7VXBn/dkkCYR7yjjaSyorHZmvTK4nVdO8QeNrq2sry1XQvDyOk12ouRJdXpVgwgwgKrCcDedxLDKbQCSe2oAKKKKACiiigAoorm/HXi1/CthYpaWy3us6rdpp2m2jtsSWdlZyXf8AhRI45ZWPXbGwUM5VWAOkorzv/hWXiD/j9HxD1xdZPzFgkJsd3cC2KfdxxjdnvnPNdF4G8Xf8JfpM8s1r9g1KyupLC/sw/mLDcRn5gr4G9CCrK2ASrDIVsqADx7/goD/yZp8V/wDsEH/0Yle/Wv8Ax6w/7g/lXgP/AAUB/wCTNPiv/wBgg/8AoxK9+tf+PWH/AHB/KgCWiiigAooooAKKKKACiiigAooooAKKKKACiiigDxnwH/ydZ8Xv+xe8Nf8AoeqV7NXjPgP/AJOs+L3/AGL3hr/0PVK9moA8o+OfwjuPHkmjeINGSKTxJoazxQQTzNFHdW82zzoC4BCEmKNg5VsFBxXmMXgnx74y8S29rF4S1HwhbNLezT61qd5aOLVntltoXhSKSUysFBOxgik4YsCNtfUtFAFPRtLi0TR7HToCTDZwR26FupVFCjP4CrlFFABRRRQAUyaGO4heKVFlikUq6OMqwPBBB6in0UAeQ3P7LvgyTU7qe1m1rS9Pu1hjn0jT9TkhtCkTMyIij5oUG8jbEyAKAoAUAD1TS9Ks9D0+Gx0+1isrOEYjggQKijOTgD1JJ9yTVqigAr53/YP/AOSDXH/Y0+IP/Trc19EV87/sH/8AJBrj/safEH/p1uaAPoiiiigD53/Zs/5Lp+0p/wBjXZf+mu1r6Ir53/Zs/wCS6ftKf9jXZf8Aprta+iKACiiigAooooAKK5iT4k6Ct/f2cU93ezWD+Xcmx065uUifupeONlyMEEZyCCDgg1reH/EOneKtJg1PSrpbyymyElUEcglWUggFWBBBBAIIIIoA0a5bx/4UuPElto91p8scWraJqUWqWfnZ8t2VXjljb0EkMs0YbB2Fw+G24PU0UAed/wDC5E/48h4Q8WP4iHynS10WcRb++L5lFptx827zuRwAXwlbvgDwnN4U03UPtk6XGpanqE+pXbxAiMPI3youeyIqJnjcVLYG7A6eigD58/4KA/8AJmnxX/7BB/8ARiV79a/8esP+4P5V4D/wUB/5M0+K/wD2CD/6MSvfrX/j1h/3B/KgCWiiigAooooAKKKKACiiigAooooAKKKKACiiigDxnwH/AMnWfF7/ALF7w1/6HqlezV4z4D/5Os+L3/YveGv/AEPVK9moAK8v+KHxUvdDuL/R/DS2z6vZQR3N5dXsTSW9qkhKou1WXfJwGKbl2oQzEb03eoV8wfGDw+vwx8deNfF+pNGug+KV0y4GpBG/0K7syiiOZskKuxRLHKVCKwm80lQgIBv+B/jv4g0ee0j8fPpl5ZX+oR6bDqmj2j2ot55IllRZoXlkITaxzIG4xkqF+avoCvjzwtNF8YrBPCnhLUYdRiF/nUL6zkElpZ2bW6NJmQKwLl3DLDu3s/zZWLIr7DoAK86+OPjXUvB3hqwi0iVLbUtXu3sIbllDtDttZ7hmRSCC+23YLkEAsCVYDafRa4X4y/Dmb4m+DJdNs7uKz1GEyTWjXQdraR2glhaOdUZXaNkmkU7WBGQecYIB4Rdade6T47lvdO8R+IbS8uXtcSSazc3EMZuHiRisEsjRYDOzKCpG7gl1/dj6F+FnjGfx54E07V723jtNS3TWd/bwkmOO7t5nt7hYyeWQSxSBWOCVwSBnFeJSeCviPqfjSd7fwgmmstwk39qX+qQfZJWURJI6+WXmbzFjK8wx7kwMQtlq968BeDLP4feENM8P2DyzwWUZVricgy3ErMXlmkI6vI7O7Huzk96AN+iuE+LPxKX4fafplvbRpca7rVybLTYHwVMgRnZ2UspZUVSSqnJ4HAyR4yfiB490LVbLWIvGcniKC6tLS7fRbuytYrI+f5pxC0cKzIrlAsW+SQrtO8vnIAPqGvnf9g//AJINcf8AY0+IP/Trc17f4O8Sp4w8LaZrK2dxpxvIFkksbwKJ7WTo8MgUkB0YMjYJGVOCa8Q/YP8A+SDXH/Y0+IP/AE63NAH0RRRRQB87/s2f8l0/aU/7Guy/9NdrX0RXzv8As2f8l0/aU/7Guy/9NdrX0RQAUUUUAFc/8Qp9YtfAPiWbw8rPr8emXL6cqIrsbkRMYgFbgnft4PB710FFAGN4MtLCx8J6PDpccceni0jaERD5SpUHPvnOSTyScmuf0OO5tfjF4qhhhWHSZtJ0+7fy41VZL1pLqOR2IGS/lRW6knsiDtUd98J9t076B4t8Q+ELSX/W6fpMltJbN/uR3MEwgHXiHy8kknJwR0/hrwvp/hOwa10+OT94wkmuLmZ57i4faq75ZXJeRtqqu5iThVHQAUAa1FFFABRRRQB8+f8ABQH/AJM0+K//AGCD/wCjEr361/49Yf8AcH8q8B/4KA/8mafFf/sEH/0Yle/Wv/HrD/uD+VAEtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHjPgP8A5Os+L3/YveGv/Q9Ur2avIfFnwL1zUviVrHjLwx8SdX8F3er2NnY3ttZadY3Ucq2zTGJv9Ihcqf8ASJM4Izx6VX/4U78Tf+i+eIv/AAn9H/8AkWgD2amyRrKhR1DowwVYZBrxv/hTvxN/6L54i/8ACf0f/wCRaP8AhTvxN/6L54i/8J/R/wD5FoA9igtorZSsMSRKTkhFCjP4VJXjP/Cnfib/ANF88Rf+E/o//wAi0f8ACnfib/0XzxF/4T+j/wDyLQB7NRXzyPDnip9W03TI/wBpXVp77UZ7i2tYYdD0aTzJbcZnTK2pAZADkEgjGK6D/hTvxN/6L54i/wDCf0f/AORaAPZqK8Z/4U78Tf8AovniL/wn9H/+RaP+FO/E3/ovniL/AMJ/R/8A5FoAu/tA/Di/8ZWPh3XdHBuNX8MXzX0Vgfu3kTxtFLHkfMHCtuUqQSU29GOPDp/EDa9caJo+i6Fr97rLWllYtp9xprQPbyRCQETvhY4/LZx5pDbVH/Hvl817J/wp34m/9F88Rf8AhP6P/wDItH/Cnfib/wBF88Rf+E/o/wD8i0Aek+BtBuvDXhTT7C/uIbvUVVpbye3jaOKS4kYySmNWZmVN7ttVmYhcAsxBJ8U/YP8A+SDXH/Y0+IP/AE63NdF/wp34m/8ARfPEX/hP6P8A/ItdN8C/hBbfA34fQ+FrbVrvXAt7d38t/epGksstxO88hKxgKPmkbAAHFAHoFFFFAHzv+zZ/yXT9pT/sa7L/ANNdrX0RXhcv7N2vaV8QPGnijwn8Vdc8JnxXexahfWFvpmn3UQlSCOAFWnhdgNsa8Z65q9/wp34m/wDRfPEX/hP6P/8AItAHs1FeM/8ACnfib/0XzxF/4T+j/wDyLR/wp34m/wDRfPEX/hP6P/8AItAHs1FeM/8ACnfib/0XzxF/4T+j/wDyLR/wp34m/wDRfPEX/hP6P/8AItAHs1FeIal8K/iVpenXV7J8ePFE0dvE8zR23hnSZZXCgkhEW0LMxxwoBJPAp1j8J/iXf2Vvcp8efE0STRrIEn8N6RHIoIzhla1BU88g8g0Ae20V4z/wp34m/wDRfPEX/hP6P/8AItH/AAp34m/9F88Rf+E/o/8A8i0AezUV4z/wp34m/wDRfPEX/hP6P/8AItH/AAp34m/9F88Rf+E/o/8A8i0AYX/BQH/kzT4r/wDYIP8A6MSvfrX/AI9Yf9wfyr57+Iv7LfjD4reCdX8JeJvjj4jv9B1aH7PeWy6JpURkTION6WwYcgcgivoeNBHGqDkKAKAHUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB89/tX+PdU8Bal8PLi+vtY0b4Y3OoXEPizV9Cima5th5ObIb4A00aPPhWZBzwpI3YPlfx1+JGt/D/AMd+A7OHxprthb28Xh6WS4128Nl9ttptYMN0DbhUEkwtstM8v+qjRDsDOzr9sUUAfmR8NvEfjX4XXnhvwt4M1PXIfFE+r+PXl8OanJKYri6SK5k0zes2Ad8nlt97DFgTy2To/Er43+OdM+GGt33hHxz4hltV8IWV1rV/dSN59j4ke/tla0iMqBomMP2stbxgBBGCQoI3fpNRQB88/syfEOfxP8TPjV4fHih/Eui6Jrdr/ZEk92ty6wS2cTS7ZOrJ5/mjH3VIZQBjA+hqKKACiiigAooqjr0z2+h6jLExSRLaRlYdQQpINAF6ivHf2O/FGreNf2Xvhpruu6hPqusX+jQz3V7dPukmkOcsx7mvYqACiiigAooooAK+Kv2z4fHMXxh8M6j4a0PxfJb2EelXEepaDa3l/C+NTH2uHyrdGEJFvl3d+ZFKov3WB+1aKAPzG0XQ/Hmi+DfCsy6R8UI76+tfHNjrL/2ZrL3GJGL6SjDyyyqS0bIRgZZ8kHfj1++0rxjqdpdXj6P4sfxybHw+PBFz/Z96kFqscEJuFuTsEULfaftfmC62syFAdy7BX21RQB8U+BtK1fR/il4Y1RdL8dNPL8T9Zjubq/07VZI10d7K6WAu0iFUtzPLbEMcLn5s4RiPtaiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArO8Sf8i7qn/XrL/wCgGtGs7xJ/yLuqf9esv/oBoA8a/YT/AOTPvhL/ANgCD+Rr3avCf2E/+TPvhL/2AIP5GvdqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKzvEn/Iu6p/16y/+gGtGs7xJ/wAi7qn/AF6y/wDoBoA8a/YT/wCTPvhL/wBgCD+Rr3avCf2E/wDkz74S/wDYAg/ka92oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr4u/4KP/ALUXxU/ZY0Pw5rHg/R/Dmr+E9aE2m38ur2NzJLa3O0smJI50Xa6b8ArkGJjk5wPtGvPf2gfg3pfx/wDg94m8CasfLt9WtTHHOAMwTKQ0UgyD911U9O1AHxR/wSh+PPxY+LXhyDwvc6X4Zsfhh4IsY9N+3pZ3P9oXcxUmONZDMYsqPmc7OhUBfm3L+jNeLfsg/s4WX7LPwO0jwRBPHe6iHe+1W+jGFubyQL5jLwDtAVEXIztRc817TQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcd40+M3w/wDhvqEFh4t8deGvC19PF58VtrWr29nLJHkrvVZHUlcqRkcZB9K57/hqr4Kf9Fg8Bf8AhT2X/wAdrzTxF4S0Pxh+3/Ha69oun63bRfDESJDqNrHcIj/2qRuCuCAcEjPua7zxz4Y+EPgD7FHffD/w5c3t64W3sbTRbRpnG5VLYYKAu50XJPLOijLMoIBf/wCGqvgp/wBFg8Bf+FPZf/HaP+Gqvgp/0WDwF/4U9l/8drmfD0Xwf1zxPa6Bc/DHRtB1C880WY1bRbCNbt48F44tpYu6qdxUD5RkNhgQPQv+FHfDj/on/hb/AMEtt/8AEUAYf/DVXwU/6LB4C/8ACnsv/jtH/DVXwU/6LB4C/wDCnsv/AI7UPiLwF8MNB1Kz02H4Y6HrOq3Q3ix07Q7NpI4s4MshcKqJnAyWBJzgHDYhs/BXwzfxBb6PqPwo0jQrm6U/ZJL/AESxMNy4BZokeMuPMCqzbDglVYjIVsAFz/hqr4Kf9Fg8Bf8AhT2X/wAdo/4aq+Cn/RYPAX/hT2X/AMdrc/4Ud8OP+if+Fv8AwS23/wARR/wo74cf9E/8Lf8Agltv/iKAMP8A4aq+Cn/RYPAX/hT2X/x2j/hqr4Kf9Fg8Bf8AhT2X/wAdrc/4Ud8OP+if+Fv/AAS23/xFH/Cjvhx/0T/wt/4Jbb/4igDD/wCGqvgp/wBFg8Bf+FPZf/HaP+Gqvgp/0WDwF/4U9l/8drc/4Ud8OP8Aon/hb/wS23/xFH/Cjvhx/wBE/wDC3/gltv8A4igC94I+Kfgv4mLeN4P8X6D4rWyKC5Oh6nDeCAvnZv8AKZtu7a2M4ztPpXUV80fs+eH9L8MftZ/tGafo2m2ek2EcHhlktbGBIYlJtLgkhVAAyeelfS9ABXI+NfjD4C+Gt3bWvi7xv4c8K3Nyhlgh1vVrezeVAcFlWR1LDPGRXXV8x+OPCui+L/29/C9lrukWGtWafDfUZVt9RtkuI1calaAMFcEZwxGfc+tAHpX/AA1V8FP+iweAv/Cnsv8A47R/w1V8FP8AosHgL/wp7L/47W5/wo74cf8ARP8Awt/4Jbb/AOIo/wCFHfDj/on/AIW/8Ett/wDEUAYf/DVXwU/6LB4C/wDCnsv/AI7R/wANVfBT/osHgL/wp7L/AOO1uf8ACjvhx/0T/wALf+CW2/8AiKP+FHfDj/on/hb/AMEtt/8AEUAYf/DVXwU/6LB4C/8ACnsv/jtH/DVXwU/6LB4C/wDCnsv/AI7W5/wo74cf9E/8Lf8Agltv/iKP+FHfDj/on/hb/wAEtt/8RQBh/wDDVXwU/wCiweAv/Cnsv/jtH/DVXwU/6LB4C/8ACnsv/jtbn/Cjvhx/0T/wt/4Jbb/4ij/hR3w4/wCif+Fv/BLbf/EUAYf/AA1V8FP+iweAv/Cnsv8A47R/w1V8FP8AosHgL/wp7L/47W5/wo74cf8ARP8Awt/4Jbb/AOIo/wCFHfDj/on/AIW/8Ett/wDEUAYf/DVXwU/6LB4C/wDCnsv/AI7Wn4a/aD+FvjPW7XRvD/xK8Ia7rF0WFvp+m69a3FxMQpYhI0kLNhVJOB0BParP/Cjvhx/0T/wt/wCCW2/+Irw74zfD/wAL+Dv2jv2bZ9A8N6Roc03iHU0lk02wit2df7KuSAxRRkZ7GgD6nooooAwPGnxC8LfDfTYdR8W+JdH8LafNMLeO71q/is4nlKlgivIygthWOAc4UntXGf8ADVXwU/6LB4C/8Key/wDjtef/ALZGlWWueIP2f7DUbO31Cxn+I9qk1tdRLJFIv2C+4ZWBBHsa9c/4Ud8OP+if+Fv/AAS23/xFAGH/AMNVfBT/AKLB4C/8Key/+O0f8NVfBT/osHgL/wAKey/+O1uf8KO+HH/RP/C3/gltv/iKP+FHfDj/AKJ/4W/8Ett/8RQBh/8ADVXwU/6LB4C/8Key/wDjtH/DVXwU/wCiweAv/Cnsv/jtbn/Cjvhx/wBE/wDC3/gltv8A4ij/AIUd8OP+if8Ahb/wS23/AMRQBh/8NVfBT/osHgL/AMKey/8AjtH/AA1V8FP+iweAv/Cnsv8A47W5/wAKO+HH/RP/AAt/4Jbb/wCIo/4Ud8OP+if+Fv8AwS23/wARQBh/8NVfBT/osHgL/wAKey/+O0f8NVfBT/osHgL/AMKey/8Ajtbn/Cjvhx/0T/wt/wCCW2/+Io/4Ud8OP+if+Fv/AAS23/xFAGH/AMNVfBT/AKLB4C/8Key/+O0f8NVfBT/osHgL/wAKey/+O1uf8KO+HH/RP/C3/gltv/iKP+FHfDj/AKJ/4W/8Ett/8RQBQ0b9pH4SeItWtNL0n4peC9T1O8lWC2srPxDaTTTyMcKiIshLMTwABk16LXyp+1P8NfCPhK++CF7ofhXRNGvT8TtDjNzp+nQwSFCZiV3IoOCQOPYV9V0AfO//ADkKP/ZLv/ctXMfFCG90347eKl1Z9sWp/wBiz6K0rrmW1RZ4ryOPPzERFmdwMrELlZPkMheun/5yFH/sl3/uWr2zxl4H0L4g6JJpPiDTo9RsWYOqsWR4nH3ZI5FIeN1PIdCGU8gg0AfKvxF0xtVm0iw063e61G51KVbD7OS7Q33kW6WkwIJKeWp83cOioZsMI/MX7GriPA3wW8G/DnU7jU9E0hl1aePyJNT1C8nv7zysJ+6E9w7yCP8AdofLDBcqDjPNdvQBw3hRZ7H4m+OIb+5V5rxrS80+JpdzLZi3WIqoPRROk7FRwDLnq9HxgWe68Nafp9jcrBqt3rOmi1QS7JJPLvIppgnc4hilYgfwqxPANb/ivwZovjaxjtdZsVu0hk86CVXaKe2kAIEkMqEPFIMnDoysOxFUvCfw18PeC7qe7060nl1GdBHJqWp3s9/ePGDkRm4uHeTYDkhN20EkgDJoA5z49+MtU8IeDrdNFnW11TVLiSyt7jYJHjYWs8/yJ1ZyICoADHLZCnFeNatoaW/jBILTUNR0tkubeKLULa/lS42FIArtMzEzbpHbLSFxIxKMZD8le+fFj4bp8TvDC6ct82mX9tN9qsb5ULeRN5bx7iFZGwUldTtdW+bhhXjJ+H3xR1fxlFJL4a0fTYBfxPLqE2qCe3WGNIctHEIw7EyRsVjKoo4fKSEkAHs/wg8ZXvjz4f6fqupQx2+qLNdWF6kKlYzc21xJbTMgbkIzwsyhuQCM85rptX1ez0HTLnUdQuEtbK2QySzSdFUfzPoByTwKzvA3g+y8A+E9N0CweWa3s49pnuH3zXEjEtJNK55eSR2Z2c5LMzEkkk15J+1XPf26fD9hE0nh/wDt0jVD5AlVP9Hl8glSD/y12AZGMkZ7UAdHbftH+G312PT73Tdd0W2lMflapqlgYLV9+7Zklt6ZCFiHRSgKmQIGGfVQQQCDkHvXyh4ghcWtil2obNlpiyK0hmBKrMZxlid3yEcnPm/ccuo217t8EIba2+FPhyKwjeLSo7cppySIyMtkHYWwKsAw/c+Xw3zevOaAPMPgx/yeJ+0f/wBe3hj/ANI7ivoivnf4Mf8AJ4n7R/8A17eGP/SO4r6IoAK+d9W/5SCeGv8Asmmpf+nOzr6Ir531b/lIJ4a/7JpqX/pzs6APoiiiigAoorlfiJ8QbL4eaJ9snjN5dybhbWEcipJOVUs2Nx6KoJJ57AAkgEA6qivB7L9o3V9D1yWLxp4f03StEW8ezOp6XqMl15BW3S4MkyPBHtjCOSWBYLtOcHivdo5EmjWSNleNwGVlOQQehBoAdRRRQAUVX1C/t9KsLm9vJktrS2jaaaaQ4VEUZZifQAE14jdfHbxBqOn3OsaVZabaaPGbqSJb2KaSeWCBHLMy5jMbl027NrcHIJ6UAe7V87/tFf8AJw/7NH/Yx6n/AOmm5r1D4VfFCD4k6beCSzfTNa0x44dRsWJdIneNZFMcmAJEZWBDD3BwQRXl/wC0V/ycP+zR/wBjHqf/AKabmgD6IooooA+d/wBrT/kcP2eP+yk2n/pBfV9EV87/ALWn/I4fs8f9lJtP/SC+r6IoAKKKKACiiigAooooAKKKKACiiigD53/bI6fA/wD7KjoX/tavoivnf9sjp8D/APsqOhf+1q+iKAPnf/nIUf8Asl3/ALlq+hpZUgieSR1jjQFmdjgKB1JPYV88/wDOQo/9ku/9y1eha3DF4++Kd74T1WCG68O6Po1pqdxp1xEssV/Pc3FwkJcEcCD7C7BeQzTK3ymJSQDsNB8XaF4q8/8AsXWtO1jyNvm/YLqOfy92du7YTjODjPXB9K1q8++Ivg/TtK8M6j4h0W1ttF8Q6PZXFzZahaQKrJiMlo2AwJI22jKNlchWxuRSOx8O6qde8P6ZqZi8g3trFc+Vu3bN6BsZ4zjPWgDlfHHxXtPCeqQaPYafP4g16Yj/AEG0ljQRZVnHmu5ATKo5HUnb2yDWZ8M/jvpXxAuLTT72xn8M69dQieDS9QkjZ5k2B28t0JV2RSNyg5X3HNeTafZalo/x58VWesuGurrWxqFizHJltHtHEZQk5DLskjMpAULG0IySCafgFY774i+ELW3tGu75ZVuYp7VVjSxiESkzshO5IniWaCNRzH55jbiUkAH1lSMwRSzHCgZJPalpksYmieM5AZSpx70AcV4duvEXjm1/tk37eHdHulWTTrOG2RrpoiM+ZcNIGALDaVjVRsH3mYthIrOdvEE+peA/G8djqd5NaG6SS3t3gg1C0LhSyozuUkicorgOcbonBXeFXM0f4m6b8OdG07w/43uF0TVrG1ig+0eTJ9jvgqAGS3fByB0ZWwynqMFWa/4Ygl8a+PV8am2urDSrTS5NL0yO8t2t57jzpkkuZnjcblTNvbrHkKxxMSGVo2oA522/ZZ8KLqFk97qevaxpFk8LW+h396r2irDn7PHIQglnSIklUmkkGSWYMxJPsSqEUKoAUDAA7UtFAHzv8GP+TxP2j/8Ar28Mf+kdxX0RXzv8GP8Ak8T9o/8A69vDH/pHcV9EUAFfO+rf8pBPDX/ZNNS/9OdnX0RXzvq3/KQTw1/2TTUv/TnZ0AfRFFFFABXzl+1Jpd1pfivwv4xnfy/Den2N3ZX85naNLdnlt5Ed+ygiF0EvWNmDDmvo2o7i2iu4HhniSaFxtaORQysPQg9aAPkrxzrdvZa5Eixi+vbzVL2Cy04bZpL+U2UcojjRyA4KjYYz8hc+cxDjFfUXg/TptI8JaJYXP/Hxa2MEEn+8saqf1FZPhf4ReB/BGqPqfh7wfoeiai6sjXen6fFDKVY5YblUHBPJ9a62gAooooA5T4s+DJPiN8LfGHhSK5Wzl13R7zTEuGjEgiM0LxhipI3Y3ZxkZr5ai8Zab4Y8NT2via+s9B1fTobyS/066lFtLGVt5Q4jkbDAEupSRAfLUhEypr7QqlfaJp2pypLeWFrdyIMK88KuVHsSOKAPKf2ctP1H+yrvVbmza20+6sNNgsZnDRG6SO3y0ogKj7OpeRlWNcrhcg/NXNftFf8AJw/7NH/Yx6n/AOmm5r6Ir53/AGiv+Th/2aP+xj1P/wBNNzQB9EUUUUAfO/7Wn/I4fs8f9lJtP/SC+r6Ir53/AGtP+Rw/Z4/7KTaf+kF9X0RQAUUUUAFFFFABRRRQAUUUUAFFFFAHzv8AtkdPgf8A9lR0L/2tX0RXzv8AtkdPgf8A9lR0L/2tX0RQB87/APOQo/8AZLv/AHLV7F4r8JXGqX9lrWjXVvpviKxR4Ybq6gaeGSBypkhljV0LKdoKncNrqrcgMreO/wDOQo/9ku/9y1fRFAHF6z4V1vxqIrHXbixtPD+SbywsN8kl902xtK23ZEMEsqqS/wAo3KoZX7NVVFCqAqgYAAwAK86+JHxmsvBN0dL0+3h1rXhFJPLbPdeRBaRRqru9xIFdk+WRMKsbsTJH8oUlxX+H/wAbofE2tR+H/EOmxeF/EUxdbW1N+lxDeuilpY4HwjvJEoy6mNeMlS6hmAB1/i3wF4f8d2qQa7pUGoLGd0UjArLEfVJFIdM9DtIyCQeCRUHg/wCHvhf4bWM0WgaTa6TFJgzSrkySY6b5GJZgM8AnjtXTV88/tE+LFvfF7eCr82/9iJ4XvPENxbzklLkxTRx/vAEbMcYcucHcCVYKxUYAPcdI8V6Jr8skWl6xYalLHy6Wl0krL9QpOK1a+T9Q8O3eq6jrEtndXWl6/aa0EtdVgjia4tJmEbs2GO0kwbdyElGiAyS42D6O+HHiebxv8PPC/iK4t1tLjV9KtdQkt0JKxNLCshUE84BbHPpQB0VVtQ1Oz0m2a5vruCyt1+9NcSCNB9STirNfLXxB1q48ZfFLXxPGzN4d1X+xdPC4YRyNZ2NyJEDY2zMLqZc52lFwzAgKQD6Z0rWtP121Fzpt/bahbHpNazLKh/FSRVyvk/TtTXwn408I6/oEccbXZ0Kyvo7LIiurO7aS1Qy7gpKoQHjbG/MRVgqHn6woA+d/gx/yeJ+0f/17eGP/AEjuK+iK+d/gx/yeJ+0f/wBe3hj/ANI7ivoigAr531b/AJSCeGv+yaal/wCnOzr6Ir531b/lIJ4a/wCyaal/6c7OgD6IrI8TeLtF8G2Bvdb1O20y27PcSBd30HU/hWvXy7f+I9R1z4+eNrbUt0SaSxt7aFuAdPFlFI0hXJPltLMwZgMkooVWwxAB9A+DfiD4b+Idg174b1qz1m1XGZLWQNjIyDjrgjoehroa+SvDgXTfiV4XvJb6Wx1hJ9LsAjS+XJeSNbEXUEirkO4iZJXUHaPJjZWba4H1rQAVm6x4m0fw95f9q6tY6Z5mdn2y5SLd9NxGa0q+QtG1GXxP4NXxZfSm9utZu47y4vJACrW5087ItwUN5Ec8jBRtyJCfl2kvQB9c29zDeQJNBKk8LjKyRsGVh6gjrUlfO3wGu5fDHj2y8OWIWLRdV0W+v57RECpBf2l5DDK4x0eRblRIo+QNCCpYsxP0TQAUV4V8d/ihPY+LofBFleSabs0K68Ralcxu8T/Z4srGBInzJHvU+YVG/BjChgzlfOo01X4a+Ir668F3Nx/aEaRBtN1G9nuLa6lAj85JA7nYVWQOTGcJwyeYS8ZAPrqvnf8AaK/5OH/Zo/7GPU//AE03NfQdrcLeWsM6AhJUDqG64IyM18+ftFf8nD/s0f8AYx6n/wCmm5oA+iKKKKAPnf8Aa0/5HD9nj/spNp/6QX1fRFfO/wC1p/yOH7PH/ZSbT/0gvq+iKACiiigAooooAKKKKACiiigAooooA+d/2yOnwP8A+yo6F/7Wr6Ir53/bI6fA/wD7KjoX/tavoigD53/5yFH/ALJd/wC5avoivnf/AJyFH/sl3/uWr6IoA+RNat9S8L/GjWdO1jz3vNQ1bVNb0lVYubu1OnQxqkBON0qHzAYwcqqscgFQ9ttOu9f+KPh/TdLhaXUUl0y6+0RsALO2tr0zSzMc7limhE0EZUHeZWUhFLmvo/xv8P8Aw78R9H/svxLpNvq1kG3qkwIZGwQSjqQykglTtIyrEHIJBi8E/DPwv8OUvh4c0W20uS/kEt5cIC8904zgyysS8hG5sbicZOMUAdNXF/E74aQfETTYxHfSaPrNtHLHZ6nCm9oVk2+YpQkBlOxDg9GRCOVrtKKAPnzRP2b9d1m5vrbx1rGi6j4cvhJ9s0rS7B0F3uct5bvI7bY+RlVGScnIzXtWv+LdO8NT2UF39pkubxmWCCztJbmRtoyxIjVtqjIyzYGSBnJAOzXnfgD998TPiTJf/NqkV9axWpf7yacbOFowvYKZ/th9SQc8BaAOn0jxrpes6tLpcbXNtqUcXn/Zb61lt3ePOC6eYo3gEgNtzt3LuxuXPC/F34K3vji8/tjw9rUej615PkSR3tv9os7hMqfnQFWU/KmSrchFBBwCNP42futG8PT2ny66mv6cmnOv3wWuEW4A7YNt9oyDxjPcCvRKAPKfh/8AB3UtJ8QQa94p1e31a+svLGn2tlbmOG0KwyQmQu5Z3kZJXBOQMHGDgEerUUUAfO/wY/5PE/aP/wCvbwx/6R3FfRFfO/wY/wCTxP2j/wDr28Mf+kdxX0RQAV876t/ykE8Nf9k01L/052dfRFfO+rf8pBPDX/ZNNS/9OdnQB9EVwHj74R23i/VI9a0/U59A8QRReUt5DGssUgwQDLE3DlQzBWBVhuIzgkHv6KAPLPhv8B7XwVqcWq6rrE3iLVIIIba1LwJb21tHEjJGUiXPzhXcbixxvbaFyc+p0UUAFeE+Kf2etYtbzHgnWdP0/S5r6TUZtP1a2eURTNbPAfJkRlKqVdTht2NpAOGwvu1FAHnvwk+E/wDwrqwW41LUI9b8Sy2kVlc6nHbC3XyY3keOGNATiNWmkIySfmPOMAehUUUAeR/Gz4SX/irU7DxZ4YW3bxVp9pPYm2vLh4YLy2kRwFLqG2SRu29H2nAaVePM3L53afDTxx8RvEgtdR8MXvgnw/Ja2sd5faje2kl1+6YOEtUtpZlyGQfPIVCbgVVjnH1BRQAyKJIIkjjULGihVUdgOgr56/aK/wCTh/2aP+xj1P8A9NNzX0RXzv8AtFf8nD/s0f8AYx6n/wCmm5oA+iKKKKAPnf8Aa0/5HD9nj/spNp/6QX1fRFfO/wC1p/yOH7PH/ZSbT/0gvq+hZ547WCSaaRIYY1LvJIwVVUDJJJ6AUAPor58vv27vhDZeJLnTV1jULzTLQqLrxPY6ZPcaLblmZV33iKYwC6lAwJUtwDXsV/8AETwtpfg0+LrvxJpVv4W8pZxrT3sYs2jYgKwlztIYkAYPJIAzmgDoaK8B8JftyfCbxZrkenNquoaBBczGCx1XxDpk2n6ffuF3AQ3MqhGymGGSMhlx94CvTfid8XfCfwe0Iar4q1iDTo5W8u1tQd91eykgLFbwrl5pCWUbUBPOTgc0AdjRXjvwl/ay+HPxi1O20nS9SutH167iFzZ6N4is5NOvL2AqWWaCOUDzoyoYhkzwjHoM1f8AjF+0v4C+B8tvZ+INTmutcuQrQ6Do1u19qMiM20SC3jy4TORuIAOCBk8UAep0V5/8KPjx4K+NFtdHwzq6y6jZHbf6NeRtbajYtxlZ7aQCRME4yRjIIzkGuQ+If7Y/w1+HfioeHJLzUvEmsRuUvLfwvpsuqf2ew3HbcmEMImxHKdp+bETkgAUAe30Vzfw/+JHhf4q+G4df8Ia9Y+IdIlO0XVjMHCtgMUcdUcBlJVgGGRkCukoA+d/2yOnwP/7KjoX/ALWr6Ir53/bI6fA//sqOhf8AtavoigD53/5yFH/sl3/uWr1TxB8YvCfhnV7jTLzULiS7ttouhY6fc3aWpKhgJnhjdYjtZXw5U7WVuhBr57+MOrajoP7W/ivUNJ3jUbf4OTSQNGCWVhqh+YY5yOuR0xX1J4X0nTtC8O6dYaTsOnQwKsDxkEOuM78jgls7ie5JPegC1pWq2Wu6ba6jpt5b6hp91Gs0F3ayrLFMhGVZHUkMCOQQcVyHxD+K1n4EuLewh0+413WbhS8enWTxiQKFdstuYY3LFMVGCW8mTA+VsVvBztY/F7x7pVoxbSRa6bqRUHKQ305uluIxjhSY4LWUr1zMWPEgrxfU7bUbDxt4ys9U806hc+I725svtG1BLbvpa+SUkX5/LCq67wQyshjB25BAPZfhf8adP+I/k202m3fh3V5rVb2HT7943M8DAfvIpI2ZJFGQCVJHPUjmvRa+SbC2n1XWfhra6VE0uqC8sry1njLK9tbLLG80rBfliV7SO8hIwEBlESY84g/W1ABXN+LPAtp4qeG6W+1DRNXtxtg1XSZ/KnQf3WBDRypyfklR0z823cAR538UPiNLqHjO48EWF/daUtnHYXGp3NixS4kjupZIkiR9vyA+WcujCRc5UqQCfLfCPjTxB8KfDP8Awk6arqeu6XBFJc6vp+tatcXuIY55RdSwyTtI6mFFPlopxKqYYBjvoA+j/DHw9g0C9Ooahq+qeKdXA2x6hrUkbPAmCNsUcUccUecncyIGbgMzBVA6uiigAoryPxt+0Pa+Gb82+k+Hb/xREkixyXdjcW8cOSM5RnkG8DD5I7oQMniu48DfEDSfH+nSXGnSNHc25CXen3ACXNo5GQsqZyuRyD0I5GaAPG/gx/yeJ+0f/wBe3hj/ANI7ivoivnf4Mf8AJ4n7R/8A17eGP/SO4r6IoAK+d9W/5SCeGv8Asmmpf+nOzr6Ir531b/lIJ4a/7JpqX/pzs6APoiiiuc+JHjOH4cfDvxT4tuYTc2+g6VdapLCrbTIsELSlQcHGQmM4P0oA6OivmPwv+yovxc8O6b4q+M+v634m8aXsCXkEenapPptp4fMg8zyLOO2kRW8slV82Tez+UhOORXJ6/wDGHx78GdU8SfBZNcm8SeMbl9L/AOEL8SawEkn+w30zW267woWWW2eGYhmIMwC7sHLMAfZFFfOy/sVeH5VGu3XjLxlL8TmHmyeO4daniumm7lbYN9mWLqghEW0J8vvXAeHvjL8Q/jVcaH8IrPXz4W8aafqOrWXjHxRp8MTSi2042ylrVGXYslz9vszuXPk7n2hiAQAfZFFfMviT9k+1+FHh/UvFXwf1zxB4d8cWFvJest7rVxfWevyopfyb6K5d0xId6702FDKzDkDGF4R8Yah+3HrBS21rUvC/wostI0+bVdK0uXybrW7m7hW4a2luAFligjjKKfK2mUSOCy4xQB9b0V8p+O/A1v8AsW6dp/jrwNqus2/w/ttStbbxN4S1DUZb+1FrPKsBu7Yzs8sc0byo5VWIkA2kDAYWPC3w0m/a5bWvFXxF1fU7nwCdVvLPw74O029ksbdYbed7f7XcSwMksssjRMwRmCxgkANksQD6kr53/aK/5OH/AGaP+xj1P/003NV/DkWofs1fGbwf4Ej13Vde+HnjNLm00e01m5N1Pol5bxmZbeKZgZHt2gVwBIx2eUuGO41Y/aK/5OH/AGaP+xj1P/003NAH0RRRRQB87/taf8jh+zx/2Um0/wDSC+rT/bZub6H9nfXobYMNPvLmzstYkVNxj02W5jju2A7/ALpn4wcgkYPSsz9rT/kcP2eP+yk2n/pBfV7x4h8P6d4r0HUdF1iyh1HSdRt5LS7s7hd0c8TqVdGHcEEg/WgD5fm0uHQ7TRNOtLKPTbK0utLjt7SC3WCOHKTJKqoqqFxb9VAwqfMAh/eV896ZFq2ranoPgu70m3n+FVh4z17+wrdLdbqCS7h0kzW0Co3mKUWSS/kUFCA8Cc5A3dv8aP2UDoPjnwH8KPCHxP8AE3h3wr42mnhTQGSK7TTLCxt3ll+z3MoMyn95FCqiQEJKcl1TYeu+I/8AwS4+F+s/Cp/D3hG617w14htlWa01ptXuLoyzoSymaB5PKOW5JRYyDggjkEA1fG+kaV4gbWNL163t7vQbqwsLe5gu8eRJbC6TyAxPVCxfaSfnOQTIBtHlH7Peo+KPiL46+HutfE2xWfXrDwXp8mlXF1AJWNpNFeCW7MrbikkmyAO4ZGbIB4ODynwi+AEv7Vnii28LeKvin4q1vwroWiWWoa5pckUEEzXUpuLdLL7UiLJLFGbeYl23b9xOFLFj6N+09+wp4P8Aht4fsvir8O9b8QeBr3wMTqVzHb6lPeh7PKi8eM3LyFZBBvO35lkEYQp8xNAFP45XGpWHwvvdc0m3SbxvpX9k3+h+d8kq6s1xaxsFwVw771jdRjCyFcRhzu634PW97eePfiP4k1OwEfjW58aXVnfXCWa+asULRR2kKybWLJ9i8uTbuYDzZCApGV474E/sc6H+0B4j1vxT8RfHHiPx9onhbV7jw1pFhK40xZvsg8qS4mNr5bs/mtIoOQ58pSzuGwKPxv8A2QtH/Zx+J2nfELwh8RPFPgHwzrStYagtq/8AaUlrNBbvPAyi4LtMhjgkTY+SuchsfLQBpazqPiXwp4o+FmrfDbTrbUPGk2n3umpDu3G401IL6WCNhvG+HzI7dlYk7sBizn5hs/BLSNM0j4A6KdHiAsb9NNvp7r7MsTXkj2EchnlIRSzvcFvnb5mf5SWA2B37Nv7Bfgzx54E0b4kfE6/1rxr4o8VadBqIQ6lLp9vYQTRpJHBElo0Q+VdinGFOBhExivGfiB+z1qn7KnizxP4X8LfFfxLp1l4gks9U0Cxnt7e8S5uri7FjIlwZUYK0b3ML+aApk8wZAMKvQB9N/s5z6hp37T3jPTtLt4l8N3/hqLVtaeNs7dYOp3kKMw3cSPDHIr8dLaNfkCKtfWVfKPw9/wCCcXw78AaAHh1zxVceOtwuD4zj1u5gu0udir5iRLJ5WPl+66vwSCSMY9Y/Z88VeIdR0jxH4V8Y6ouu+L/B2qvpOoatHbLbrfo0cdzbTmNPlRnt54CyrwG3dOgAON/bI6fA/wD7KjoX/tavoivnf9sjp8D/APsqOhf+1q+iKAPnZ0WT/goO6OodG+FuCrDII/tboa9ZsfANzoUE9noniK+0zS3YtBY+VDMlmCOUhLoWCZywViwXO1cIFRfJ/wDnIUf+yXf+5avoigDI8L+GbbwtpptoZZbueRzNdX1yE8+7mP3pZCiqu4/7KgAAAAAADM8f/C7wx8T7O3t/EemfbTbFzbXMNxLbXNsXG1/KnhZJI9y5VtrDcpKnIJB6qigDk/APwq8L/DKK7Xw9prWst4wa5u7m5mu7mfGdoeeZ3kYLkgAsQBwAK6yiigDxv4rfDe+tvFi+OfD1hPq95MLS31bSorgxvPBBI7xzQsWAEkfmSZQD96CEJAznzLwN8M/E3xH0mDw3rXh3UvDPh5rVY9VutShgikuEZ5DLbRRguR5yOVYgqLdSyQOeGH1jRQAVkeMLTUL/AMJa3baTI0OqTWM8dpIr7CkxjYIQ3bDEc9q16KAPjPQHkTwX4chuQy3lnpmj2d5A8C28kNzAJhcI6ISEbIKbBxCQXj3MSK9P+D9tLe/GnX9S0+3eOwt7GW01K7WVmjuJmeB7WPngtCouwQMlfO3thp2Fd141+AHgbx/rUmsatpVzHqkqhJ7vStUu9OkuAqlUErW0sfm7QWC787dzbcbjnr/DPhfSfBuiW2j6Hp8Gl6ZbAiK2tk2ouTkn3JJJJPJJJNAHhfwY/wCTxP2j/wDr28Mf+kdxX0RXzv8ABj/k8T9o/wD69vDH/pHcV9EUAFfO+rf8pBPDX/ZNNS/9OdnX0RXzV4s1zTtA/b78MXGqaha6bbt8NtRjEt3MsSFjqdoQoLEDOAePY0AfStfGvxK/aL8XfHuPxF4M+F/hbRZvCN1BfaZe+JvF7y/Y9TgCvDP9jjgO50zvAkY7TtICnrX1Be/ETwhd2c8A8XaJGZY2QONRhO3Ixn71fBv7L3xI8M+HNP0v4dapq+laZ4q8G2s+l6haCZY4p2iMgSaLOFmEyukpRGPnMxfcCmCAaXws/bg+I3wY8G6z4K+Jfw1vPFGueCdDt7467oepweTd6f5eI7m4NxIHBJVQ0ihiWLZVSAG8zs7f9oz49S+J/iDd6D4R8MeKdQu7MadFqT3cd/pg03y54Ybchj5KSPNIXDEbmZ8hQwNP8b6XaftFal4x1jwf4gsp7Lwt4PXREW+ula21vUUmgkktVLlPtOBasrXABWUSxgLhQX9j+HX7Q/w78W+EdY8UW3iiys9MgvdSnuI5737LPbrtt5myjLvJUEKHCnaCIFD8OQDMuP8AgpL8QU+DJ1GL4KX0njpNRXw75iXcMulSaoFDmNVWQTkmLMwjCk7SPnK/OfMPDdp+0P8ACvStD+J9nong/Udd0vVNSvtVsILm5XUNYS+hjnuo7hy2yTaIIFjGSVMEXDbQKz2FnZeHrj47yapbzeG5/FFpe/2HOQlxHpiaXLZ/2nDDlnhJkmDJGI2aNEVgzAV7rrPx/wDh/ovwui8Sv4osLqwn1aP7PHaSiaSaSTThFHEtsuWyzEHyjjBPnlgPloA5X41/t6fEn4mfDzSvDfw0+FmpaHq3i/Q576TV9UvYXW205o/Ke5tmt5dwIklULLJtAYAbSW+XA0Px78Xf2LfElp4o1Hwj4T1n4f30GmaDq+keFLqW2Nq0StFb3SCchPMKAB2PyttQExgbhzHh6Gw/Zlg8Iav4x12xmsvEPg6bS2naVb2fS9QOqTaitlMyEl0eK4ZWUiNZWtlBK/w+m/tMePPDniPwZN8PdI1611LxP4xRNO02G01IXAVSsySXDzgbYo4/OBeViN6I8OAFZwAZPx2/aK+Lf7R3j+P4b+G/hhD4Z8O6DdQ6nrcfjKbctzcWqfa1srgW8jIYn/cExfMxypO0Vs/CX49/Fv8AZp+IU/w98WeAbbxxpHii/utV0D/hDLwK9vNNuuprWOO6dR5Y3SMqZUqFfG/nbh+GvEvhv4M/FnxZ8Pdc8UaZLdail/qOma8LhYI9Rgk0+FCz3ALpFKj28iiRnLRqCArCQ7el8ZeJPD/xW/aL8B+GdH8TW1vN4Y1/TfE+s36XAS3s4IIS6wOxIXMzARiAMTHukc7slaAPob4feCPG/wAUviZpnxL+JWlWvhi10NLhPC/hON/PnthOqA3d5JuMYudm9AkYGwO43tnJq/tFf8nD/s0f9jHqf/ppua9k/wCFmeEP+hr0T/wYw/8AxVeD/HLxXoniH9ov9myLStY0/U5I/EWps6Wd0kpUf2Tc8kKTgUAfTlFFFAHzv+1p/wAjh+zx/wBlJtP/AEgvq9W+L3xR0v4NfD/VPFerxT3UFmFSKytADPeTuwSKCIEgF3dlUAnqa8p/a0/5HD9nj/spNp/6QX1J+3B4U1DVvhloXiWwikvYvBuuweIL3T4rX7Sbm1SKWKXEW4bzGsxmCfxGIL8udwAPBPjT8S/j9r+veF/H+l+BPBlhdeF70XWkaLLd3FzqsiXFvNHNbSTLsjIljUNsUDDiEZYxkl/jP/goH8TvHHw58GQ/D34QXuheKfGomWyvteu4pbFIYo3+1SxNFIspMJ25Z0QDoRuKqdzxH8c/Adp4f0/XYvEtvqVj9t0hFSxna/uWYSzDAiRfMLF/3bNs/eYMBCYLjgz4I1f4Q3ngj4reMLS40HRfE1lrWmX2mXFqbf8A4Rea7d7i2LyAt9mVghR5QmIuA3ysWUA5yy+Ifxk/Y9vbHxrd+CfB+v6HZaBZ6Z4jtPDs1xb3U9urMYbyeSTKtMJZZS77SPnbO0NuHefHH9on4w/H7xYnwj8H/DJPCOnSw21z4jfxrKjMYDMJBARbTOPKliicOhyzoXUAAjOl8UPi7orPPp/huFfHviHXbBBpGg6TEbz7c6tG8kbBAyxKiDcQ5/0fO8eYzhKZ4P8ADUP7K3xnHhjxjront9Yh0660zxFfQ+RFePFpwsHtmcuwZvMjVxAzDd528H92dwBzvwx/aL+LX7PPxGbQvEHwx0vxRoPjvVW1G3j8DztCbPUZrcSyxRrcMFYSGMttLJljKwZiQpj1r4y/G39qT4nSzaN4A8LaR4A8M6lcadb6X44Mkwu70xC3nFwsEjJI0RecDZwpYqSTmuhttctvit418NfD7wqJtavTPod7qGs2ULXltpNrbMl357XQARml+zeTvDBpfOBKqEAdPgXqGl/BuG5+FfizWrfSfE3hvVXgaS/uBp39o25ljkivUZiwfzFZS0gYlS/kEcrIwBR/Z7/bB+Ifwi0Jfhr4y+FV94lj8MaCuo6frfhm9iCS6PFiNZZVupEwI9u1nD8EAFB95vPrnXf2gf2i9F1v4g6v4Y8D6NHq1pYQaNa6mbo3elxxSPd28lsQx8uSSQQO7HG4LCcDZx1w8Daj+13oeq6H4M+1adY6P4a1SzfxE2myQQXOpSTSqNNV2KfKoYMVUskPCAyckdhoHxy8H678O7rULjU7XQr22e2mvtDu3Fvc2DJYeXJEbQ/MoQxSEIMhQPtClgwWgDoPhL+2X8Yfin4X1jRbX4H3SfEPSrttHub83sX9hwXYjRvNn3SLMkZD79ih8qVw5zkfSPwb+G998PNC1OTXdVg1/wAV65qM2q6xqtvbG3jmmchY40RndhHFCsUKbmJ2xDoMKPJv2OorrxTq3jn4grp15pWg6yLLTdJS9sntX1CCA3E/9obXAY+Z9uEe5lBf7MHOC/lx/TFAHzv+2R0+B/8A2VHQv/a1fRFfO/7ZHT4H/wDZUdC/9rV9EUAed/EH9nz4e/FTxBb674p8NQarq9va/YorwzSxSLBvL+XlHXjcxPPc1zv/AAx18H/+hOj/APA+6/8AjtezUUAeM/8ADHXwf/6E6P8A8D7r/wCO0f8ADHXwf/6E6P8A8D7r/wCO17NRQB4z/wAMdfB//oTo/wDwPuv/AI7WPqf7M3wN0rXNL0WXwokmr6lva2sor+6aQxpgySsPN+WNcjLnAyyqMsyqffq+ZvGmj+Jf+GhvioIbW6vU1r4bJb+H7NNQ+zfbLqKS5E0cMgYGF8zW4L/LjejZ4yADa1z9mX4IeHLzS4dQ8Ix20Ooz/ZIbuTUrhYhOeY4iTPnc/wA23AIJXBIJUNs/8MdfB/8A6E6P/wAD7r/47Xxp4d8HeLtI/Z6+N/hnTPDeteFtR12Xw0nhbTG0y50qM3v2azSZLYzBQHSeJ90m7c3lmVmIO6v0xoA8Z/4Y6+D/AP0J0f8A4H3X/wAdo/4Y6+D/AP0J0f8A4H3X/wAdr2aigDxn/hjr4P8A/QnR/wDgfdf/AB2j/hjr4P8A/QnR/wDgfdf/AB2vZqKAOH+G3wS8EfCCbVpvCGgQ6LNqvlG+ljlkke48oMI9xdmPyh2x9a7iiigArh/iD8DPh58WL20vPGngnQfFV3aRmG3m1fT4rl4kJyVUuDgZ5wK7iigDxz/hjX4Ef9Ef8Ff+CO3/APiKP+GNfgR/0R/wV/4I7f8A+Ir2OigDxz/hjX4Ef9Ef8Ff+CO3/APiKP+GNfgR/0R/wV/4I7f8A+Ir2OigDwnxJ+y1+zr4Q0W51bWPhX4HsdPtwDJNJocB5JAVQAmWYkgBQCSSAASa5T4UfBz9m74xWfiefRfgl4ftH8O6xNoV7bap4at7ab7VFFFK4VSM7cTIAWxyD2wT137Vdnqskfwl1GyaWPSdJ8f6Ze61KkuxI7IR3Ee6QZG5BNJb8c4OGxhSR873Xwm8UxfET4g2el+CtcsfiFe/FODxDoXiwWrLYwaQ8Vv8AaXF4CY0DRRXEbxffcyxLtbb+7APfvCf7Mf7O/jTSjfad8JPBh8qV7a5t5dDthNazocSQyqFO11PBH0IJBBO1/wAMa/Aj/oj/AIK/8Edv/wDEVN8HUubn4sfGzUUZ5NHuNes4baUNmN5odNtYrjaPVXUIxH8SFc5Ugeu0AeOf8Ma/Aj/oj/gr/wAEdv8A/EUf8Ma/Aj/oj/gr/wAEdv8A/EV7HRQB45/wxr8CP+iP+Cv/AAR2/wD8RWv4S/Zk+EngPxDZ694c+G3hfQtasyzW+oafpUMM8JZSrFXVQRlWYcdia9MooAKKKKAOR+JPwm8JfF/SrLTfGGiw63Z2V0t9bRzO6eVOEZBIpRgQQruOv8Rrh/8Ahjr4P/8AQnR/+B91/wDHa9mooA8Ai/YG/Z+gvFu4/hhpMd0r+as6yTBw+c7g3mZznnNatz+xj8Gby3lguPBME8EqlJIpL26ZXU8EEGXBB9K9qooA8E039g/4CaLc/aNP+GumWM+0r5ttNPG2D1GVkBxxUXjD9kH4B2fh+5vPEXgizm0u2HmyLc3F1OM9F2p5hLMScKqgsSQACTivoCvEf2rNI1vUtD+HNxpKTvZab4+0K/1cwSbQlkl0N7uMjciu0TEYONu4gBSQAZWkfsXfBLRNDa7034VxabcS24uH0u2u3inZ9uRESs4jL5+XO/bn+LHNQaf+x5+zv8S9Is9Yj8BadrVo29IpLuW5Z42VykkbK77kdXVlZCAVZSCAQay9A8KzH9p/xKPFfw21TWtYk1SDV/Dnj6GJDaafpyW6x/ZWuCVaNlf7TmBQ2/7Rkjb8w9J+AsWotP8AEu+upmn0u/8AGN5LpUhnEiG3SG3hkCAE7ALiG5BU4+YM2PmyQDGsP2KvgrpVolrZeBLWztkzsht7y5RFycnCiXA5JP41Qv8A9gr4AardvdXvwy0q8uZMb5riSd3bAwMsZMngAfhXvtFAHi6fsb/B2JFRPBkSIowqrf3QAHoP3tO/4Y6+D/8A0J0f/gfdf/Ha9mooA8i0n9kr4S6Jrel6vaeDrdNR0y6jvbOeS6uJPInQ5SRQ0hGQenFeu0UUAFFFFABRRRQAVVvtLtNSe0e6t455LSYXFu7j5oZArLuU9QdrMpx1DMDwSKKKAC40u2ur+0vJYt9xah/JYscJuADHGcZwMZxkAkDqc2qKKACiiigAooooAKKKKACiiigAooooAKKKKAIrq1gvrWa2uYY7i2mQxywyqGR1IwVYHggg4INNgsobaxjs4kKW8cYiVAx4UDAGevTvRRQBFo+kWWgaZbadp1ulpZWyCOKGMcKB/M9yTyTyauUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVDe2VvqVnPaXcEV1aXEbRTQTIHSRGGGVlPBBBIIPXNFFAFddGtU0QaSqyCxFv8AZQvnPv8AL27ceZnfnH8Wd3fOeansLC20qxtrKyt4rSzto1hht4ECRxIoAVVUcAAAAAdAKKKAJ6KKKACiiigAooooA//Z)
Which outcome corresponds to the combination of copper(II) and sulfide ions shown in the following equation?
Cu2+(aq) + S2-(aq) → ?
◦ box (a)
◦ box (b)
◦ box (c)
◦ None of these
Question 2
Assume that an aqueous solution of a cation, represented by shaded spheres, is allowed to mix with a solution of an anion, represented by unshaded spheres. Three possible outcomes are represented by boxes (a)-(c).
![](data:image/png;base64, /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAE2AVoDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9UKKKKACiiigAooooAKKKKAPmnxZ4S8XfFv8AaM8b6FY/FTxV4F0fQNE0a4gs/DxtQksly96JGfzoZDnFumMEd6drH7OXiPw/p02oan+0z8RNPsYceZc3U2mRxpkgDLG1xySAPUkCuu8B/wDJ1nxe/wCxe8Nf+h6pXH/HTxHqFz8ctO8PzidNMsNFg1fTo4SU+1XT3M0M6qcjfIkawbQPuCViT86UAZmmfBy91nVk0u0/ao8fy6m4cpZGfTVncIAXKo1qGbaGUnAONy5xkV0P/DLPjL/o4z4mf99ad/8AIlee/EGUaT4Wt76y1ZNNubDTtGmttQsJfJCNGbgxYIA/dSsWiRMYYtIuBuOfrzQrq4vtE0+5u4/KupreOSWPaV2uVBYYPI5J4oA8F/4ZZ8Zf9HGfEz/vrTv/AJEo/wCGWfGX/RxnxM/7607/AORK+iKKAPnf/hlnxl/0cZ8TP++tO/8AkSj/AIZZ8Zf9HGfEz/vrTv8A5Er6IrwL4k/GrxLPf3tl4Jl061ht4box391bG+a6mhQnykiWWP77BlTLAt5Mh4XaWAKn/DLPjL/o4z4mf99ad/8AIlH/AAyz4y/6OM+Jn/fWnf8AyJXcfDX4p3ureIrjwp4lFpHrccQuLO8tPkh1KHahaSNGYspG7kdDhsE7Sa9QoA+d/wDhlnxl/wBHGfEz/vrTv/kSj/hlnxl/0cZ8TP8AvrTv/kSvoiigD53/AOGWfGX/AEcZ8TP++tO/+RK0f2KvFOv+LfgXDdeJtcu/Eeq22t6vp7alfbPOmjgv54Yy2xVXOxFHAFe7187/ALB//JBrj/safEH/AKdbmgD6IooooA+RNB8KeOfjd8cfjTbL8YvGPg/SvDWuW2nWGm6EbQQrG9hBMxPmwO2d7seveuz/AOGWfGX/AEcZ8TP++tO/+RKP2bP+S6ftKf8AY12X/prta+iKAPnf/hlnxl/0cZ8TP++tO/8AkSj/AIZZ8Zf9HGfEz/vrTv8A5Er6IrjfEuv63qWtSeHvCwt7e9hiSa91a+gaW3s1fOxFQMvmyttLbAw2rgsRvTcAeU/8Ms+Mv+jjPiZ/31p3/wAiUf8ADLPjL/o4z4mf99ad/wDIlejQa14o8CXVsfF+p6Xq+iXUqW/9qWdlJZvbTOQsayR75AYy2Bv3DBcZAAzXoVAHzv8A8Ms+Mv8Ao4z4mf8AfWnf/IlH/DLPjL/o4z4mf99ad/8AIlfRFFAHzv8A8Ms+Mv8Ao4z4mf8AfWnf/IlH/DLPjL/o4z4mf99ad/8AIlfRFFAHzv8A8Ms+Mv8Ao4z4mf8AfWnf/IlH/DLPjL/o4z4mf99ad/8AIlfRFFAHxT+018LPiH8EfgL408daT+0F8Qr7UtDsTdQW96bAwyNvVcNttgcc9iK+0rdi9vExOSVBJ/CvAP8AgoD/AMmafFf/ALBB/wDRiV79a/8AHrD/ALg/lQBLRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB4z4D/5Os+L3/YveGv8A0PVK7X4j/C/SviTZQLdvNZajabjaahbNh4t2NyMp+WWNtq7o3BU7VPDKrLxXgP8A5Os+L3/YveGv/Q9Ur2agDxbwt+zrdw6xaXvjLxjP4vgs7e3hi04afHa28skQcefPkyPJIwcA7XRGCAMjcY9poooAKKKKACvi3xlFYfBS7bw/4iuFsbQwaw1ne6ooh0+8E7ySrbiUnZmXzPniZld2hJUBVyftKkZQwwQCPegD53+Eumr8Q/ihH4y02W4bw9pKyRxXpiZINTmktoUE0ZYDzQVLAzJ8hCIFzya+iaAABgcCigDxDx78e9Xtr6e28HaZpt7DbzzWr3urzyRRyTwzCGdFVVzsRyFMmcbwy44BPW/Db4sJ4vvxoWq2TaT4mSwTUWtlDNDNAzlPMjcgYION0bfOm9c5DKx+d/C9pe+ANM8NfD/VbsHxP4ekdRCHTzLmNDHFbXUS7QSrQ5CnBUbZEbfIhcdt8GNHt/Fvj7w3r+gta3OheHtGi0ybULV2aJpUjkRbWMliGCecxJBZlOVdicBQD6Ur53/YP/5INcf9jT4g/wDTrc19EV87/sH/APJBrj/safEH/p1uaAPoiiiigD53/Zs/5Lp+0p/2Ndl/6a7Wvoivnf8AZs/5Lp+0p/2Ndl/6a7WvoigArgtT8UW/w28S6xd6+8en+GdTeG5j1mVsRW84iEUkc7dIk2wxMsjHBLOCVwu7vaCARgjI96APJPFni/QvjRpI8MeDtYs/EK3FzbyXmo6ZKLi0tYY5kkfM6ZjMuFGI9275gSACDXrdIqhRgAAe1LQAUUVznxCmvI/CV3Fp94+m3t48NjDexqGe2aeZIRKoPBKeZuAPBIoATUviX4Q0bxJb+Hr/AMVaJY6/cMiQ6Vc6jDHdSs5wgWIsGJY8DA57V0lYVp4F8PWWgXWiJo1nJpV2HF3azwiVbreMSGbfnzWf+JnyWzyTXPfDW8ls/EHjLwzu3afol7CtiuAPJhlt0lEIA/hQswGegIHAAAAO+ooooA+fP+CgP/JmnxX/AOwQf/RiV79a/wDHrD/uD+VeA/8ABQH/AJM0+K//AGCD/wCjEr361/49Yf8AcH8qAJaKKKACiiigAooooAKKKKACiiigAooooAKKKKAPGfAf/J1nxe/7F7w1/wCh6pXs1eM+A/8Ak6z4vf8AYveGv/Q9Ur2agAooooA8/wDi58Tj8P7XTbOyijudc1UzfZo5WASGKJN807DILhMou0EFmkQZVSzL4vL8R/H/AIVsG8Rp4ruvEjx2D30/h/U7WzitJPLlRZooZoYEljPzqI3cycbt65wa9N+Pfw21DxS2g+J9FhOo6v4dW7T+yTKIlvra4iCTIsm0skilIpEK43eW0ZIEhZfIp7PXNY8P6TpFn4T8QSaneWi2Dm60y4to4XNzCZGmdlWOJGUEs0bMYgpNv5hJwAfT/g7xRa+NfDGm63ZpJFBexCTyZgBJE3R43wSNysGU4JGVOCa2a574f+Eh4F8H6boguTePbIxluNmwSSu7PIwXJ2qXZsLk4GBk4yehoAKKKKAKGreH9L1+ONNU02z1JIzuRbuBJQp9QGBxVq0tILC2itraGO3t4lCRwxKFRFAwAAOAAO1S0UAFfO/7B/8AyQa4/wCxp8Qf+nW5r6Ir53/YP/5INcf9jT4g/wDTrc0AfRFFMeaOJo1d1RpG2oGOCxwTgepwCfoDT6APnf8AZs/5Lp+0p/2Ndl/6a7Wvoivnf9mz/kun7Sn/AGNdl/6a7WvoigAooooAKKKKACqWt6NZeI9HvdK1K3S70+9he3uIJPuyRsCGU/UE1dooA4628P8AjHTtMksbbxRYXAQMlteajpbzTovRPMKzoJGHGWwu7vitjwp4Zi8L6Y1uspurueVrm8vXRUe6nbG+RgoAGcAADgAADgVs0UAFFFFAHz5/wUB/5M0+K/8A2CD/AOjEr361/wCPWH/cH8q8B/4KA/8AJmnxX/7BB/8ARiV79a/8esP+4P5UAS0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAeM+A/+TrPi9/2L3hr/wBD1SvZq8Z8B/8AJ1nxe/7F7w1/6HqlezUAFFePfHv4m3Phm90Lwnpks9nqeuJLcNfwkhre2ikgjkKHawMm64jwhwWG5VO8rXnOteIPFPhrWUuvDut311fLcXjpY6vfzNaXJit4ikD+azCNGyzGZcCNm8sgyEGgD6noqh4f1Zdf0HTdTSMxJe20VyIyclQ6hsZ74zV+gDH8X+K9O8D+G7/XNVmMNjZx732jLuxIVI0X+J3YqiqOWZgBya8Hn+Ivj/xBqMt7Z69aeHliv4LZdJktoZ4AHPSR+WkAyFLxuodwYl2H95XrHxt8AXPxP+F2u+HbK5jtNRuEjnspZ/8AVC5hlSeESYBPlmSJA2BnaWxzivnFvHuj+GdX1LTfEEt1oOtpq9o66Pc2ckl5OgnDK8MURczb3/dgReYf48lcoAD6L+D3xRg+KPhk3TW72Gr2b/Z9QspVClJBxvVQzYRsErk5GCrYdGUdzJIkMbSSMqIoLMzHAAHUk15B+zb4E1bwx4ev9Z1uA2F7rrRXMenOpWW0gwzrHMD0lDSyK2OMKvCnKjofj1/aw+FWsNo6GSdJLV7lAyLushcxG8BLcYNsJweCcZwCcCgCpN+0H4USSVoU1a+tIvmku7TTZpE2nO11QDzJEbB2OiMsn8Beu/0bWbHxDpVrqWm3UV7YXUYlhuIW3I6noQa+V9J22y3qwBZYk0mwSMsRBuVLUsjEPnYWJIZG+aIAPISrKK9T/Zss7yy07x6soddMk8W302nK0XlqI3WJp9oPJH2o3Xz9HOXX5WWgD2Gvnf8AYP8A+SDXH/Y0+IP/AE63NfRFfO/7B/8AyQa4/wCxp8Qf+nW5oA1fi5pHxEuPiJ8OJNO13w5HYjxLO1mk2g3Mr24/snURmZ1vFDjaWXhU+ZlPba3s+jx38WmWyarcW11qKoBPNZwNBC79yqM7lR7Fm+tXKKAPnf8AZs/5Lp+0p/2Ndl/6a7WvQtSjT4l+N9e8NX7Tp4e0WG2+0W0FxJA15PKGcrIUILwiPaChIDFnDKwC157+zZ/yXT9pT/sa7L/012ter6z4e1PR/FDeI/Dlra3c96sdvqtjdXDQCeNCdssbBWHnKpZQrABxtBdNoNAGJqXgGw+F2my654MgTRhavHNf6esjm1u7VXBn/dkkCYR7yjjaSyorHZmvTK4nVdO8QeNrq2sry1XQvDyOk12ouRJdXpVgwgwgKrCcDedxLDKbQCSe2oAKKKKACiiigAoorm/HXi1/CthYpaWy3us6rdpp2m2jtsSWdlZyXf8AhRI45ZWPXbGwUM5VWAOkorzv/hWXiD/j9HxD1xdZPzFgkJsd3cC2KfdxxjdnvnPNdF4G8Xf8JfpM8s1r9g1KyupLC/sw/mLDcRn5gr4G9CCrK2ASrDIVsqADx7/goD/yZp8V/wDsEH/0Yle/Wv8Ax6w/7g/lXgP/AAUB/wCTNPiv/wBgg/8AoxK9+tf+PWH/AHB/KgCWiiigAooooAKKKKACiiigAooooAKKKKACiiigDxnwH/ydZ8Xv+xe8Nf8AoeqV7NXjPgP/AJOs+L3/AGL3hr/0PVK9moA8o+OfwjuPHkmjeINGSKTxJoazxQQTzNFHdW82zzoC4BCEmKNg5VsFBxXmMXgnx74y8S29rF4S1HwhbNLezT61qd5aOLVntltoXhSKSUysFBOxgik4YsCNtfUtFAFPRtLi0TR7HToCTDZwR26FupVFCjP4CrlFFABRRRQAUyaGO4heKVFlikUq6OMqwPBBB6in0UAeQ3P7LvgyTU7qe1m1rS9Pu1hjn0jT9TkhtCkTMyIij5oUG8jbEyAKAoAUAD1TS9Ks9D0+Gx0+1isrOEYjggQKijOTgD1JJ9yTVqigAr53/YP/AOSDXH/Y0+IP/Trc19EV87/sH/8AJBrj/safEH/p1uaAPoiiiigD53/Zs/5Lp+0p/wBjXZf+mu1r6Ir53/Zs/wCS6ftKf9jXZf8Aprta+iKACiiigAooooAKK5iT4k6Ct/f2cU93ezWD+Xcmx065uUifupeONlyMEEZyCCDgg1reH/EOneKtJg1PSrpbyymyElUEcglWUggFWBBBBAIIIIoA0a5bx/4UuPElto91p8scWraJqUWqWfnZ8t2VXjljb0EkMs0YbB2Fw+G24PU0UAed/wDC5E/48h4Q8WP4iHynS10WcRb++L5lFptx827zuRwAXwlbvgDwnN4U03UPtk6XGpanqE+pXbxAiMPI3youeyIqJnjcVLYG7A6eigD58/4KA/8AJmnxX/7BB/8ARiV79a/8esP+4P5V4D/wUB/5M0+K/wD2CD/6MSvfrX/j1h/3B/KgCWiiigAooooAKKKKACiiigAooooAKKKKACiiigDxnwH/AMnWfF7/ALF7w1/6HqlezV4z4D/5Os+L3/YveGv/AEPVK9moAK8v+KHxUvdDuL/R/DS2z6vZQR3N5dXsTSW9qkhKou1WXfJwGKbl2oQzEb03eoV8wfGDw+vwx8deNfF+pNGug+KV0y4GpBG/0K7syiiOZskKuxRLHKVCKwm80lQgIBv+B/jv4g0ee0j8fPpl5ZX+oR6bDqmj2j2ot55IllRZoXlkITaxzIG4xkqF+avoCvjzwtNF8YrBPCnhLUYdRiF/nUL6zkElpZ2bW6NJmQKwLl3DLDu3s/zZWLIr7DoAK86+OPjXUvB3hqwi0iVLbUtXu3sIbllDtDttZ7hmRSCC+23YLkEAsCVYDafRa4X4y/Dmb4m+DJdNs7uKz1GEyTWjXQdraR2glhaOdUZXaNkmkU7WBGQecYIB4Rdade6T47lvdO8R+IbS8uXtcSSazc3EMZuHiRisEsjRYDOzKCpG7gl1/dj6F+FnjGfx54E07V723jtNS3TWd/bwkmOO7t5nt7hYyeWQSxSBWOCVwSBnFeJSeCviPqfjSd7fwgmmstwk39qX+qQfZJWURJI6+WXmbzFjK8wx7kwMQtlq968BeDLP4feENM8P2DyzwWUZVricgy3ErMXlmkI6vI7O7Huzk96AN+iuE+LPxKX4fafplvbRpca7rVybLTYHwVMgRnZ2UspZUVSSqnJ4HAyR4yfiB490LVbLWIvGcniKC6tLS7fRbuytYrI+f5pxC0cKzIrlAsW+SQrtO8vnIAPqGvnf9g//AJINcf8AY0+IP/Trc17f4O8Sp4w8LaZrK2dxpxvIFkksbwKJ7WTo8MgUkB0YMjYJGVOCa8Q/YP8A+SDXH/Y0+IP/AE63NAH0RRRRQB87/s2f8l0/aU/7Guy/9NdrX0RXzv8As2f8l0/aU/7Guy/9NdrX0RQAUUUUAFc/8Qp9YtfAPiWbw8rPr8emXL6cqIrsbkRMYgFbgnft4PB710FFAGN4MtLCx8J6PDpccceni0jaERD5SpUHPvnOSTyScmuf0OO5tfjF4qhhhWHSZtJ0+7fy41VZL1pLqOR2IGS/lRW6knsiDtUd98J9t076B4t8Q+ELSX/W6fpMltJbN/uR3MEwgHXiHy8kknJwR0/hrwvp/hOwa10+OT94wkmuLmZ57i4faq75ZXJeRtqqu5iThVHQAUAa1FFFABRRRQB8+f8ABQH/AJM0+K//AGCD/wCjEr361/49Yf8AcH8q8B/4KA/8mafFf/sEH/0Yle/Wv/HrD/uD+VAEtFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHjPgP8A5Os+L3/YveGv/Q9Ur2avIfFnwL1zUviVrHjLwx8SdX8F3er2NnY3ttZadY3Ucq2zTGJv9Ihcqf8ASJM4Izx6VX/4U78Tf+i+eIv/AAn9H/8AkWgD2amyRrKhR1DowwVYZBrxv/hTvxN/6L54i/8ACf0f/wCRaP8AhTvxN/6L54i/8J/R/wD5FoA9igtorZSsMSRKTkhFCjP4VJXjP/Cnfib/ANF88Rf+E/o//wAi0f8ACnfib/0XzxF/4T+j/wDyLQB7NRXzyPDnip9W03TI/wBpXVp77UZ7i2tYYdD0aTzJbcZnTK2pAZADkEgjGK6D/hTvxN/6L54i/wDCf0f/AORaAPZqK8Z/4U78Tf8AovniL/wn9H/+RaP+FO/E3/ovniL/AMJ/R/8A5FoAu/tA/Di/8ZWPh3XdHBuNX8MXzX0Vgfu3kTxtFLHkfMHCtuUqQSU29GOPDp/EDa9caJo+i6Fr97rLWllYtp9xprQPbyRCQETvhY4/LZx5pDbVH/Hvl817J/wp34m/9F88Rf8AhP6P/wDItH/Cnfib/wBF88Rf+E/o/wD8i0Aek+BtBuvDXhTT7C/uIbvUVVpbye3jaOKS4kYySmNWZmVN7ttVmYhcAsxBJ8U/YP8A+SDXH/Y0+IP/AE63NdF/wp34m/8ARfPEX/hP6P8A/ItdN8C/hBbfA34fQ+FrbVrvXAt7d38t/epGksstxO88hKxgKPmkbAAHFAHoFFFFAHzv+zZ/yXT9pT/sa7L/ANNdrX0RXhcv7N2vaV8QPGnijwn8Vdc8JnxXexahfWFvpmn3UQlSCOAFWnhdgNsa8Z65q9/wp34m/wDRfPEX/hP6P/8AItAHs1FeM/8ACnfib/0XzxF/4T+j/wDyLR/wp34m/wDRfPEX/hP6P/8AItAHs1FeM/8ACnfib/0XzxF/4T+j/wDyLR/wp34m/wDRfPEX/hP6P/8AItAHs1FeIal8K/iVpenXV7J8ePFE0dvE8zR23hnSZZXCgkhEW0LMxxwoBJPAp1j8J/iXf2Vvcp8efE0STRrIEn8N6RHIoIzhla1BU88g8g0Ae20V4z/wp34m/wDRfPEX/hP6P/8AItH/AAp34m/9F88Rf+E/o/8A8i0AezUV4z/wp34m/wDRfPEX/hP6P/8AItH/AAp34m/9F88Rf+E/o/8A8i0AYX/BQH/kzT4r/wDYIP8A6MSvfrX/AI9Yf9wfyr57+Iv7LfjD4reCdX8JeJvjj4jv9B1aH7PeWy6JpURkTION6WwYcgcgivoeNBHGqDkKAKAHUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB89/tX+PdU8Bal8PLi+vtY0b4Y3OoXEPizV9Cima5th5ObIb4A00aPPhWZBzwpI3YPlfx1+JGt/D/AMd+A7OHxprthb28Xh6WS4128Nl9ttptYMN0DbhUEkwtstM8v+qjRDsDOzr9sUUAfmR8NvEfjX4XXnhvwt4M1PXIfFE+r+PXl8OanJKYri6SK5k0zes2Ad8nlt97DFgTy2To/Er43+OdM+GGt33hHxz4hltV8IWV1rV/dSN59j4ke/tla0iMqBomMP2stbxgBBGCQoI3fpNRQB88/syfEOfxP8TPjV4fHih/Eui6Jrdr/ZEk92ty6wS2cTS7ZOrJ5/mjH3VIZQBjA+hqKKACiiigAooqjr0z2+h6jLExSRLaRlYdQQpINAF6ivHf2O/FGreNf2Xvhpruu6hPqusX+jQz3V7dPukmkOcsx7mvYqACiiigAooooAK+Kv2z4fHMXxh8M6j4a0PxfJb2EelXEepaDa3l/C+NTH2uHyrdGEJFvl3d+ZFKov3WB+1aKAPzG0XQ/Hmi+DfCsy6R8UI76+tfHNjrL/2ZrL3GJGL6SjDyyyqS0bIRgZZ8kHfj1++0rxjqdpdXj6P4sfxybHw+PBFz/Z96kFqscEJuFuTsEULfaftfmC62syFAdy7BX21RQB8U+BtK1fR/il4Y1RdL8dNPL8T9Zjubq/07VZI10d7K6WAu0iFUtzPLbEMcLn5s4RiPtaiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArO8Sf8i7qn/XrL/wCgGtGs7xJ/yLuqf9esv/oBoA8a/YT/AOTPvhL/ANgCD+Rr3avCf2E/+TPvhL/2AIP5GvdqACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKzvEn/Iu6p/16y/+gGtGs7xJ/wAi7qn/AF6y/wDoBoA8a/YT/wCTPvhL/wBgCD+Rr3avCf2E/wDkz74S/wDYAg/ka92oAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAr4u/4KP/ALUXxU/ZY0Pw5rHg/R/Dmr+E9aE2m38ur2NzJLa3O0smJI50Xa6b8ArkGJjk5wPtGvPf2gfg3pfx/wDg94m8CasfLt9WtTHHOAMwTKQ0UgyD911U9O1AHxR/wSh+PPxY+LXhyDwvc6X4Zsfhh4IsY9N+3pZ3P9oXcxUmONZDMYsqPmc7OhUBfm3L+jNeLfsg/s4WX7LPwO0jwRBPHe6iHe+1W+jGFubyQL5jLwDtAVEXIztRc817TQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcd40+M3w/wDhvqEFh4t8deGvC19PF58VtrWr29nLJHkrvVZHUlcqRkcZB9K57/hqr4Kf9Fg8Bf8AhT2X/wAdrzTxF4S0Pxh+3/Ha69oun63bRfDESJDqNrHcIj/2qRuCuCAcEjPua7zxz4Y+EPgD7FHffD/w5c3t64W3sbTRbRpnG5VLYYKAu50XJPLOijLMoIBf/wCGqvgp/wBFg8Bf+FPZf/HaP+Gqvgp/0WDwF/4U9l/8drmfD0Xwf1zxPa6Bc/DHRtB1C880WY1bRbCNbt48F44tpYu6qdxUD5RkNhgQPQv+FHfDj/on/hb/AMEtt/8AEUAYf/DVXwU/6LB4C/8ACnsv/jtH/DVXwU/6LB4C/wDCnsv/AI7UPiLwF8MNB1Kz02H4Y6HrOq3Q3ix07Q7NpI4s4MshcKqJnAyWBJzgHDYhs/BXwzfxBb6PqPwo0jQrm6U/ZJL/AESxMNy4BZokeMuPMCqzbDglVYjIVsAFz/hqr4Kf9Fg8Bf8AhT2X/wAdo/4aq+Cn/RYPAX/hT2X/AMdrc/4Ud8OP+if+Fv8AwS23/wARR/wo74cf9E/8Lf8Agltv/iKAMP8A4aq+Cn/RYPAX/hT2X/x2j/hqr4Kf9Fg8Bf8AhT2X/wAdrc/4Ud8OP+if+Fv/AAS23/xFH/Cjvhx/0T/wt/4Jbb/4igDD/wCGqvgp/wBFg8Bf+FPZf/HaP+Gqvgp/0WDwF/4U9l/8drc/4Ud8OP8Aon/hb/wS23/xFH/Cjvhx/wBE/wDC3/gltv8A4igC94I+Kfgv4mLeN4P8X6D4rWyKC5Oh6nDeCAvnZv8AKZtu7a2M4ztPpXUV80fs+eH9L8MftZ/tGafo2m2ek2EcHhlktbGBIYlJtLgkhVAAyeelfS9ABXI+NfjD4C+Gt3bWvi7xv4c8K3Nyhlgh1vVrezeVAcFlWR1LDPGRXXV8x+OPCui+L/29/C9lrukWGtWafDfUZVt9RtkuI1calaAMFcEZwxGfc+tAHpX/AA1V8FP+iweAv/Cnsv8A47R/w1V8FP8AosHgL/wp7L/47W5/wo74cf8ARP8Awt/4Jbb/AOIo/wCFHfDj/on/AIW/8Ett/wDEUAYf/DVXwU/6LB4C/wDCnsv/AI7R/wANVfBT/osHgL/wp7L/AOO1uf8ACjvhx/0T/wALf+CW2/8AiKP+FHfDj/on/hb/AMEtt/8AEUAYf/DVXwU/6LB4C/8ACnsv/jtH/DVXwU/6LB4C/wDCnsv/AI7W5/wo74cf9E/8Lf8Agltv/iKP+FHfDj/on/hb/wAEtt/8RQBh/wDDVXwU/wCiweAv/Cnsv/jtH/DVXwU/6LB4C/8ACnsv/jtbn/Cjvhx/0T/wt/4Jbb/4ij/hR3w4/wCif+Fv/BLbf/EUAYf/AA1V8FP+iweAv/Cnsv8A47R/w1V8FP8AosHgL/wp7L/47W5/wo74cf8ARP8Awt/4Jbb/AOIo/wCFHfDj/on/AIW/8Ett/wDEUAYf/DVXwU/6LB4C/wDCnsv/AI7Wn4a/aD+FvjPW7XRvD/xK8Ia7rF0WFvp+m69a3FxMQpYhI0kLNhVJOB0BParP/Cjvhx/0T/wt/wCCW2/+Irw74zfD/wAL+Dv2jv2bZ9A8N6Roc03iHU0lk02wit2df7KuSAxRRkZ7GgD6nooooAwPGnxC8LfDfTYdR8W+JdH8LafNMLeO71q/is4nlKlgivIygthWOAc4UntXGf8ADVXwU/6LB4C/8Key/wDjtef/ALZGlWWueIP2f7DUbO31Cxn+I9qk1tdRLJFIv2C+4ZWBBHsa9c/4Ud8OP+if+Fv/AAS23/xFAGH/AMNVfBT/AKLB4C/8Key/+O0f8NVfBT/osHgL/wAKey/+O1uf8KO+HH/RP/C3/gltv/iKP+FHfDj/AKJ/4W/8Ett/8RQBh/8ADVXwU/6LB4C/8Key/wDjtH/DVXwU/wCiweAv/Cnsv/jtbn/Cjvhx/wBE/wDC3/gltv8A4ij/AIUd8OP+if8Ahb/wS23/AMRQBh/8NVfBT/osHgL/AMKey/8AjtH/AA1V8FP+iweAv/Cnsv8A47W5/wAKO+HH/RP/AAt/4Jbb/wCIo/4Ud8OP+if+Fv8AwS23/wARQBh/8NVfBT/osHgL/wAKey/+O0f8NVfBT/osHgL/AMKey/8Ajtbn/Cjvhx/0T/wt/wCCW2/+Io/4Ud8OP+if+Fv/AAS23/xFAGH/AMNVfBT/AKLB4C/8Key/+O0f8NVfBT/osHgL/wAKey/+O1uf8KO+HH/RP/C3/gltv/iKP+FHfDj/AKJ/4W/8Ett/8RQBQ0b9pH4SeItWtNL0n4peC9T1O8lWC2srPxDaTTTyMcKiIshLMTwABk16LXyp+1P8NfCPhK++CF7ofhXRNGvT8TtDjNzp+nQwSFCZiV3IoOCQOPYV9V0AfO//ADkKP/ZLv/ctXMfFCG90347eKl1Z9sWp/wBiz6K0rrmW1RZ4ryOPPzERFmdwMrELlZPkMheun/5yFH/sl3/uWr2zxl4H0L4g6JJpPiDTo9RsWYOqsWR4nH3ZI5FIeN1PIdCGU8gg0AfKvxF0xtVm0iw063e61G51KVbD7OS7Q33kW6WkwIJKeWp83cOioZsMI/MX7GriPA3wW8G/DnU7jU9E0hl1aePyJNT1C8nv7zysJ+6E9w7yCP8AdofLDBcqDjPNdvQBw3hRZ7H4m+OIb+5V5rxrS80+JpdzLZi3WIqoPRROk7FRwDLnq9HxgWe68Nafp9jcrBqt3rOmi1QS7JJPLvIppgnc4hilYgfwqxPANb/ivwZovjaxjtdZsVu0hk86CVXaKe2kAIEkMqEPFIMnDoysOxFUvCfw18PeC7qe7060nl1GdBHJqWp3s9/ePGDkRm4uHeTYDkhN20EkgDJoA5z49+MtU8IeDrdNFnW11TVLiSyt7jYJHjYWs8/yJ1ZyICoADHLZCnFeNatoaW/jBILTUNR0tkubeKLULa/lS42FIArtMzEzbpHbLSFxIxKMZD8le+fFj4bp8TvDC6ct82mX9tN9qsb5ULeRN5bx7iFZGwUldTtdW+bhhXjJ+H3xR1fxlFJL4a0fTYBfxPLqE2qCe3WGNIctHEIw7EyRsVjKoo4fKSEkAHs/wg8ZXvjz4f6fqupQx2+qLNdWF6kKlYzc21xJbTMgbkIzwsyhuQCM85rptX1ez0HTLnUdQuEtbK2QySzSdFUfzPoByTwKzvA3g+y8A+E9N0CweWa3s49pnuH3zXEjEtJNK55eSR2Z2c5LMzEkkk15J+1XPf26fD9hE0nh/wDt0jVD5AlVP9Hl8glSD/y12AZGMkZ7UAdHbftH+G312PT73Tdd0W2lMflapqlgYLV9+7Zklt6ZCFiHRSgKmQIGGfVQQQCDkHvXyh4ghcWtil2obNlpiyK0hmBKrMZxlid3yEcnPm/ccuo217t8EIba2+FPhyKwjeLSo7cppySIyMtkHYWwKsAw/c+Xw3zevOaAPMPgx/yeJ+0f/wBe3hj/ANI7ivoivnf4Mf8AJ4n7R/8A17eGP/SO4r6IoAK+d9W/5SCeGv8Asmmpf+nOzr6Ir531b/lIJ4a/7JpqX/pzs6APoiiiigAoorlfiJ8QbL4eaJ9snjN5dybhbWEcipJOVUs2Nx6KoJJ57AAkgEA6qivB7L9o3V9D1yWLxp4f03StEW8ezOp6XqMl15BW3S4MkyPBHtjCOSWBYLtOcHivdo5EmjWSNleNwGVlOQQehBoAdRRRQAUVX1C/t9KsLm9vJktrS2jaaaaQ4VEUZZifQAE14jdfHbxBqOn3OsaVZabaaPGbqSJb2KaSeWCBHLMy5jMbl027NrcHIJ6UAe7V87/tFf8AJw/7NH/Yx6n/AOmm5r1D4VfFCD4k6beCSzfTNa0x44dRsWJdIneNZFMcmAJEZWBDD3BwQRXl/wC0V/ycP+zR/wBjHqf/AKabmgD6IooooA+d/wBrT/kcP2eP+yk2n/pBfV9EV87/ALWn/I4fs8f9lJtP/SC+r6IoAKKKKACiiigAooooAKKKKACiiigD53/bI6fA/wD7KjoX/tavoivnf9sjp8D/APsqOhf+1q+iKAPnf/nIUf8Asl3/ALlq+hpZUgieSR1jjQFmdjgKB1JPYV88/wDOQo/9ku/9y1eha3DF4++Kd74T1WCG68O6Po1pqdxp1xEssV/Pc3FwkJcEcCD7C7BeQzTK3ymJSQDsNB8XaF4q8/8AsXWtO1jyNvm/YLqOfy92du7YTjODjPXB9K1q8++Ivg/TtK8M6j4h0W1ttF8Q6PZXFzZahaQKrJiMlo2AwJI22jKNlchWxuRSOx8O6qde8P6ZqZi8g3trFc+Vu3bN6BsZ4zjPWgDlfHHxXtPCeqQaPYafP4g16Yj/AEG0ljQRZVnHmu5ATKo5HUnb2yDWZ8M/jvpXxAuLTT72xn8M69dQieDS9QkjZ5k2B28t0JV2RSNyg5X3HNeTafZalo/x58VWesuGurrWxqFizHJltHtHEZQk5DLskjMpAULG0IySCafgFY774i+ELW3tGu75ZVuYp7VVjSxiESkzshO5IniWaCNRzH55jbiUkAH1lSMwRSzHCgZJPalpksYmieM5AZSpx70AcV4duvEXjm1/tk37eHdHulWTTrOG2RrpoiM+ZcNIGALDaVjVRsH3mYthIrOdvEE+peA/G8djqd5NaG6SS3t3gg1C0LhSyozuUkicorgOcbonBXeFXM0f4m6b8OdG07w/43uF0TVrG1ig+0eTJ9jvgqAGS3fByB0ZWwynqMFWa/4Ygl8a+PV8am2urDSrTS5NL0yO8t2t57jzpkkuZnjcblTNvbrHkKxxMSGVo2oA522/ZZ8KLqFk97qevaxpFk8LW+h396r2irDn7PHIQglnSIklUmkkGSWYMxJPsSqEUKoAUDAA7UtFAHzv8GP+TxP2j/8Ar28Mf+kdxX0RXzv8GP8Ak8T9o/8A69vDH/pHcV9EUAFfO+rf8pBPDX/ZNNS/9OdnX0RXzvq3/KQTw1/2TTUv/TnZ0AfRFFFFABXzl+1Jpd1pfivwv4xnfy/Den2N3ZX85naNLdnlt5Ed+ygiF0EvWNmDDmvo2o7i2iu4HhniSaFxtaORQysPQg9aAPkrxzrdvZa5Eixi+vbzVL2Cy04bZpL+U2UcojjRyA4KjYYz8hc+cxDjFfUXg/TptI8JaJYXP/Hxa2MEEn+8saqf1FZPhf4ReB/BGqPqfh7wfoeiai6sjXen6fFDKVY5YblUHBPJ9a62gAooooA5T4s+DJPiN8LfGHhSK5Wzl13R7zTEuGjEgiM0LxhipI3Y3ZxkZr5ai8Zab4Y8NT2via+s9B1fTobyS/066lFtLGVt5Q4jkbDAEupSRAfLUhEypr7QqlfaJp2pypLeWFrdyIMK88KuVHsSOKAPKf2ctP1H+yrvVbmza20+6sNNgsZnDRG6SO3y0ogKj7OpeRlWNcrhcg/NXNftFf8AJw/7NH/Yx6n/AOmm5r6Ir53/AGiv+Th/2aP+xj1P/wBNNzQB9EUUUUAfO/7Wn/I4fs8f9lJtP/SC+r6Ir53/AGtP+Rw/Z4/7KTaf+kF9X0RQAUUUUAFFFFABRRRQAUUUUAFFFFAHzv8AtkdPgf8A9lR0L/2tX0RXzv8AtkdPgf8A9lR0L/2tX0RQB87/APOQo/8AZLv/AHLV7F4r8JXGqX9lrWjXVvpviKxR4Ybq6gaeGSBypkhljV0LKdoKncNrqrcgMreO/wDOQo/9ku/9y1fRFAHF6z4V1vxqIrHXbixtPD+SbywsN8kl902xtK23ZEMEsqqS/wAo3KoZX7NVVFCqAqgYAAwAK86+JHxmsvBN0dL0+3h1rXhFJPLbPdeRBaRRqru9xIFdk+WRMKsbsTJH8oUlxX+H/wAbofE2tR+H/EOmxeF/EUxdbW1N+lxDeuilpY4HwjvJEoy6mNeMlS6hmAB1/i3wF4f8d2qQa7pUGoLGd0UjArLEfVJFIdM9DtIyCQeCRUHg/wCHvhf4bWM0WgaTa6TFJgzSrkySY6b5GJZgM8AnjtXTV88/tE+LFvfF7eCr82/9iJ4XvPENxbzklLkxTRx/vAEbMcYcucHcCVYKxUYAPcdI8V6Jr8skWl6xYalLHy6Wl0krL9QpOK1a+T9Q8O3eq6jrEtndXWl6/aa0EtdVgjia4tJmEbs2GO0kwbdyElGiAyS42D6O+HHiebxv8PPC/iK4t1tLjV9KtdQkt0JKxNLCshUE84BbHPpQB0VVtQ1Oz0m2a5vruCyt1+9NcSCNB9STirNfLXxB1q48ZfFLXxPGzN4d1X+xdPC4YRyNZ2NyJEDY2zMLqZc52lFwzAgKQD6Z0rWtP121Fzpt/bahbHpNazLKh/FSRVyvk/TtTXwn408I6/oEccbXZ0Kyvo7LIiurO7aS1Qy7gpKoQHjbG/MRVgqHn6woA+d/gx/yeJ+0f/17eGP/AEjuK+iK+d/gx/yeJ+0f/wBe3hj/ANI7ivoigAr531b/AJSCeGv+yaal/wCnOzr6Ir531b/lIJ4a/wCyaal/6c7OgD6IrI8TeLtF8G2Bvdb1O20y27PcSBd30HU/hWvXy7f+I9R1z4+eNrbUt0SaSxt7aFuAdPFlFI0hXJPltLMwZgMkooVWwxAB9A+DfiD4b+Idg174b1qz1m1XGZLWQNjIyDjrgjoehroa+SvDgXTfiV4XvJb6Wx1hJ9LsAjS+XJeSNbEXUEirkO4iZJXUHaPJjZWba4H1rQAVm6x4m0fw95f9q6tY6Z5mdn2y5SLd9NxGa0q+QtG1GXxP4NXxZfSm9utZu47y4vJACrW5087ItwUN5Ec8jBRtyJCfl2kvQB9c29zDeQJNBKk8LjKyRsGVh6gjrUlfO3wGu5fDHj2y8OWIWLRdV0W+v57RECpBf2l5DDK4x0eRblRIo+QNCCpYsxP0TQAUV4V8d/ihPY+LofBFleSabs0K68Ralcxu8T/Z4srGBInzJHvU+YVG/BjChgzlfOo01X4a+Ir668F3Nx/aEaRBtN1G9nuLa6lAj85JA7nYVWQOTGcJwyeYS8ZAPrqvnf8AaK/5OH/Zo/7GPU//AE03NfQdrcLeWsM6AhJUDqG64IyM18+ftFf8nD/s0f8AYx6n/wCmm5oA+iKKKKAPnf8Aa0/5HD9nj/spNp/6QX1fRFfO/wC1p/yOH7PH/ZSbT/0gvq+iKACiiigAooooAKKKKACiiigAooooA+d/2yOnwP8A+yo6F/7Wr6Ir53/bI6fA/wD7KjoX/tavoigD53/5yFH/ALJd/wC5avoivnf/AJyFH/sl3/uWr6IoA+RNat9S8L/GjWdO1jz3vNQ1bVNb0lVYubu1OnQxqkBON0qHzAYwcqqscgFQ9ttOu9f+KPh/TdLhaXUUl0y6+0RsALO2tr0zSzMc7limhE0EZUHeZWUhFLmvo/xv8P8Aw78R9H/svxLpNvq1kG3qkwIZGwQSjqQykglTtIyrEHIJBi8E/DPwv8OUvh4c0W20uS/kEt5cIC8904zgyysS8hG5sbicZOMUAdNXF/E74aQfETTYxHfSaPrNtHLHZ6nCm9oVk2+YpQkBlOxDg9GRCOVrtKKAPnzRP2b9d1m5vrbx1rGi6j4cvhJ9s0rS7B0F3uct5bvI7bY+RlVGScnIzXtWv+LdO8NT2UF39pkubxmWCCztJbmRtoyxIjVtqjIyzYGSBnJAOzXnfgD998TPiTJf/NqkV9axWpf7yacbOFowvYKZ/th9SQc8BaAOn0jxrpes6tLpcbXNtqUcXn/Zb61lt3ePOC6eYo3gEgNtzt3LuxuXPC/F34K3vji8/tjw9rUej615PkSR3tv9os7hMqfnQFWU/KmSrchFBBwCNP42futG8PT2ny66mv6cmnOv3wWuEW4A7YNt9oyDxjPcCvRKAPKfh/8AB3UtJ8QQa94p1e31a+svLGn2tlbmOG0KwyQmQu5Z3kZJXBOQMHGDgEerUUUAfO/wY/5PE/aP/wCvbwx/6R3FfRFfO/wY/wCTxP2j/wDr28Mf+kdxX0RQAV876t/ykE8Nf9k01L/052dfRFfO+rf8pBPDX/ZNNS/9OdnQB9EVwHj74R23i/VI9a0/U59A8QRReUt5DGssUgwQDLE3DlQzBWBVhuIzgkHv6KAPLPhv8B7XwVqcWq6rrE3iLVIIIba1LwJb21tHEjJGUiXPzhXcbixxvbaFyc+p0UUAFeE+Kf2etYtbzHgnWdP0/S5r6TUZtP1a2eURTNbPAfJkRlKqVdTht2NpAOGwvu1FAHnvwk+E/wDwrqwW41LUI9b8Sy2kVlc6nHbC3XyY3keOGNATiNWmkIySfmPOMAehUUUAeR/Gz4SX/irU7DxZ4YW3bxVp9pPYm2vLh4YLy2kRwFLqG2SRu29H2nAaVePM3L53afDTxx8RvEgtdR8MXvgnw/Ja2sd5faje2kl1+6YOEtUtpZlyGQfPIVCbgVVjnH1BRQAyKJIIkjjULGihVUdgOgr56/aK/wCTh/2aP+xj1P8A9NNzX0RXzv8AtFf8nD/s0f8AYx6n/wCmm5oA+iKKKKAPnf8Aa0/5HD9nj/spNp/6QX1fRFfO/wC1p/yOH7PH/ZSbT/0gvq+hZ547WCSaaRIYY1LvJIwVVUDJJJ6AUAPor58vv27vhDZeJLnTV1jULzTLQqLrxPY6ZPcaLblmZV33iKYwC6lAwJUtwDXsV/8AETwtpfg0+LrvxJpVv4W8pZxrT3sYs2jYgKwlztIYkAYPJIAzmgDoaK8B8JftyfCbxZrkenNquoaBBczGCx1XxDpk2n6ffuF3AQ3MqhGymGGSMhlx94CvTfid8XfCfwe0Iar4q1iDTo5W8u1tQd91eykgLFbwrl5pCWUbUBPOTgc0AdjRXjvwl/ay+HPxi1O20nS9SutH167iFzZ6N4is5NOvL2AqWWaCOUDzoyoYhkzwjHoM1f8AjF+0v4C+B8tvZ+INTmutcuQrQ6Do1u19qMiM20SC3jy4TORuIAOCBk8UAep0V5/8KPjx4K+NFtdHwzq6y6jZHbf6NeRtbajYtxlZ7aQCRME4yRjIIzkGuQ+If7Y/w1+HfioeHJLzUvEmsRuUvLfwvpsuqf2ew3HbcmEMImxHKdp+bETkgAUAe30Vzfw/+JHhf4q+G4df8Ia9Y+IdIlO0XVjMHCtgMUcdUcBlJVgGGRkCukoA+d/2yOnwP/7KjoX/ALWr6Ir53/bI6fA//sqOhf8AtavoigD53/5yFH/sl3/uWr1TxB8YvCfhnV7jTLzULiS7ttouhY6fc3aWpKhgJnhjdYjtZXw5U7WVuhBr57+MOrajoP7W/ivUNJ3jUbf4OTSQNGCWVhqh+YY5yOuR0xX1J4X0nTtC8O6dYaTsOnQwKsDxkEOuM78jgls7ie5JPegC1pWq2Wu6ba6jpt5b6hp91Gs0F3ayrLFMhGVZHUkMCOQQcVyHxD+K1n4EuLewh0+413WbhS8enWTxiQKFdstuYY3LFMVGCW8mTA+VsVvBztY/F7x7pVoxbSRa6bqRUHKQ305uluIxjhSY4LWUr1zMWPEgrxfU7bUbDxt4ys9U806hc+I725svtG1BLbvpa+SUkX5/LCq67wQyshjB25BAPZfhf8adP+I/k202m3fh3V5rVb2HT7943M8DAfvIpI2ZJFGQCVJHPUjmvRa+SbC2n1XWfhra6VE0uqC8sry1njLK9tbLLG80rBfliV7SO8hIwEBlESY84g/W1ABXN+LPAtp4qeG6W+1DRNXtxtg1XSZ/KnQf3WBDRypyfklR0z823cAR538UPiNLqHjO48EWF/daUtnHYXGp3NixS4kjupZIkiR9vyA+WcujCRc5UqQCfLfCPjTxB8KfDP8Awk6arqeu6XBFJc6vp+tatcXuIY55RdSwyTtI6mFFPlopxKqYYBjvoA+j/DHw9g0C9Ooahq+qeKdXA2x6hrUkbPAmCNsUcUccUecncyIGbgMzBVA6uiigAoryPxt+0Pa+Gb82+k+Hb/xREkixyXdjcW8cOSM5RnkG8DD5I7oQMniu48DfEDSfH+nSXGnSNHc25CXen3ACXNo5GQsqZyuRyD0I5GaAPG/gx/yeJ+0f/wBe3hj/ANI7ivoivnf4Mf8AJ4n7R/8A17eGP/SO4r6IoAK+d9W/5SCeGv8Asmmpf+nOzr6Ir531b/lIJ4a/7JpqX/pzs6APoiiiuc+JHjOH4cfDvxT4tuYTc2+g6VdapLCrbTIsELSlQcHGQmM4P0oA6OivmPwv+yovxc8O6b4q+M+v634m8aXsCXkEenapPptp4fMg8zyLOO2kRW8slV82Tez+UhOORXJ6/wDGHx78GdU8SfBZNcm8SeMbl9L/AOEL8SawEkn+w30zW267woWWW2eGYhmIMwC7sHLMAfZFFfOy/sVeH5VGu3XjLxlL8TmHmyeO4daniumm7lbYN9mWLqghEW0J8vvXAeHvjL8Q/jVcaH8IrPXz4W8aafqOrWXjHxRp8MTSi2042ylrVGXYslz9vszuXPk7n2hiAQAfZFFfMviT9k+1+FHh/UvFXwf1zxB4d8cWFvJest7rVxfWevyopfyb6K5d0xId6702FDKzDkDGF4R8Yah+3HrBS21rUvC/wostI0+bVdK0uXybrW7m7hW4a2luAFligjjKKfK2mUSOCy4xQB9b0V8p+O/A1v8AsW6dp/jrwNqus2/w/ttStbbxN4S1DUZb+1FrPKsBu7Yzs8sc0byo5VWIkA2kDAYWPC3w0m/a5bWvFXxF1fU7nwCdVvLPw74O029ksbdYbed7f7XcSwMksssjRMwRmCxgkANksQD6kr53/aK/5OH/AGaP+xj1P/003NV/DkWofs1fGbwf4Ej13Vde+HnjNLm00e01m5N1Pol5bxmZbeKZgZHt2gVwBIx2eUuGO41Y/aK/5OH/AGaP+xj1P/003NAH0RRRRQB87/taf8jh+zx/2Um0/wDSC+rT/bZub6H9nfXobYMNPvLmzstYkVNxj02W5jju2A7/ALpn4wcgkYPSsz9rT/kcP2eP+yk2n/pBfV7x4h8P6d4r0HUdF1iyh1HSdRt5LS7s7hd0c8TqVdGHcEEg/WgD5fm0uHQ7TRNOtLKPTbK0utLjt7SC3WCOHKTJKqoqqFxb9VAwqfMAh/eV896ZFq2ranoPgu70m3n+FVh4z17+wrdLdbqCS7h0kzW0Co3mKUWSS/kUFCA8Cc5A3dv8aP2UDoPjnwH8KPCHxP8AE3h3wr42mnhTQGSK7TTLCxt3ll+z3MoMyn95FCqiQEJKcl1TYeu+I/8AwS4+F+s/Cp/D3hG617w14htlWa01ptXuLoyzoSymaB5PKOW5JRYyDggjkEA1fG+kaV4gbWNL163t7vQbqwsLe5gu8eRJbC6TyAxPVCxfaSfnOQTIBtHlH7Peo+KPiL46+HutfE2xWfXrDwXp8mlXF1AJWNpNFeCW7MrbikkmyAO4ZGbIB4ODynwi+AEv7Vnii28LeKvin4q1vwroWiWWoa5pckUEEzXUpuLdLL7UiLJLFGbeYl23b9xOFLFj6N+09+wp4P8Aht4fsvir8O9b8QeBr3wMTqVzHb6lPeh7PKi8eM3LyFZBBvO35lkEYQp8xNAFP45XGpWHwvvdc0m3SbxvpX9k3+h+d8kq6s1xaxsFwVw771jdRjCyFcRhzu634PW97eePfiP4k1OwEfjW58aXVnfXCWa+asULRR2kKybWLJ9i8uTbuYDzZCApGV474E/sc6H+0B4j1vxT8RfHHiPx9onhbV7jw1pFhK40xZvsg8qS4mNr5bs/mtIoOQ58pSzuGwKPxv8A2QtH/Zx+J2nfELwh8RPFPgHwzrStYagtq/8AaUlrNBbvPAyi4LtMhjgkTY+SuchsfLQBpazqPiXwp4o+FmrfDbTrbUPGk2n3umpDu3G401IL6WCNhvG+HzI7dlYk7sBizn5hs/BLSNM0j4A6KdHiAsb9NNvp7r7MsTXkj2EchnlIRSzvcFvnb5mf5SWA2B37Nv7Bfgzx54E0b4kfE6/1rxr4o8VadBqIQ6lLp9vYQTRpJHBElo0Q+VdinGFOBhExivGfiB+z1qn7KnizxP4X8LfFfxLp1l4gks9U0Cxnt7e8S5uri7FjIlwZUYK0b3ML+aApk8wZAMKvQB9N/s5z6hp37T3jPTtLt4l8N3/hqLVtaeNs7dYOp3kKMw3cSPDHIr8dLaNfkCKtfWVfKPw9/wCCcXw78AaAHh1zxVceOtwuD4zj1u5gu0udir5iRLJ5WPl+66vwSCSMY9Y/Z88VeIdR0jxH4V8Y6ouu+L/B2qvpOoatHbLbrfo0cdzbTmNPlRnt54CyrwG3dOgAON/bI6fA/wD7KjoX/tavoivnf9sjp8D/APsqOhf+1q+iKAPnZ0WT/goO6OodG+FuCrDII/tboa9ZsfANzoUE9noniK+0zS3YtBY+VDMlmCOUhLoWCZywViwXO1cIFRfJ/wDnIUf+yXf+5avoigDI8L+GbbwtpptoZZbueRzNdX1yE8+7mP3pZCiqu4/7KgAAAAAADM8f/C7wx8T7O3t/EemfbTbFzbXMNxLbXNsXG1/KnhZJI9y5VtrDcpKnIJB6qigDk/APwq8L/DKK7Xw9prWst4wa5u7m5mu7mfGdoeeZ3kYLkgAsQBwAK6yiigDxv4rfDe+tvFi+OfD1hPq95MLS31bSorgxvPBBI7xzQsWAEkfmSZQD96CEJAznzLwN8M/E3xH0mDw3rXh3UvDPh5rVY9VutShgikuEZ5DLbRRguR5yOVYgqLdSyQOeGH1jRQAVkeMLTUL/AMJa3baTI0OqTWM8dpIr7CkxjYIQ3bDEc9q16KAPjPQHkTwX4chuQy3lnpmj2d5A8C28kNzAJhcI6ISEbIKbBxCQXj3MSK9P+D9tLe/GnX9S0+3eOwt7GW01K7WVmjuJmeB7WPngtCouwQMlfO3thp2Fd141+AHgbx/rUmsatpVzHqkqhJ7vStUu9OkuAqlUErW0sfm7QWC787dzbcbjnr/DPhfSfBuiW2j6Hp8Gl6ZbAiK2tk2ouTkn3JJJJPJJJNAHhfwY/wCTxP2j/wDr28Mf+kdxX0RXzv8ABj/k8T9o/wD69vDH/pHcV9EUAFfO+rf8pBPDX/ZNNS/9OdnX0RXzV4s1zTtA/b78MXGqaha6bbt8NtRjEt3MsSFjqdoQoLEDOAePY0AfStfGvxK/aL8XfHuPxF4M+F/hbRZvCN1BfaZe+JvF7y/Y9TgCvDP9jjgO50zvAkY7TtICnrX1Be/ETwhd2c8A8XaJGZY2QONRhO3Ixn71fBv7L3xI8M+HNP0v4dapq+laZ4q8G2s+l6haCZY4p2iMgSaLOFmEyukpRGPnMxfcCmCAaXws/bg+I3wY8G6z4K+Jfw1vPFGueCdDt7467oepweTd6f5eI7m4NxIHBJVQ0ihiWLZVSAG8zs7f9oz49S+J/iDd6D4R8MeKdQu7MadFqT3cd/pg03y54Ybchj5KSPNIXDEbmZ8hQwNP8b6XaftFal4x1jwf4gsp7Lwt4PXREW+ula21vUUmgkktVLlPtOBasrXABWUSxgLhQX9j+HX7Q/w78W+EdY8UW3iiys9MgvdSnuI5737LPbrtt5myjLvJUEKHCnaCIFD8OQDMuP8AgpL8QU+DJ1GL4KX0njpNRXw75iXcMulSaoFDmNVWQTkmLMwjCk7SPnK/OfMPDdp+0P8ACvStD+J9nong/Udd0vVNSvtVsILm5XUNYS+hjnuo7hy2yTaIIFjGSVMEXDbQKz2FnZeHrj47yapbzeG5/FFpe/2HOQlxHpiaXLZ/2nDDlnhJkmDJGI2aNEVgzAV7rrPx/wDh/ovwui8Sv4osLqwn1aP7PHaSiaSaSTThFHEtsuWyzEHyjjBPnlgPloA5X41/t6fEn4mfDzSvDfw0+FmpaHq3i/Q576TV9UvYXW205o/Ke5tmt5dwIklULLJtAYAbSW+XA0Px78Xf2LfElp4o1Hwj4T1n4f30GmaDq+keFLqW2Nq0StFb3SCchPMKAB2PyttQExgbhzHh6Gw/Zlg8Iav4x12xmsvEPg6bS2naVb2fS9QOqTaitlMyEl0eK4ZWUiNZWtlBK/w+m/tMePPDniPwZN8PdI1611LxP4xRNO02G01IXAVSsySXDzgbYo4/OBeViN6I8OAFZwAZPx2/aK+Lf7R3j+P4b+G/hhD4Z8O6DdQ6nrcfjKbctzcWqfa1srgW8jIYn/cExfMxypO0Vs/CX49/Fv8AZp+IU/w98WeAbbxxpHii/utV0D/hDLwK9vNNuuprWOO6dR5Y3SMqZUqFfG/nbh+GvEvhv4M/FnxZ8Pdc8UaZLdail/qOma8LhYI9Rgk0+FCz3ALpFKj28iiRnLRqCArCQ7el8ZeJPD/xW/aL8B+GdH8TW1vN4Y1/TfE+s36XAS3s4IIS6wOxIXMzARiAMTHukc7slaAPob4feCPG/wAUviZpnxL+JWlWvhi10NLhPC/hON/PnthOqA3d5JuMYudm9AkYGwO43tnJq/tFf8nD/s0f9jHqf/ppua9k/wCFmeEP+hr0T/wYw/8AxVeD/HLxXoniH9ov9myLStY0/U5I/EWps6Wd0kpUf2Tc8kKTgUAfTlFFFAHzv+1p/wAjh+zx/wBlJtP/AEgvq9W+L3xR0v4NfD/VPFerxT3UFmFSKytADPeTuwSKCIEgF3dlUAnqa8p/a0/5HD9nj/spNp/6QX1J+3B4U1DVvhloXiWwikvYvBuuweIL3T4rX7Sbm1SKWKXEW4bzGsxmCfxGIL8udwAPBPjT8S/j9r+veF/H+l+BPBlhdeF70XWkaLLd3FzqsiXFvNHNbSTLsjIljUNsUDDiEZYxkl/jP/goH8TvHHw58GQ/D34QXuheKfGomWyvteu4pbFIYo3+1SxNFIspMJ25Z0QDoRuKqdzxH8c/Adp4f0/XYvEtvqVj9t0hFSxna/uWYSzDAiRfMLF/3bNs/eYMBCYLjgz4I1f4Q3ngj4reMLS40HRfE1lrWmX2mXFqbf8A4Rea7d7i2LyAt9mVghR5QmIuA3ysWUA5yy+Ifxk/Y9vbHxrd+CfB+v6HZaBZ6Z4jtPDs1xb3U9urMYbyeSTKtMJZZS77SPnbO0NuHefHH9on4w/H7xYnwj8H/DJPCOnSw21z4jfxrKjMYDMJBARbTOPKliicOhyzoXUAAjOl8UPi7orPPp/huFfHviHXbBBpGg6TEbz7c6tG8kbBAyxKiDcQ5/0fO8eYzhKZ4P8ADUP7K3xnHhjxjront9Yh0660zxFfQ+RFePFpwsHtmcuwZvMjVxAzDd528H92dwBzvwx/aL+LX7PPxGbQvEHwx0vxRoPjvVW1G3j8DztCbPUZrcSyxRrcMFYSGMttLJljKwZiQpj1r4y/G39qT4nSzaN4A8LaR4A8M6lcadb6X44Mkwu70xC3nFwsEjJI0RecDZwpYqSTmuhttctvit418NfD7wqJtavTPod7qGs2ULXltpNrbMl357XQARml+zeTvDBpfOBKqEAdPgXqGl/BuG5+FfizWrfSfE3hvVXgaS/uBp39o25ljkivUZiwfzFZS0gYlS/kEcrIwBR/Z7/bB+Ifwi0Jfhr4y+FV94lj8MaCuo6frfhm9iCS6PFiNZZVupEwI9u1nD8EAFB95vPrnXf2gf2i9F1v4g6v4Y8D6NHq1pYQaNa6mbo3elxxSPd28lsQx8uSSQQO7HG4LCcDZx1w8Daj+13oeq6H4M+1adY6P4a1SzfxE2myQQXOpSTSqNNV2KfKoYMVUskPCAyckdhoHxy8H678O7rULjU7XQr22e2mvtDu3Fvc2DJYeXJEbQ/MoQxSEIMhQPtClgwWgDoPhL+2X8Yfin4X1jRbX4H3SfEPSrttHub83sX9hwXYjRvNn3SLMkZD79ih8qVw5zkfSPwb+G998PNC1OTXdVg1/wAV65qM2q6xqtvbG3jmmchY40RndhHFCsUKbmJ2xDoMKPJv2OorrxTq3jn4grp15pWg6yLLTdJS9sntX1CCA3E/9obXAY+Z9uEe5lBf7MHOC/lx/TFAHzv+2R0+B/8A2VHQv/a1fRFfO/7ZHT4H/wDZUdC/9rV9EUAed/EH9nz4e/FTxBb674p8NQarq9va/YorwzSxSLBvL+XlHXjcxPPc1zv/AAx18H/+hOj/APA+6/8AjtezUUAeM/8ADHXwf/6E6P8A8D7r/wCO0f8ADHXwf/6E6P8A8D7r/wCO17NRQB4z/wAMdfB//oTo/wDwPuv/AI7WPqf7M3wN0rXNL0WXwokmr6lva2sor+6aQxpgySsPN+WNcjLnAyyqMsyqffq+ZvGmj+Jf+GhvioIbW6vU1r4bJb+H7NNQ+zfbLqKS5E0cMgYGF8zW4L/LjejZ4yADa1z9mX4IeHLzS4dQ8Ix20Ooz/ZIbuTUrhYhOeY4iTPnc/wA23AIJXBIJUNs/8MdfB/8A6E6P/wAD7r/47Xxp4d8HeLtI/Z6+N/hnTPDeteFtR12Xw0nhbTG0y50qM3v2azSZLYzBQHSeJ90m7c3lmVmIO6v0xoA8Z/4Y6+D/AP0J0f8A4H3X/wAdo/4Y6+D/AP0J0f8A4H3X/wAdr2aigDxn/hjr4P8A/QnR/wDgfdf/AB2j/hjr4P8A/QnR/wDgfdf/AB2vZqKAOH+G3wS8EfCCbVpvCGgQ6LNqvlG+ljlkke48oMI9xdmPyh2x9a7iiigArh/iD8DPh58WL20vPGngnQfFV3aRmG3m1fT4rl4kJyVUuDgZ5wK7iigDxz/hjX4Ef9Ef8Ff+CO3/APiKP+GNfgR/0R/wV/4I7f8A+Ir2OigDxz/hjX4Ef9Ef8Ff+CO3/APiKP+GNfgR/0R/wV/4I7f8A+Ir2OigDwnxJ+y1+zr4Q0W51bWPhX4HsdPtwDJNJocB5JAVQAmWYkgBQCSSAASa5T4UfBz9m74xWfiefRfgl4ftH8O6xNoV7bap4at7ab7VFFFK4VSM7cTIAWxyD2wT137Vdnqskfwl1GyaWPSdJ8f6Ze61KkuxI7IR3Ee6QZG5BNJb8c4OGxhSR873Xwm8UxfET4g2el+CtcsfiFe/FODxDoXiwWrLYwaQ8Vv8AaXF4CY0DRRXEbxffcyxLtbb+7APfvCf7Mf7O/jTSjfad8JPBh8qV7a5t5dDthNazocSQyqFO11PBH0IJBBO1/wAMa/Aj/oj/AIK/8Edv/wDEVN8HUubn4sfGzUUZ5NHuNes4baUNmN5odNtYrjaPVXUIxH8SFc5Ugeu0AeOf8Ma/Aj/oj/gr/wAEdv8A/EUf8Ma/Aj/oj/gr/wAEdv8A/EV7HRQB45/wxr8CP+iP+Cv/AAR2/wD8RWv4S/Zk+EngPxDZ694c+G3hfQtasyzW+oafpUMM8JZSrFXVQRlWYcdia9MooAKKKKAOR+JPwm8JfF/SrLTfGGiw63Z2V0t9bRzO6eVOEZBIpRgQQruOv8Rrh/8Ahjr4P/8AQnR/+B91/wDHa9mooA8Ai/YG/Z+gvFu4/hhpMd0r+as6yTBw+c7g3mZznnNatz+xj8Gby3lguPBME8EqlJIpL26ZXU8EEGXBB9K9qooA8E039g/4CaLc/aNP+GumWM+0r5ttNPG2D1GVkBxxUXjD9kH4B2fh+5vPEXgizm0u2HmyLc3F1OM9F2p5hLMScKqgsSQACTivoCvEf2rNI1vUtD+HNxpKTvZab4+0K/1cwSbQlkl0N7uMjciu0TEYONu4gBSQAZWkfsXfBLRNDa7034VxabcS24uH0u2u3inZ9uRESs4jL5+XO/bn+LHNQaf+x5+zv8S9Is9Yj8BadrVo29IpLuW5Z42VykkbK77kdXVlZCAVZSCAQay9A8KzH9p/xKPFfw21TWtYk1SDV/Dnj6GJDaafpyW6x/ZWuCVaNlf7TmBQ2/7Rkjb8w9J+AsWotP8AEu+upmn0u/8AGN5LpUhnEiG3SG3hkCAE7ALiG5BU4+YM2PmyQDGsP2KvgrpVolrZeBLWztkzsht7y5RFycnCiXA5JP41Qv8A9gr4AardvdXvwy0q8uZMb5riSd3bAwMsZMngAfhXvtFAHi6fsb/B2JFRPBkSIowqrf3QAHoP3tO/4Y6+D/8A0J0f/gfdf/Ha9mooA8i0n9kr4S6Jrel6vaeDrdNR0y6jvbOeS6uJPInQ5SRQ0hGQenFeu0UUAFFFFABRRRQAVVvtLtNSe0e6t455LSYXFu7j5oZArLuU9QdrMpx1DMDwSKKKAC40u2ur+0vJYt9xah/JYscJuADHGcZwMZxkAkDqc2qKKACiiigAooooAKKKKACiiigAooooAKKKKAIrq1gvrWa2uYY7i2mQxywyqGR1IwVYHggg4INNgsobaxjs4kKW8cYiVAx4UDAGevTvRRQBFo+kWWgaZbadp1ulpZWyCOKGMcKB/M9yTyTyauUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVDe2VvqVnPaXcEV1aXEbRTQTIHSRGGGVlPBBBIIPXNFFAFddGtU0QaSqyCxFv8AZQvnPv8AL27ceZnfnH8Wd3fOeansLC20qxtrKyt4rSzto1hht4ECRxIoAVVUcAAAAAdAKKKAJ6KKKACiiigAooooA//Z)
Which outcome corresponds to the combination of silver and carbonate ions shown in the following equation?
Ag+(aq) + CO32-(aq) → ?
◦ box (a)
◦ box (b)
◦ box (c)
◦ None of these