Question 1
What primary ingredients, coupled with DNA polymerase I, are needed for the
in vitro synthesis of DNA?
Question 2
Refer to the following diagram of a generalized tetranucleotide to answer questions (a) through (e).
![](data:image/png;base64, /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCADnAScDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9NBfXHy/6QGz7U5tQlX/lriq6qdqY/hG2o0UuXd5BFFGCXdjtAA+8TQBfF5dM20E7j/DipVmuY3xJLGp/us4r5PtPE/xF/a2kuovhx4il+FfwmsLmW2XxRbWyTaj4g2ko/wBjDLshgDD/AFmSzGtaT/gnj8Db4vNrfh3WfEervzLrWp+Ir/7XKT1b5JlH6UAfSt5dXcKLk7WJ4296Yl1cqm8yHaP71fMF58DfiJ+zws2ufBzxXqPi3wtpkLSH4Y+IJGn89Ah3/ZL47pUk/uIflJLDdXs3wc+KmgfG74baR4z0aOaCyvgYpLS7AS4s542ZZYZlH3XRww29O/8AFQB282oXKhSJRTzfXGwEybP+A1WZVU8Aqq/+O02aQsixgd6ALQvp2dR55+b/AGKebi58xgJO1UVV1bkVIzHbn+KgCR9QuVLDzS34LTf7SuNn+spnl7kYk/NRHGI0z95loAmj1C5aH/W4ftxT/t9wEB80n8FqpDt81j60bSzbO4oAlfVrkvxJhfpUv2+4f7k4X/fQVTZRtU1E8cjNnPy0AaK312y8ujKP4lFH9qS7OXqui+WnD7t1Kio3OaAJU1K5YbfMK/7W1ad/aFwvHmlv+ALUBXc3yfepzdVC/exzQBOuoXGeZP8AvoCnvfS9d4qukYZMk/NTUXa9AFpb6X+/TJNQmXnzP0qMyDfTHjLKpHzUAS/brpXwZDt/vYWm/wBqXGc+YWX6LSP9zJqDaF5oAsHUrhtuG4706XUZtygS7fWoE+bbSCESPz+FAE0t9d/8spA3pxQl3qDDlx/3zTEjeNFDVAYwz4KDd/vtQBcGoXHQzlT/ALgoN5dM4xcH/vhap+X8rBKnt1OMUATNfXMb7TMc/wC4tJ9uuf79RTLt5PzUzcO3yNQBa+2XGN3mU1tQuV/5aDb/ALtRbvk5pxkDIxA+VaAJjfS933UVSjk2/fFFADvvN/s14/8Athazqnhz9lb4o32lPLHfpocgE0L7XjV+HcN6hSxr1vcVGaq+IvDemeNPDer+HtUjM+m6tayWM8WPmaKQEN/6FQBnfDjw7pfgv4b+FNE0WBbbRrLSraG0SEbRs2Do3v1P1rem/wBZgZX/AHjXzH8KPi9dfs+Xtt8G/jJeHS00tVg8MeN7n5NO1SyXcsMc87fJHcoFClW67c19O6XPZa7ZQ39nfWuoWjjIu7OdJImHruHFADoJJIZUK5BB/wDHa8F+AtjF4f8A2lv2k/DelJ5WhC+0fWfLjG2OG/urMvcoPd9kUh/661ufGb9qLwh8JLOez0+4i8bePZz5WmeFdAkW7u5ZyvyGRE5ijzt3O3QN3q5+zP8ACvW/hx4Z1vUfF9zFf/ELxlqUuu+IZLdi8MEzjEdtFn/lnFGiRL/umgD1F/vMMU/cFhz956ljtppf3ixnaflH/wAVUU1uY97Hgp1WgAEfmLk/8Bpq58xUNHEK4z3+ZvwqThtzj7qjmgCORgu/+72piyDbjNBjE0WGPzD5qPJ4dyQqIN25qAHNIi7dmd30okU7VI7/ADUKu140JTdnbt/CpxjYoXPACmgCDaVVm421A7GRWKn/AIDVqZQqZzlWpn2UR7c/db+7QBGi7UX/AGqlRfnb2qJ1Ctx92pYl3Tc/xnaP9mgB0LffdfurT9wkG0feqNgsduG3qoZwm5zt3E9AtKke2RyfXb8tAD2VMYQ/N3qNm2ttH/fVK7bWc+3FMbEaLvHy/wAbL96gBUU7+u51+U1Pu2pz2+WooZY2meIzxrOEaXymcb9m75X29cf7VP2lU2H5W70AOSHzPm/hpJYRHSxyfLs/iFNuZOMf3aAIk+Zv7qqKT7qfypdvyKT91qReuP4aAHwsW2b6Y8I81iTtWpThagTfI7DHy5oAeGKuhx8tTtJt6CovLP8A3zUqqWDHHyqKAIpVLTJn7pzTS21Ff726pXjTy95O1v4FpJlDBABt20ARbgzYBqX7OflGDtX5jUCKvmnP3R1qVdjLxnr6/wANADtoXpRSxKevaigCFcK2fvN/danpiObd/COi79v/AI9Ua/e4xS9sc/L0oAbrGmab4g0mbTtU0601SwmG2S2voVlib3ZCuK8EvP2AvgFqmoS3UngcWgdy7wWOp3MMLE/9M0dVxXvpXam9j8tK6iNVIfduoA5L4Y/CTwP8GtIWw8F+GLHQ7YfLvgj/AHz8/wAUrbnPH95q65FMdtJOQXMaFpFt+pAy2wf3vT8aRPmZum7FPgZ41YxqWYe3K/SgD8PPiR+078SP2itaXxJqviHVNN06S5muNN0PTrtra008A7Ej3p1wqfffG5mbivqf9kf9u/xfbaBrvhrxx4Z8d/F640nyZbDUfCWiC9uYYHB/d3gVlKnK8M3JGa93+I//AATd+DXxD1mfWbS31bwXd3bTS3lroF8621w7nJPkvuRPoioPm9ea9o+CnwJ8Ffs8+G5tG8B6NHpcM7q93dPI81zePt+V5ZXyW28gJuwATjFAHj6ft0WsbIB+zz8dWbbt+bwf90f9/a6r4T/tgaJ8V/ignw/m+H/jrwL4iutNk1OFfFukpZCWCMqpK/OzHlvSveYbyXy/klkf037a+Z/FkzT/APBSjwB8o2f8K8v29+bkUAfSRTbK64Luz465b9K840r9oHwTr/xv1P4T6XqM2oeKdN09tRv/ALKiy2lsgbY0Lyq3ySLuX5GH92vHP2ifjn4s8b/FKL4A/BbUF0vx3cRfaPEvix1SP+w7H5c+WkijzpGDr80TZTjHPKex/Ar9nfwp+z14R/sjw3Y/8TO5Cz6trsxdr3Vp9vzzTO+X5cs2wNhd3bJoA4f4zfGTxtL8efCnwV+G0+l6V4l1bR5PE2p+INbia5htrNXaFUigG3zXZ0bjcmAB6muU8B/tx23hvw74mj+MNmbDVfC3jP8A4Qy/1/Q7Zn04u6u0d0+WzCnybX67SU/vfL7V8Q/gP4M+KHifRfE2u6XdxeK9Hjlt7HXNI1W50y+gjdfmiFxbOjsnL/K/A3vj7x3VvDf7Pvw48G+B9b8FWfhOwl8LaxI9zqVnqRkvZtSnf5nmuJpC7u+7+JmYjauMUAei2V5Y39hbXVjfW1/Y3KeZb3EEolSYdihGdw+hpZY0XcWbbgfd+aviDUtV8Q/8E4/FlnDqV5c+Jf2bNbuxDZCeffdeEpnOVSMEvNPFjPC8deh+/wDbcV7bX+n2eoWzM9heRpNBORjcjjerYOCPl/hxQA3dIqKCDuzxXmnxn/aK8H/BDxD4V0XXf7Q1LxP4ovVstP0XRIkubwq5I89494YQqeCRn7pwD81cd+1f+0jJ8FP+Ef8ACPhLSz4g+LXi9ntvDmmSP5NvEzZX7RK8g8v5GxhCeSey81c/Z9/Zaj+HU8Hjzx/qP/CwPjNqADah4m1Mb2s15/0a0TJSFEyUymM/N90YVQDkvj3o8fjf9u79n3wrrcUlzoGl6XqevRQmQpFNdxhNjsBjJRokbByOf9pq+ozJJM7b3Kup2vx8u7bu+X/vqvO/ij8EdM+J3i/wJ4rbVtV0DxN4OvHuLDU9LlUb4ZQi3FrID9+OVUAJPI5w3Jz6Gsf7xsHdlmcNjbtBJ4/z/eoAlRQqfPnbS7hHC8uB8rcf3qF+42TVdWdkd0PlYDLu+9mgD5X/AGwbC38LfGD9nnx/pTPbeKpPFcPhyaaOZl+02EyvvidN2HH8XNfWt1j7S+Oma8w8YfBLRPiF8S/BfjDXLzULiLwiryaZoWdtmLw/dumVW+d1X5VBr0xZhIuSPmoAY3y8ih4xI2Sflpu15JsgfI3yinnMafOO+2gAVQvH8NRP8snH3acZArbTQI9zZf7lAD+G5P3aPMTOBSSdcJ92m+T8zY+9/tUAP/vLUgk8tfqNtRup8pQP4utIzBVUD+GgAl/eRKKWGPb9/wCZaFYNUnmfIwoAgjUM7gfxUSw+WmA3Wnbgox/FUszJIEwDxQA2KZFt0GaKgaMb/l+7RQAm0L/GKeF3bTn5WpirE3rSxt5iKnpQA5pPkbjctRHe0KxkBWT5i1Wh/EFx0qDdukxxt+6WoAYc/Jj5WxzU6/uwv/AaGj3LvH3V+WnxruRsn7tACOwbaSvy420jNtVcDdt25/KmP9xvenxMGjx/FmgBIVKo3yFtnzdK/PL/AIKBfFXxJ8Kf2tfhvqHhPxBpPhXVdV8KTaRLr2sx+bFpcMtzl7jb8wyMD7wce3ev0Q8vcmM/WvJ/2kf2YPBv7TPg5NF8TQ+Rqdru/sjWoFLXFjIf4gN2HHy8o3ymgBn7N/wN8G/AbwDDa+C7k6zLrLLqepeJpbjzpdXnIy0plHBU7m2gcDPqxavXIADEXC7N/UONvv8Ad9fmPIr8qPhf8UviP/wTQ+JE/wAO/iDplx4m+G2p3G6zls02Qglstc2zH1H34WbqvFfST/8ABV39n62LhdQ12TcuSzac25s/j2oA+wVk+ds4/OqyrJneTlf9j5mr48m/4K3fAKGRVD+Ipe+5dOH/AMVVd/8Agrf8BVaNkj8SPj0sV4/DdzQB9d+JvC2j/ELwxqvhbXtOh1HQtUtzb3VhKT5bRn73I6eoOetfnRP+0Bqv7GXxKm+CHwe8Rad8TfD2rFbbw/a6rOJm8O6lJLhoZriMKHjG4vs5YfLyvzbq3xl/bh+IH7XV3B8M/gB4e1u1027cJe6vkLc3MB4feAG8iH5vmfdntX0l+yP+wH4Y/ZitYNb1t4PFPj/JeLUTE/2fTQV+aK2Rj/4+Ru+lAHZfs8/stWnwf1jVfHXifVp/Gvxe19NmteJp/kiThQ0Nsm1QkY2r23Hb2X5V9ztljjRQHLY+VqZtK7fnd+n3juY08qFdSKALEnzQ8fKv+1UPK9Rt/ipXk8zjBolm8zaSh3LQAOo3LsPymmeX5askgO00CQ5YYpzrtTrlqAGibhQMbVPFTps8pePm71TZt3JwuKuRruiz/DQAyZRJt8sldp3U1vm+Qnd8+6lHzdKieTbwKAJJowzs4+7gUrNtTd70xN3y00585uCy4+7QBK6nCmmJN5h4B/u0QyGRWH8NPRfLfjDcUASH+7VYfvJnT+6N1Wdp83YfvfeqsyvvYgbf60ASou00jttianlSqrkUeXxigCumJGyKsL1pkUKK/wA1PRg3QbdtADAnmkndtx39aKWXMoG35VFFAFeJUbcR822nQrt3Co02RuuPmVutSsu5vrQBJCwZlY/9802b5m67G7baesO3YRxgfxUm07/u0ACyDaoI+b+9Qzf7VRvGVfrSldsW8Hd+FAEZYszdas2y/JzTU2NFn7tTJhU6fLQAf6vkfNSSSfJnnaDuZl+8nvSsw6fdph2bl43Kx2uzfdVaAPmT/gpLo1rffsWfEC6eygurvTfsdxY3DxjfbP8AbIFd4yeVO0t09a9I0n9mz4ST6Np0tz8MfDDTvYRyPu06JsEqON23681+c/7dv7Rfjb4nfF3xz8Mvtz6X4C8O3S2L6ZbD/j/cKrO8z9T/AHlXtitf9jz9sL4seHvGel/DuC1n+KlhqltKdN02+nSK7tnjQyZW4PBj2JghuhxtoA/Ql/2ZPg5Gjf8AFrvCyrx/zDov/iahX9mr4P8AmqIvhh4VZzjH/EriauCk+Pvx+YOU/ZylKqd37zxFDuJ/2flrLuP2s/iV4T8c/DnR/H/wci8Kad4y1qPRLe8GrpcvBLJ93KotAHI6LpOheAP2xPizoXw+0rw3oZi8EWkl9BvktvJG6RpDEsa4zhkYtx/DXqv7DWqR6x+yX4Dvk1KbV7iWGY3l3NdSXLtN5z7gXk+b0r3K5021GoTTQ2VuL2VfKmuBArTSR+jNt5Hsa8h8R/tJeDfB/wAZ/C/wf0fSp9c1/VGZ7q28Pwo0Giw/37kIfk57e/0oA9gZflThF43Fc1IjBniBP3sLubivEv2rv2gb74C+HvC6aDpdrrvjHxdrkGgaLaakSloJnfbvlccgLuWuI0H9oz4ofD/4m+Lfh18SvDej+JfEGm+EpvGOhy+Do5c6gkbmM2xjfkPv3KvHOPcUAfU6MJApA+UgMv4qDTmUfLj5s15z8Bvjx4U/aI8AxeJvCtwytlotQ0y8IW80+ZNyNHNHlijcNtP8QxXoSNtGOdwPKtt3CgBJF+b5RSp9zGR/vNQzO33flV+i15v+0B8f/Cf7OXgn+3PEsz3V5cv5OmaJZor3mpTn7sUUX3m525b+GgD0jyU8xtzBWQb/AJjhf+Bf981xfwo+L/hb42aDf654Lu7i/wBKtb+axN5PA0cU0kedxiz99M8Zqxouu3/jr4ULqEuiXejaprOiPMNIuY9s1s7xH9y47Hc1eOf8E9PEGmat+yF4I060nhi1DQxNpuq2agJJa3Mcr745o+quR83P3t2e9AH0cMxhkZxu+7/u/wCflps2F2/xL97pTLth77mPG77y/wCzS/dX+9toAq6xrlv4d0TUtXvEma1sLd7qeK2jaWXYg3fKg6n/AGawfhj8UfDPxq8C2PjPwZqJ1HRdQz5UqoQ4cHa6Oh5Dr3FdO+q22iW1ze31zBZ2NvGZbie4lCJDGBkuxPAVa+Zf+Cc6RTfAbxJqNsd2m6l401i9sZE+48Bm2o8ft8tAH0+jJGGAAVv9mnxYVWJO2mPbvGil1+ao0YbWBoAneQtP+DUyW3PmrzTVYRrjHzJUvmCQYH3qACWTav8AepkbeZu5qOZTGu4ndzUkPypmgBu5t1O/i4o3DdmhW3PQAoz6UVIknFFAFNY920oAv41Kilm34+7/AAtTjjbgIN397+Kpgu5lAPWgBnmbomyT/wACqJ/NZ8oankUeVsxuamqxjXAoAi8x9y5FDttbj5VqfaFfJ+bdUcWPNZHTdQBI/wC8VeNvFN3FUwaf959gG3bSOvy0ACt29aDH5jKCfmQ/w1Ejc1KG+8/pQB8j/tVf8E8dH/aC8bx+OvDfin/hBvFsgEeozSacL63vlQARnymdQjjb98ZyO1af7JP7Cmjfs0a/e+KNY8RSeM/HLwvaQal9l+yW9lA+1mSKHcw3tt5b0445z9POqNK+SWXG0bTt2t609V5bn5cc7iWYn+996gAyxkUeY+Hb5139e/8Ad/2ulfLv7akEknjD9mPYzMifE+wBXqf4yv4AA19Q8yOhB24K/wDfNfFf/BVK08TxfCPwDrPhuHVoH0DxKmp3OtaYX/4lIWJwJ3KDKAFx8/AHr81AHb/HT9o/xL458eX3wX+A8QvfHL7U1vxc4Eul+Gof4t7AODNt3Ls4w3q3Fei/s5fs2eF/2a/B0ulaEZb7WdQYT61rl4S9zfz45Z8/cUndge9ee/sDfEj4PeJvhamm/DNbbSfEaJ9r8QaXczefqk1yc7rmeVwHuQxbPmLlfmAGOlfTONrsFQoePv8A3j7/AHv1oA4r4vfCHwl8cPCw8O+M9Nk1LTEnS7hkhne3mtp0+48LptKFfY896xfhD+zh4R+DHiLWvE+mXOsa/wCLNWhS1ute8RahLfXbQI3yQhnPCLtXpycCvU9pkhxwFz/FTBDtCZfap/ixQB81fHj9l7xBL4/j+MPwN1Ox8JfFaEbNStb1WOn+IIMKPJmXkI+1eHAyf7y/K69n+zt+03ofx80y/wBPnsbjwf8AELSZPK1rwXrDiO8tXCqxdEOGeE78h9v5cV7KkcrFWiDNz/C23/8AWK/Mz9uP9oT4fXvxa0C8+B63Oo/HO2uxZnxj4XZigZWVfsTxqhj1F3HybMEKMZbGVoA+0P2hv2mdJ+AOlabY2ulz+MPiFr7+ToXhLTGzc3Ln7ruoyUhXb8z7WrkfgH+y1rtp44l+L3xq1az8VfFi4Ty7NLVNtlocG3/UwJ0d9v8AGVz9eWNv9lz9nhvBumWPxK+JIuPE/wAbdft1uNU1rWURrjT9y7haW6DKQIittIQD+LoMKPouLZjfn5m+Yqw/ioArFfLuGnBPnZX5v76/3T+NVLbTbPTZZ3tLK2t3uZGuLhoI1i85yBuY46n5V5bmtJ4/tEuQQu2q8zBXYEfNQA2SEyfMSC2SxZR6/NRLmMfd+lIkjrxml8x2HP3aAEmtY9QtJbaSOO4s5E2SRSorKQfvBlPUN6UtnY2em2lvaWdvHZWcCBI4LZAiIo+6oUdBTrZSobHy07cOmKAHrNtdRj7396mOp81/el4aPP8AFmhI9zqSaAJF8vdgjbT9sa9RuH+zTZFDf7VCtt6/doAimj8xVGdq0m35v71SzfMv92n7Y1DfvE496AIgobtTmjG/g7aJMLwDUbNtWgBw+6w96Kcjeo3UUARHC7mz92pUkH975qgeHdt5qcx7Qr4+UUAHO6l+Xb/tUzdu605fl5oAjkzI2AaRm+VQO3WlkYK3GVbH3qSGT23etAEy5XaSNuelDZYUjSHGD+FHzUARtGFG4PuamNGWhZAdrMRTzGVLf3jRG3GP4loAropjfru5q5wyNVaVvnXFWW+ZFoAbb4V1yvy1Bf2sGpW8llf2sN/p88bQ3FtcIHSSMjDo6Hgg7vunNWfl2rSxSbSwwGU/99UAfmv+05+xv4k/Zn8Y/wDC7vgZqN1aadp832m80SI4GmxdXSJEYebatnmDjb1BK/dq6f8A8FXfixfaHaX0HwFTV4Wj3tqNnPcvbz9i6ARNgZ9zX6JeOv3ngDxhtX5l0e6Vf9r9y9eT/sE30qfsXfCqbDvjSCOBnpK6igD5IH/BVX4tXJkEf7PqqY8bw7XZ6/8AbGrdv/wVD+NLSLFH+zyQzgMm17rHP/bKv0nNzcz8pKiLj7v8VI9zcRriSZdueWVaAPyq+J37Xf7SH7UemW3gPw58NtU8Bf21PFbG50s3MVzcfPzG142xII9u4sWHI3D1r6y/ZO/YW8Hfs02Mer6g8Hifx3JEga/ktk8nTCVbKWYbLRZ3ENJvy/U46V2n7RXxH8YeAvGvwbi8P34istf8SHSdX0pbZZZrmP7M0/7ksfkx9nZf+2tVfgf8RvF/jX9oD41+GtcmSDw/4aGktpOl3Nsiz24u7ZpXEjqTuAKFRQB7yN7JhyN38Xy04sFVjjd/FVa2m851t445PkH8XaneYM4y25v4WRuO1ACL/E7jan1pq7o2wflamzQySTo8cuxYvvoy7lNOfbjjLfxfM1ACuvy5L/MelDqke5Xb5l/hpiKGkUkFmX+Gm3OyN1JO5qAJEV2Xj5VbpT0U+Vn3qjfarZ6RpdzqF/dRWOm2aNPPdXD7EjQLuZy3YCmeF/Eul+NfDdjruh38WpaVqCedbXUX3JkyRlfyoA0Xj2/vP4fu0xcq2amkz/q6Yy7W5+72oAckJ6k7VNKqlu26sbxZ400TwL4Y1HxB4g1CPTdG0+Pzbq7n+5Cm/ZlvbNaunalaatYWt/Z3EV1ZXMSTQXEDb0mR1yjoR1DCgB83zRNhPmzURjK7vkTdmpnY9fah/uPkbvmWgCq3yzsTUpUyc4pyzRNNyh209229Pu0AN5opyN5i0UAMb5eDTcvsxmg5x/epyYb8qABF7mh9jJyTxUhXjH8OaV4xubAoApsxY4A3LipYfu5/iqQrGu3kM3+zUbfLxQBIFG6ldX7U75FReNzUq5+b5ttAFfa7PzTnXa395v71SRNtfJp74xk0AVW9afE33c087GHSkeE7VoAJFK9KF+ZWODwKaGOMU4McLsyu1t1AH56f8FJf2lvHXgr4m6L8MfCGrTeG9NuNHOoald28Y869V3ZPJVyDtTCnOP71fOX7Of7VXxK+BXiPwno+i6jqHinwjHOmnx+C5Nn79ZG+VLZiu5JMlm5OPvV+lf7Sn7Jfgr9qm009PEM99o+vacStprWkbUu44z96MsVIZM84rz74F/8ABN7wJ8DfG9n4vvPEOs+NNY08+Zp/9rbFhtZOnmqiDlgPWgDXP7VnxQQnH7K3jfr/AM/9p/jWN4y/bY8feB/C2qa/rf7MvjDTdF06Bri7u7nUrZUhjHVjjJ/KvrSG485pfLkye+3qT0rw39uyUn9jj4tEuX/4krjAPI+daAOp1rwN4T+PNh8OfGWtafdPd6Y8GvaLsldPsk8qpIrtt4fYqqD2+961wnxo8c/DP9knU/EvxGn0yW8+IfjJrW2Gh6fcF77W5I2EUSxRfN0X+LHTjrWJ42/ag0j9nD9n74W2509vE3j/AF7QtOtNB8KW0hWW8mMMSEng7IwWGWPXoPax8Bf2XdSs/Hsvxg+MF/F4p+Ll9Er2tsq7rHw5Ec/6PaKc8rvIL/XHUswBy3xg+KOv6x+0Z8LPDXiDxLqvwj+HWs+HZNXuJUuUs5p7/GVs5bllIRk+9tyM7a6r9ib4geKfH+i/EC01bXrrxb4f0TxJNZeG/GF9Ht/tW1/3sL5mw/LvXhq968XeDvDnxB0pdK8S6LYeIrBJFlSDU4FmQOPun5u9XdN0Ww0bSbfStOs4NP0y2Ty4LS1RUjjX+6qrQB5Z8G/2nfDfxc8XeJPBk+n3nhTxroF1LC+ga06pc3MCni5h/vo3t0r15/3j7MFtucf7w7V4f+0f+zBpnxumsfEWiatJ4F+KGiur6P4vsR++VlV9sM39+E7uR/8AsnA/Z4/ac1Tx74p1H4V/EzS4/BXxj0II9zp8TtJDrFsE3fabZum0jBK7iefqFAPopGAZt7/KoZjx/F6bq5j4k/Erwr8JfB114o8X6vBoOkWkfmvJcvtZjj/VovV3O7hVzzWV8efjj4Y/Zu+Hl94x8W3bW9un7i00+PmS/udjMkEK/wB98Nz2xk8LXhfw9+AXiv8AaH8caN8XvjzbC1tLYCbw78Mk3S2mlcsEnucnbJPt2PgAYzyONqgEX7RvxOvPjH/wTs8ZeMbfwzq3hNNSsv3mmamNtwtslyEZ2x2dBn6Gvpf4bQ6Rb/DfwiPD72i6ImlWy2i2e3yWj8pduzbWrrGkWXijSr3S9bsIdQ02/ge2utPnG+KaNuGDKezL2qr4Q8JaH8PfCumeGvDdlFpWi6epitLWPdshGd2F/wC+moA1VkHzj+LP3qhTzJplyfk+7Vl8Nu4+bNRysVCkfL8/8NAGX4wsfD+peC/Eln4rNm3hW5sZU1H7fjyRCU2y72Py7cV4j/wTsvb66/Ys+FEmpGV5xZ3MSeeOfKS7mWH/AID5Spt9sV7V428E6L8RPBus+GPEFil7omrReTd2qkp5idTyP+A1oaDoumeGNF07SNHtYNL0nT4EtbSxto9kVvEgwqKq/wAO0UAX2bbGoOOBUUsw2HHrupr5Yt/EtOCjav8AFmgCKFt1WIVEm7fTB83GwDb/AHacrbaAHiPaDiinUUAVvu8ihW2up/undTiu3imKxx0oAsPhRk/dpu5JArntUjKGTmo1xGOn3qAIZY/vEfe+9RF9zn71PP7tqTv/ALVACxsVapUYM9MDeWvH8VEK/PQAS/6xR70rr94H+E0j/LL/ALtK3zbj77qACJfWnM21v7ytUXmFWoeQ7M4oAeq7t1BXb0plvNuVgfwp7SbZFCYZcc0ASfJt/wBqo2kZSpAHHSmfO0qjHy0Mx8tXxubLL81AA/zbR5hifG0steN/th6RfeIv2U/inpOj2k+p6lNok3l29shaSToWx68ZbFexL8x3ugpqphmc7UO35MdQfUUAfnd/wTM+I3wz8Wair6/qt5qnxy1CN47fUdeHm77GIYWDTnK/u4kRMNGfnyrMPlxX6JNIJpWH3pUHP+9Xw3+21+wHbeMrfVPih8J7Saw+IEFwNVvtLglfbqEkeT51sNrGO6DBMBMI+OVycnzv4U/8FcU8J+E/7J+KvhfU/EXiuzlaGTU9Ft4bYyxoMf6TC7qYpwwcMAoX0HqAfpWmPK+Qfepm47sGvz/P/Ban4bQjZ/wrnxQo95Lb/wCLpf8Ah9H8M5MFvh34qwe6yW3/AMcoA++riaK33Ek/7fB4U/dPHvXxb/wUt+JXwr8NeCrfSfEcl7B8V0tvt3hzUvD0YTUdJZG4me5ypjhZhgpu3N2XOGHm3xC/4LD6VrXgy+tfhz4M1PTPFkx2Wt/r8Mc9pb5/jxE5ZpOyLjbnbnI4rX/Y0/YMute12P4zfHKG61PxDf3qazp2jXXyuJmLOLm/i2L8+7bsjB2LzkfNtUA9I/Y6+Dev/FxdH+Pnxre61zxxeQf8U9pOphBY6VZ4QRXMNvzsklwH3Hn589Tur7Ff+Bz9/GPlOfbdu7ngf980xVMkqSud7EbdvHykgZ6f1qV7c7cD7qfL8tADHzI/Pp/DTkUQ2/l5+X71LEu0sfvcUTKW+bIb/ZWgCLcVdT96keTduB9d1KnpTtp2sMD5aAHceVydu4U+Kb5FHHy/L0pFj85VB9P4ahVfm3UAT7Qy5+7/ALNMChjwfu/NQ7FV60JGI2yP4hQA/wC6MjvTKfH8yqw701F3dDQA5WoqRY9vRqKAKPnPt5A6babuKihG3bQasmNNtADyxww/hWonYtyacGZnYOdqmopt7LiNNy96AHriQZp/kjtIGb+7UKKY0wflpVbay4Tbn+KgCU7dtCfK1OlwqKP4vvU0YY0AQuz+Zz92pj8qLTpcMvNNLcbaAIn9qRVMgxUpxu4pr/KPloALeMb+fWnbRG7Y9d1RRt5b0sn7yTI+7QBZVu4qNl/g/hoTCikLfPxQBGVG/B+7TC3zcfMw6VK/36aY9u4n7tAD428yVGRN8m9F3Dgr/e/TdXzb+zU9wv7Xv7WKPIHZdQ8PsigHAzp74/Tb+VUP+CiXxc8XfBn9n60u/BtzcaXd6vrUOl3muWyqZNPgdXYlOMKXKKgY9N/97FflhY+NvFXg27n8QaH458R6LqrGG7udRTVZneeRPlWW43tiTaB91lPdRQB+/kV4zIzE/c++vcVFPd3CrhG2senAxXyN8OPip+1p43+HHhjX7LwJ4Blh1GwhuFk1HVLiG4kBXiR0VNql/v4HTdXUf8JR+1y2xT4G+GfP3m/tm54/8coA639sXx54s+Hv7NHjXxP4R1yLQfEOlwQy295JbJP8xmRGTY6suW3bRwea4X4b/HTxx46/ab8MeEb3T9b8PaCPBE2qXtt4h0eG1mv72O4ji8+IhmIH73Oz5QP+BVd+DGvp+25+zfrNv8UPDVpBBd6vc6TfaZpl3KkUn2Wbg7wytw6599q1qfHfWPhb8AdS8P8AxL8Sx3beKtKsW8PeGrG2uJnu9R3ldtskQb94WbZy3TqaAPdtssr/ACAtjafl+7/+r/dqSaSWEN5iBVwcN/F/urXxN+0B8T/iDqPw3+Bd/wDEOw1L4SeEda1yR/H0uj3T+ZpkKPizt5ZY8PHHcdXdcbD3rpv2OfFmoa18avi3Y+GNWv8AxT8CbZLE+HNY1G7lukS68lGuIYZpmZ5V3u+4sflKhaAPrP8A1f3ztfH8Qpk2ViyD3/hr5/vP2pP+EL+N1/8ADz4leHT4M0/U5kg8IeJpZC9lrGV5R5VXEMmWxhv735/QM/mpCsRVS+FyKAC2XceTUgYK7jHyqOagf9y7Y6ZrB8aeNND+HHhnUvE/ijVLfRdB09N9zd3TbQB6f3iT2C9aAOjBLlgvZCd38K8fxf5/hrC8LeM9C8faT/anhvWLLXtN86SH7Zp8wliMkbbXTcvdW+Wvmpfj/wCJfjr+zZ+0F4ms/B2oeFvB0fhjU28Ja5NO6XerJ9jnzP5XWP5tjIR/e9Vr1L9jzStJ0n9lf4QxaFb21naz+GbC5nW0VQstxJBG07nHWTzC7E+uaAPXtoZF+U4/h3UwyHzVA+7inrIN2NxbI/i+9UTLu6feoAzvFfivSvBHh691vXdTtdE0SyQPc6jfSBIYQSApZj93kgVdsNTt7+ztbq1uIry1uo0lt7iJ1eN0P3XVh1DDmsPx9pGj6/4A8T6d4gtra90SXTp/tkF6gaFowhJ35/hGM15D/wAE+727vv2Nfhy928krR20kMTMd37lLh1i69tiqBQB9Do24ZoqKJjj56KAKsUYY5521YVgrVEuyNMBPvUfhQBYDeZ8/92okkEJbJ3KaFU+VsDVX3DdzQBaWQSNz8y9qZu4Ypj5f7xpqSdsbaa8fqAv+z60ASrnfEhAbPzfKadCw+aq8TPG64HzCpVV9+w8UASt81NaMqdwp/l7UzmkX5aABFCo1NHvTtoY7x/DTWm9aAGOvz5qWFS27B+WopW8sMf4qjEhyhHy0AWdw+YN96miPaaFZNrE/ezTfPHm0AT/w4OKrupkVkY/LjbUytu/OoXk/esCKAMvxP4U0rxp4eu9B12xg1XRbqJop7W6RXSRf6EdQfvA189eGf+CanwB8K+K7PXLbw1f3VxbzrcRWl9qUs1tvzld0ZbBA9DX00vzNjHy1LtEe0A/d20ARTnyIUjRdioNiInAAHC7R2p9lHuuoJFJwCylc/wCzTpdihQfl9aiSSSFWkQIHXds3napbH8TUAfCv7PH7QWifs/8A7LGv6jqEbavrt/401uHQfDlj+9u7+5Ny+yMIvzY3Dluwr1H4B/s5a/rXjNPjZ8bjDqvxMvV2ado0ZD2Hh2AhdixIf+W21QWfsWb/AHq+LPgd4tT9ir9sXxFH8X/B9vby6xdzyQa1Gkk39nRTyZFxbM+A8BY7ZHHzjH1Wv1osNStNW0qLUrC5t77TbqMTRXVrIJYpEPQoyt8wNAEN/BDqVrNZahbQX9pOvly29zGssUi+4PB/4FTrDS7fTbKKy0+0ttOs0G2O2s41iiT/AIAvFSGMea5427+F/wBmpNw7EL/umgDj/ix8IvC/xz8C3/hLxbaC+028Tck6n99bSj/lpE/8Dqy54r5n8IfFzxX+xl4z0f4Z/F2ebXvhlcsLbwt8QGRmlTLDEF+2cA8n5vQL/wAB+yoss391d27ap3Z/4DXyh+3Z+1v4F+C/g3UPA13aad448T61G0baFeOHgtY26vclTmPr8gA3E9KAPfviz8YvB/wR8BXfjDxZqyW+iQKGiaIh5LwvjCQpu/eE5GMV8yeC/g54u/bN8UaV8T/jRYyaF4BsXW48L/D1CyNOm/ck1+p6u20HZ6H0+955/wAE/f2add8V6Dp3j34n6bf3un6ACngXRNblkVbRPm3yeQ/8OSuxnzwBX6HrvF0rTH5u6o3yg7e3pQBWjisjYJZfYYTZLF5AtUjXyRHt2sgX7uzHG2uf+Evwo8PfBvwdD4Y8J20un6JbXE11DaTzmRUMjl2VN3RAzcDtXQ7dsSc7XY/dX7u2lferNhvloAnkhOcg7v8Aax96nJleny0v3kVqVF3UAcv8SfAGkfFLwJrfhPxEs82h6xD9nu4rWcwu6ZB2hx0zjB9q1fDejaZ4V0Gw0PSLGLTdKsoEtrWzt1ASKNPuhVFaP8eev+zT/LTGQNv+7QALGMUVEZjRQA12OFB/hqVvlXAxUSLuGDUjfMuKAIJcrzTYVLP/AHan27cuD81NC7u9ABNHt2imNbmGHBO5s7qlfC9fmpm5vT5aAFfComPvUbe/3moGJORS/Nu/2aAEbpQylZMZ/hp0uGTOKaF/76oAcuV6U3yyzrTl/d9fvUeYN3J20AQcqqZH3n5qWWPa7AEbc7h/u0FgwUA/MTSNvwxeQ7s7elADfL3K1NSNc5apxIjJwai+8aAHq209akXYzMT96o/kzyKidSu5hQBZPTFNMm0f7VMhk2pyfnzwvtQ2fuONrfeoAFmEkuZBuxUSKN7AgMmd22T5sVL8ytjFK6p1I7UAeb/tB/Avwj+0h4Bk8KeLLToTLp+oxD/SLKcL8ssXrj+JG4ZfvV+dfw0f9qL9jX4j658FvBVhF4322za7Zaa1sHtns/N2PeW7F1KbncB4c8P09T+rO3911O1lZdvavnPUZCn/AAUv8NYJ2y/CqdOp/wCgkDQB8/r+0V+3q3/NG7L/AIDYKv8AO4qUftBft7svHwesF/3rJP8A5Ir9DEvT8jCRlRvm++W61PJcOqb/ADDtbouaAPzc1n46/t5X+k6hZv8ADW30QSREf2rBYQs9scZLrvmZMe5U4pn7In7Lnw48DW2lfGX4xfELwf4kvNSvlOjxx6qk1lBqBPzb7jfi4n/2CpEeK/Re9uZhYXWbdr1fs8x8pTuaTj7gHcnpXwXoHwd8b2v7Lnw5W90TxrcXem+Mre7n8BS6fZ+Vawi9eXzNoh8zYiOG3b+tAH3/APaPOdvM+b/df5fWopGLMoQ/L3/2jUt8xabIJVSu7awpF2R7hjNAEDR/Pn+7RLnyXIHzcVYC7uaNxVWT+9QBEIyz9dy1OkhjmQYk2/SmJJ94Y+bNHKnOT/wI0ARu3738alWZNjDFQjZu3GpXkGFGz5aAGPtk+8uB/eopRCM7928H+GigBqN5K8jdSNn74NDsaj58ljnvtoAck3z5P3f7tSxeV8zA1AjeXtO/duO3bTnk3OwxtxQBLc9UI9KiTMi+Xn5e7U4MWbBNKsYVPJBBRjuNACIoVsodqv8Aw/Sl2lu9Eq+WvH/fNSQr5m3J20ARN91eflFShgrsD6bqZHGjS4f7pNEyhQpH3m+Ut7UAJLcR5Qv8vrSeZ5YdgarXC7XwPm2/xVKJCyLu+8/y0ASRTFmjJb+Ol3Flbo240KvllV/iU7qkMabaAInV9uCAv+7UadcVL+FJ5a9cUAPdaa33f92hs7st92kMn92gBrx7lOBubY6qv1+7Q6+ZMxDhVx/JaS+uIbGzlvJ7mCys7aN5Z7m4IRI0wSXcnhVUD+Kvmuz+Kfxb/aYWLUPg+NN8B/DdHeFPF/iWya4vNVVWAMlpbfLiP72Hf7xXigD6dNvKz7fLPT7zIWFJKu0fP2r5yP7I+rTW4kf4+fEqTWXfzvtyXsaw7vaHZjHtms/Vfib8Yv2Z7a61j4miw+Jfwxt1VZ/EOg2jW+paUm7HnXNuWbzkxtLFOnWgD6WulKlQPmX71eR6n8KNcuf2v/DvxQt5LU+HbHwZc6BPFJNicTtciZNq45Ur3/2a9V0nVrTXdOtdV064iv8AT7+BLi3uYm3JIjjKsvtVyFf328r8y/xf99f/ABTUAQNGJEXA2L/dzuqd7fdEn8PNOGMtUe49M9KAFi/0eZtmF/3ak3GOJ3yWbG3d/F/31TAo8vPv96nNlnoAavXk7qcyhixpvlmOnUASxsNv/jtVpvl796k5Xdj7x+WmvHtj+egBu7a2QNzNTh81NWTbtx6Ukv3FIO3NAA8JVPMz3+7Tg27mldflWhIy3Q0AORjRQFMf36KAIDH/ABb9tSw25zgptWoEU7etOjkKoefloAatrufg7cUH5WwTupF/dhnanlRN8wFADdrsvFIyuqfIfmyuamXO3ZUQyu40ASIxYNkbmX/Glb5pW5pF6suaUYZ24/4FQAi/TpRt3DbUvl7VyaFWgCq0JZ+tLznA+bbUp+9zTPLO1nGNo60APSbzKkVuxqBJE2LgH5huNO3BhyCv+9QA9G3biBuUGm87vu0R534B+XFSv8zUARbgowaY/wB37n+1RLIFmXKBlNPDKzMxP/Af71AHgv7Zckup/Cjwv4NkmmhsvHXjHR/C2oyQP5b/AGKacGdA38O+OJ0/4HjvXvNlaWmlWdpp+nQxW1hZRi2t7eFdiRog2Kij0GMfhXmf7SXwsv8A4xfBvVdC0a8GmeLLWe31rw/qDf8ALvf2syTQsG/hyybC3YOTTfgH8fNN+N+h3aSRLo/j/Q2W18T+Fpc+dpV6Mo6dPnjJQlJFyCMc9cAHqnC8kfKo2/7tQPaQalDc2F4i3FrcxtFLBKm5JIz8rAr3BDYq01tI0eRGVx/eHI/xry748fHfRvgD4bgu78DUvE2pt9m0Hw3AS11qt4dqpEm0cDLDLH5V9aAOT/Y9j/4Rnwh428BwTS3em+C/Fd/o+mtK25o7PPmRR7v9hX2/8Br3UNht/K5ryj9mv4a6p8MvhXFB4kuFl8Wa/qF1r2tSKQwiup3LvErDqEzsB/2a9UH+rc53Kn8X96gCfzNoXijht3FNbClgadwyKc/WgCNm2jAqXzhIGwKr7tz4xUqrt/3aAHhTImKXb5fX5qVPuUM27/eoAYrFt392pU2bVGageTyxgGoGYyJwaAJ1j3O2KGVduD/DTofmRQPxpn3lYj+GgB5+bimqpXp96mRtzVgKe9AFeVXbqaKsbQ3VaKAIG6VCfnlbtRRQBYdU2Lx97rTU+WXavyg0UUACsd7D04pCu5aKKAG7afCpkbntRRQBPJ91RULybVoooAbt27Ce5NEx+TAx81FFADYX2pjaOEqVJPM3bh/BRRQA/wDwpE6Pn0oooADt29OcdaqxR7sj23UUUAWFlCCKTdulH8RFeZfF/wDZ78A/G/7DceIdJey16AAWPifRpzZ6nZ4/55XCLvH+6crRRQB56f2MJbe3Ng37RHx1Fqxx5h8VQmTP/XX7Pvrv/hV+zb4C+DF899pGmy6v4okBW78V+IJjfaxdM3Xdcv8AN+W0e1FFAHp0m8XCs53SFDzTP4cf3hzRRQA+YjKkjuv8qbcRiRWZGKnPSiigBkatGqsx3M1Tlv3OfeiigBryFZFA9KNzpyx/KiigCTywwUn+KovLC9KKKAJUAj6Go5VEY+UnmiigBAyqvSpoZCy7j60UUAJcTYfA6UUUUAf/2Q==)
(a) Is this a DNA or an RNA molecule? ________
(b) Place an "X" (in one of the circles in the diagram) at the 3' end of this tetranucleotide.
(c) Given that the DNA strand, which served as a template for the synthesis of this tetranucleotide, was composed of the bases 5' – A C A G – 3', fill in the parentheses (in the diagram) with the expected bases.
(d) Suppose that one of the precursors for this tetranucleotide was a
32P-labeled guanine nucleoside triphosphate (the innermost phosphate containing the radioactive phosphorus). Circle the radioactive phosphorus atom as it exists in the tetranucleotide.
(e) Given that spleen diesterase (breaks between the phosphate and the 5' carbon) digests the pictured tetranucleotide, which base(s) among the breakdown products would be expected to be attached to the
32P?