The following question refers to a school district with three high schools. The total number of students in the district is 3000. The teachers within the district are apportioned to the high schools based on the schools' respective enrollments. The standard quota for each school is given in the following table.![](data:image/png;base64, /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAA3AaUDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD2/wCOuifBj4f/ABfsPASeBPgh8Nkn0R9Xi8ReO/BttLZX0gl8v7LCVktkRlHzMzSsfmUCM8keiN8Pv2c/DOh+F08T/Cv4ezeINU0+1up7fw54Ij1OJPNCr53+j28pitjISqzSEIcffODXofxZ+EnjD4i6lqEFn4t8PweFdRsEs7jQ/EHhY6qI3Bk3Twv9qiVJCsmPnjkHyLwelc14W/ZVufhT428Oa58OfFy6NZaf4ds/C9/pmvaYdTW+tLZy0TrIs0LRTDfL8w3J8/8Aq8KBSp3tyy77+Xvf/arz3te4p949v8vv6vX0vY8W+F9x8BZvHvjTwj8Q/hd8LNO1Gx8Zy+F9En07wIkUFz+6SSJZ5CksccrbmA3OgfYdo4IHovhbSP2SPGfiPT9E0n4eeA5rrU3nj024n8Cpb2epNCT5q2l3JarBcldrZELv0Poabf8A7F+uaifFEsvj/Thcax47tvHMTL4dkCQPEpQ2zL9szIrKI/nBQgqxwdwC3vAn7Gt14ai8AaJrXjhdf8FeAbq4ufD+mx6OLW9HmRyRKl1dCZlmVI5nA2RREnBYnFC5nCN7XSjfzfLG76683N5N66K19KvLzy5Ntbf+BSsvS3L6X6624bxnc/svT+EdbbwZ8P8A4bt4hGn391olzq/w9/4leqS2iM8qW87QwxXWPLYEQTEjBPOCK9T+E/7PPwb8d/Czwb4lv/gv8OYb7WdGs9RuI7bwrZrEsk0CSMEBjJCgscAknHc1ws37Cutz+AvD3gmT4k2s/hrwml6vhpJvDn+lWxnglgX7VKt0ouFjinkChEhJbaWLYwfo74T+Dbz4dfDLwv4Vv9Sg1i50TToNN+321o1qk6RII0byjJIVO1Vz85yckYBwCKa5ub+7b/ya/p06vpZ72mX2UvO/4W7ab20XW6Why3/DJ3wQ/wCiN/D/AP8ACXsf/jVH/DJ3wQ/6I38P/wDwl7H/AONV6rRTEeVf8MnfBD/ojfw//wDCXsf/AI1R/wAMnfBD/ojfw/8A/CXsf/jVeq0UAeVf8MnfBD/ojfw//wDCXsf/AI1R/wAMnfBD/ojfw/8A/CXsf/jVeq0UAeVf8MnfBD/ojfw//wDCXsf/AI1R/wAMnfBD/ojfw/8A/CXsf/jVeq0UAeVf8MnfBD/ojfw//wDCXsf/AI1R/wAMnfBD/ojfw/8A/CXsf/jVeq0UAeVf8MnfBD/ojfw//wDCXsf/AI1R/wAMnfBD/ojfw/8A/CXsf/jVeq0UAfKX7Sf7PfhXwT4Ch1T4ZfBD4R6r4iF7FCNJ1zwfbOl6rHHlxyRmPypD2Zg6k4BAzuHPeBfBvwc+NkHw817wP8Kvhdp2g6ne3Nh4h0jW/ANvJqVlcwRGSW13BoxDKhRkO+OQfMrAY4P058S/COv+LoNCTQdc07Q2sNUgv7htQ0t77z0jbd5aBbiHyyT/ABHfx/D3rhn/AGWtBtP2gZfihpF/caR/adnNb69oEC/6Jqk5jMcV2QGHlzKjyqWAO4MPuncWiPMub10+5fg9V5PUiacno7aL56u/zStb7u1vLn1L9jdFMn/CvvBb2zJcSWt3H8Ome31AQZ8/7HMLMpdlArFhA0hAVj0BI5i08Zfsq+LfH/hHwz4K+EHgrxTbeIY5x/bdh4D8+GykWCGVFeNLMluLmAvlkEQZvMZCMV1g/Yb1weCfDXg5viVaz+HPB4uz4YSfw5m5tzPDLAou5VulFwscc8gARISTtLFsYPY+Ev2YvEfhBPhDc2/jfSZtV+H+mXGimZvDbpb39pIsaD9yl2DFKFiXL73Ukk7BnFNJ3bnqtNtG7qV+9raaJ9b3dmi5XSXLv/w3kr317ei3PH/2XpfgH8WtG0PSPF3wp+GFn8QdTutUigs9M8CxwWdylncSRuY5HjkQOEQO0fmlgGzjBFO+Lvhn4R/CT9pfwZ4T17wP8CvC/wAPtc0q61Ga+8QeD7S3uI3gaNfJW6edIt0hkyCY8qEIw2cj0b4Wfse638NZPhrM3jvT9SuPB2tavqbFfD7wpeRagD5sIH2tjG6l5CsmWHK5Q7SW73xL8EvEGu/tIeF/ifD4q0y107QtMuNKXQ5NEkkmminKNKTci6UBt0S7T5RAGQQ2QQT5nKDXfXt8L6dr2+avsVU5bT5Pl6c23/gP/D3Pj/S9V+Gd/o3xr1uDwL8AtS8P+EtWs9L0PXLD4ftc2M/nrHJ5tzJaNckoquYtyKq71BJUHaPdviNp/wCyR8KdQ1Wz8RfDTwdHLpCQvqb6d8OzqMWniXHki4ktrORIWfIKrIVLAggHIpfFH7HPizxPpnxlspPiNo0EfxI1G1v5mXwtKTY+QI1VF/0/58pDGCTjnccYIVfAP2jL7xVbfHjxze2Go/DM3ltFp63PhnxzPqemTeIrm3tkkWS0020udupxM5Cx/aBKyunljhMmYuyjzaaK/V7a+uv/AAEKMW1Lvd+m+npp+Xc7ePU/gH4S+Nfjzw/47+FXw00nwdplno95pV7H8PPKu4vtwbC3qmNzGAwVd7xwhSwVsGvp3/hk74If9Eb+H/8A4S9j/wDGq8cv/wBlLxf8Y9O8feJPE/ibTvC+r/Ejw7pFrd6Nb6LJMdFntikoBlN0PP5MqsNqdVwflO76wsEuo7G2S9mhuL1Y1E81vEYo3kwNzKhZiqk5IUsxA4yetbtW917r+vm+7639QbjL3o7O35K/3u/9WPMv+GTvgh/0Rv4f/wDhL2P/AMao/wCGTvgh/wBEb+H/AP4S9j/8ar1WioEfKn7QPww+D/wr07wvp3h/4FfDTVfGHi7WYtC0a31Dw5ZxWkczq7vPOywlvLjRGYqo3MdqjGci5pf7N/w9+HWk6pqvxT+HvwUuNEghhZNS0XwNFp5imZ9hhaGRrjzNzNGEZXDMzbfLyQT6n8e/gdY/HTwtp1jJq154c1zRdSh1nRNe09VafTr2LOyQKwKupDMrI3DAnocEcx8QPgB4q+NHwo8QeC/iD4603UPt8UK2t1ofhsWcUMsUqSrLNDPcXImJZACm5EKs425IZZbkoStvf8LL8b3fTor2Ho5LtZffd3f3W/HS5wFyv7IVho8Op3vw38G6dbPrEWgul/8ADprea2vpADHFcQyWYkg3hgVaVVVs8E1znizXf2XdI03wrqOhfBLwn4nstZ8TN4YuPsvgIrcWFxGpaYPbCxaYyKBxHsDNkY4yw7XXP2OL/U/h1o3hrTNV8BeELix8SWXiKe58L+Azp9vePakNGskCX33iw5fd04Cr1q9c/sl61Hql9qGneOLC3uB49fx3pwudBeZIJJITFLbTBbtDKpXaVdTGVIOQ2eHZ3V+6+68L/enPz91W1avMv4bcfis/v9+35Q+9/LnNHm/Y617WdV0e08A+BP7a0s3C3ul3HgEQXcJgMKyAwyWivndcRKoC5cthNxBxz3jfR/gdc2HgLWPAPwm+Gl9pepeObTwhrdrrXw/W2u7dpW2yKI5UheCVODiSNgdw49e8f9krxXdeFPiho8/xJtLeTxp4gj8Qrc6XoEtobaQPEZLeXF6WuIJI4VjZN6HDP82DgYWnfsN6v4buLpPDvjXw/oulyeObXxzDp0PhFlit5oVAFsix3qKIiQDwoI569aqKT5ObTSDfrzR5l6JOS635dH7yRpLlXOo6/Fb7pcr9b8v3+VznP2ofAfwx+CHi/wCGC2/w6+CXh/wp4k1htL1W/wDE/gq1YWaiGSbzhOJoUUER7MOp5YHJxtPHwXXwf1v4ufE6w8O+CvgP4k8A+F/Ci6/bano3gePUnSeRpEWKeW0km3rG0Yd/Lh3bH6Lt3H6p+NXwS8QfFLx58OPEGl+KtM0G28G6mdWWzu9EkvXu5TG8RUyLdRBF8uRsDaTuwckfKea8Y/s0eKfE3xS+Ini628c6PZQ+LfC48LJYS+HJZms4QZCspkF6vmPmaTPyqCNvAwS3LaolK3963/gOn/k23byWgtHUj29y/wD4F73/AJLv382cYdL/AGYPCngvwxfeK/hp8P7jVtR8OweILpPDPw9fUI0tmjUvd+VFaPLBbbi2151XgYPIIHmfhXxx+zk3xQ8Z2/iT4Y/Da0+HltZaRfaFqq/DZ7a5KXu8KbpXhYrHuVdszRxIRIvPzKTjftA+EPEHgjxb4J8IReLfh9ptz4f8E22h3Op+PbnUfDNhr0HmuqQwSWd35l0VWICW1ld4wZAwUmTC9r8Mv2X/AB/8cvhn4y8TeNtX0DwNqnxC0Ow0xdC0bw3PHBpMNjPm0dVlugxV4lyYiqEB05XaVPbeLcpLu/uu7fN2Vu3XsTFWSjLtH7/dv8vi9dLH0p/wyd8EP+iN/D//AMJex/8AjVH/AAyd8EP+iN/D/wD8Jex/+NV6bYJdR2Nsl7NDcXqxqJ5reIxRvJgbmVCzFVJyQpZiBxk9asVD0YkeVf8ADJ3wQ/6I38P/APwl7H/41Xmv7Rnwo+C/wN+DfiLxrb/AnwBqkumRowjbwtaGKINIqGaXZAzeXGGLttGSFIGM5H0/XM/ETQfEHiTwvLZeF/EUfhbWfPhmh1Gax+2RqEkV2R4RJGWVwpUgOpwx5qJXasv6/r/hiloz5W+G3hL4Av4Y8XeJ/FGmfs++LfCOjxWso13wf4Ss4Ft2kLhobiHzrphIT5WwAgsXwFJrZjm/ZAfVbTSpPhp4Ts9XudRttKXTL74ay213Hc3H/HussMlkrxLJg7HkVUba2GODja1n9iSw8XaL46m1zXbKz8X+KDp7HVfC+ijTbKzexm8+2kWzeabzH8wkyNJIxcYUbAKb4j/Y/wDEPjDXrrxlq/xFtP8AhYjXmj3Ntqdj4d8nTok06WSWJHtGuXd97SuXbz1/hC7QMGruUl2ur+ml2vO2trfNvQLJJ287evS/ZfN/I4vxnq/7MXh638OXGkfAvwz4hg1PxS3hW6WH4fNHPY3Eab5s2/2FpXZVxhFT5yeDgMVxfhNcfAbUvHni/wAJePvhX8L7DUrbxk/hfQZNP8ArDHdZhSSJJ2ZJUimbewAdk3lTtXIIHp9l+yF4k03zJ4viNaXWoQ+O5PHVjcX3h5nWOaWNkmt5VS6TzE+YbCpjKYwQ/aL/AIY78Qfbtfv/APhP9M+3aj4/tPHtuw8OSeXBLANv2Z1+25kVlWP5gyEEMcHcApSun7/VL5X9le3p+8tv21uglb3redvl7S1/X3L/AKanD/tQ+A/hj8EPF/wwW3+HXwS8P+FPEmsNpeq3/ifwVasLNRDJN5wnE0KKCI9mHU8sDk42nj4Lr4P638XPidYeHfBXwH8SeAfC/hRdfttT0bwPHqTpPI0iLFPLaSTb1jaMO/lw7tj9F27j9U/Gr4JeIPil48+HHiDS/FWmaDbeDdTOrLZ3eiSXr3cpjeIqZFuogi+XI2BtJ3YOSPlPNeMf2aPFPib4pfETxdbeOdHsofFvhceFksJfDkszWcIMhWUyC9XzHzNJn5VBG3gYJbmtUSlb+9b/AMB0/wDJtu3ktB6OpHt7l/8AwL3v/Jd+/mzjDpf7MHhTwX4YvvFfw0+H9xq2o+HYPEF0nhn4evqEaWzRqXu/KitHlgttxba86rwMHkEDzPwr44/Zyb4oeM7fxJ8MfhtafDy2stIvtC1Vfhs9tclL3eFN0rwsVj3Ku2Zo4kIkXn5lJxv2gfCHiDwR4t8E+EIvFvw+0258P+CbbQ7nU/HtzqPhmw16DzXVIYJLO78y6KrEBLayu8YMgYKTJhe1+GX7L/j/AOOXwz8ZeJvG2r6B4G1T4haHYaYuhaN4bnjg0mGxnzaOqy3QYq8S5MRVCA6crtKntvFuUl3f3Xdvm7K3br2JirJRl2j9/u3+Xxeulj7T8LeE9D8DaFa6J4b0bT/D+i2u77Pp2l2qW1vDuYu2yNAFXLMzHA5LE9TRV6wS6jsbZL2aG4vVjUTzW8RijeTA3MqFmKqTkhSzEDjJ60VD0YkeZf8ADNPhH/oL/ED/AMOP4h/+TqP+GafCP/QX+IH/AIcfxD/8nVT8efHTU9M+K8Xw28G6BpXiDxaNHOuzw65rh0qH7P5nlqsLJbzvLIWBJGxVUYJcEgVNoP7S3hO9+I+m/DzWbiHw746udDg1mbSry8hHlNIuTbKWZXklUByQI/uoWOARmYtSV15/he/3crv6eg37u/8AW3+aJv8Ahmnwj/0F/iB/4cfxD/8AJ1H/AAzT4R/6C/xA/wDDj+If/k6tuL48fDSfw/f69F8RPCkmh6fcLaXmpprdsba2mY4WKSXftRyeApIJrZ0b4i+FPEdvq8+k+J9G1SDR5Gi1KSy1CKZbF1GWWYqxEZABJDYwBT6X/rp/mvvQdbHF/wDDNPhH/oL/ABA/8OP4h/8Ak6j/AIZp8I/9Bf4gf+HH8Q//ACdXPfDb9rXwr471/wCJq3Wq+F9P8I+DZ7OOLxdaeJYLrT76O4jdwzSbUSFl2hWXc3zEgMcZPoM/xu+HVqmmvN4+8LwpqdnJqFi0ms2yi7to1ZpJ4sv88aqjEuuQApJPBp2e39aq/wCWoen9dDn/APhmnwj/ANBf4gf+HH8Q/wDydR/wzT4R/wCgv8QP/Dj+If8A5OrK+Lf7Tmi/Dbx74C8J6fPoHiHWPEmtWml3OmL4gig1GxhuPuXa2oR2ljABzynVcE5ONn4vfHBfhz4l8IeENH0f/hJfHHiyaaPStKe5NtAscKhp7i4nEchiiRWGSEdiTgKecCTeqXW3zVm/uTu+i67MHo7Ptf5a/wCTI/8Ahmnwj/0F/iB/4cfxD/8AJ1H/AAzT4R/6C/xA/wDDj+If/k6sDSP2novD3xE1DwP8VdJ074da1b6Sddg1Ea0t3o91ZLJ5buLuSKAxsjFQyyRr94EE5r0zQfin4L8U6m2naL4v0HV9QWyTUmtLDU4Z5RaOFKXBRWJ8pgykPjadwwealNNX/rr/AJP7mNpp2f8AWz/Vfecl/wAM0+Ef+gv8QP8Aw4/iH/5Oo/4Zp8I/9Bf4gf8Ahx/EP/ydVHxt+158JvBXgzVPEq+N9D8Q2Om3ENpdRaFq1pdSxSyvsRWHmhU5zncRgBieAa7OH4x+AbjVdF0yLxx4bl1LW4VuNKs01a3M2oRMMq8Cb8yqQDgoCDimve29Pwv+WpN0jmv+GafCP/QX+IH/AIcfxD/8nUf8M0+Ef+gv8QP/AA4/iH/5Or1WigZ5V/wzT4R/6C/xA/8ADj+If/k6j/hmnwj/ANBf4gf+HH8Q/wDydXqtFAHlX/DNPhH/AKC/xA/8OP4h/wDk6j/hmnwj/wBBf4gf+HH8Q/8AydXqtFAHlX/DNPhH/oL/ABA/8OP4h/8Ak6j/AIZp8I/9Bf4gf+HH8Q//ACdXqtFAHlX/AAzT4R/6C/xA/wDDj+If/k6j/hmnwj/0F/iB/wCHH8Q//J1eq15b8VfjxbfC3xV4O0KXw5q+pP4k1mz0ZNRijWKytpLgvt3SscuwWKRtsatjADFNyki1ait20l6vYOjfZN/JasZ/wzT4R/6C/wAQP/Dj+If/AJOry3XNB8EaN8b/AAr8NzafFY3GvC8Mesz/ABD8QQ2Y+zW6zSLHuv8AfKfnjGQoT5j85Kla6/xR+09LovxT1Lwpp/hy11SDSNS0/S9RU6uIdWZrwRmOa1sPJP2iBBJ87mWPAimKhhGcnxT+HXxG8SftEfDTxnoWmeF5vDnhFL+OX+0dcuYLu6W8ijjkKxpZSIpj2bgDId+cHy+tVBJ2m/hd/vtp8tvXuO1m0+1zo/8Ahmnwj/0F/iB/4cfxD/8AJ1H/AAzT4R/6C/xA/wDDj+If/k6vVaKkR5V/wzT4R/6C/wAQP/Dj+If/AJOo/wCGafCP/QX+IH/hx/EP/wAnV6rRQB5V/wAM0+Ef+gv8QP8Aw4/iH/5Oo/4Zp8I/9Bf4gf8Ahx/EP/ydXqtFAHlX/DNPhH/oL/ED/wAOP4h/+TqP+GafCP8A0F/iB/4cfxD/APJ1eq0UAeVf8M0+Ef8AoL/ED/w4/iH/AOTqP+GafCP/AEF/iB/4cfxD/wDJ1eq1g+PfEsngzwP4h8QRWi38uladcXyWrzeSsxijZwhkw2wHbjdg4znB6Um7K7KjFzkox3ZxH/DNPhH/AKC/xA/8OP4h/wDk6sfxZ+z9oej6JJPo7+PtZ1Rnjit7OT4neIoI2Z3C7pJRduURQSzMFY4U4VjgHA+An7U/iT4teG/FGta18OrPSodHmhtbe28J+LrHxRPeTuSGjP2XCQFfkyZXUANkkKpNasHxO8dftA/szWni74RWuk+HfE2vLILEeK7iTyrOJZ5ImdjAj5k2pkKAVBb7xA5KilGLa8tvPb8Pu6kx97b+rf1/kc18F/APh74oW/ie31W1+IPh7WfDesS6LfRQfFLxDeWcsyIjlre4+1xmRNsi53RowOQV4r0f/hmnwj/0F/iB/wCHH8Q//J1Z37MnhP4o+CfDGoaT8SLPwFZJFKr6angZr9w4bc0z3L3hLvIzEHdkk5YsSa9mrWdk1bsvvsr+l306bEp3u/N/np/XU8q/4Zp8I/8AQX+IH/hx/EP/AMnUf8M0+Ef+gv8AED/w4/iH/wCTq9VorMo8q/4Zp8I/9Bf4gf8Ahx/EP/ydR/wzT4R/6C/xA/8ADj+If/k6vVaKAPKv+GafCP8A0F/iB/4cfxD/APJ1H/DNPhH/AKC/xA/8OP4h/wDk6vVaKAPKv+GafCP/AEF/iB/4cfxD/wDJ1H/DNPhH/oL/ABA/8OP4h/8Ak6vVaKAPKv8Ahmnwj/0F/iB/4cfxD/8AJ1H/AAzT4R/6C/xA/wDDj+If/k6vVa8fufjb4g8P/F3TfCfiPwbbadouq21/eWWsWWsG7nhhtVDM93bCBRCrgjaUllGSAcE4Cur29X9yu/wD+vvLf/DNPhH/AKC/xA/8OP4h/wDk6j/hmnwj/wBBf4gf+HH8Q/8AydXK/CX9qW6+JHjLwnpl/wCDxoej+M9Dm8QeG9Tj1P7TJPBEyBo7mLyUEEpSVHCo8owSNwINe/0/6/T5a9xXV2l/XU8q/wCGafCP/QX+IH/hx/EP/wAnUf8ADNPhH/oL/ED/AMOP4h/+Tq9VooGZPhbwzZ+D9CtdIsJtQuLS33bJNU1K41C4O5ix3z3Ekkr8scbmOBgDAAAK1qKAPnT9pH4Cat8bdamtb34ffDvxr4fbTlt7K88S31xZ6jpdwWfzJI2htJWdCDGdgliyY+ozmuaX9lz4h+DJbi38J+JdL1Pz/hzD4MGu6/I32qG7hEpjuDb+RLHNGxdQVZwVGf8AWY5+sKKjkX9ekl+Un+oP3rX6f5p/mkfCmu/sZfFW98NfF3S7W78PTf8ACfeHdJ05/wC1PFOo3X2e8tsCaRmktGLIwLFAoQLgKEUHI6/xF+yf451pfidHZy+GNHi8U2Xhya1SO6mliF5poQyW1xH9nXdbS4ZfMU7toB8vnA+vKK0k+Z3f9WvZeivoVzNqz/ra/wB/Kr/fufHGp/s3fGjVvi54h8TteeEtP0PxDrOk6pqFhpmsXVtdiG3s5IJbdLpbIOrbpdyzxmN2CbT5e87cLwj+xn8QdM0j4S+HPEej+BPFvhnwZrurXt1b6trN5cLdWl4ZAiCKSzYF4xKW2yOysyjJ+YsPuSinGXJZLZW/C1vPS359WJNq9uv63v8Afd3+XZHx/q37L/xPsbzTrbRZ/CGoaXpPxJ/4Tm3udSup4Lu8t3Z2e2l2WziKSPcqLIpYOgAKpt+b0H9pf4YeJL7xX4E+KngKJNR8deDJLmC20S4U+Rq1tdIElt2k6QN8qlZj8q87uDx7/RUwvTiow0t/8io+nwpIlpSk5Nb/AObl+bb026WPjbwb4X8YftGfEvxF4r8f+FtW+G/iS28K3vhfTfDNxayXVhaR3IPmXcl/tSG6ZzsAjhOUCfMOQ1Glfso/FLV7YaX4j1Xwxp2l3Hwvf4dzXGiXty9xayKT5d2geBRKHATfGWj25IDPjJ+yaKSUVflVrr9JJ+f25ff2SSvmlu31T+7lt/6RH7vW/wAQ+Nv2O/ib8SrDw7d6qfBWh614T8PWug6bBpF/dNbap5V5aT7p3a2VraMLakLGqzYaQncQMHZ+Kn7Mfxd+I/jO48Stqegx3Nv4l0XxDpVouv3ltBapaxqLi2dIbQLM5ZTsuZVd9pChYwOfsWiri3GaqLdPm+d+a/zfy6LRtGaio3t1VvlayXyX+e6TRRRRUlBRRRQAUUUUAFFFFABXhf7THw4+IPxH1H4dt4N0/wANXFt4Z8SWniWeTXdZuLN5mgEq/Z0WK0mADCTPmFvlIxsbrXulFNNxkpJ6pp/dsNOya7pr5NWf4HyZ8W/2QdY+MPjO9u9atfD0n2vV7PVLTxgl/dxa7oMEQhMlhaBI1DRsY5tsgmi2+eWMTMuTo+LfD/gXwT460Xw/q2mfGSDT9X1KHRrTxIPiBrR057yVSyRY/tXz+cY8zyfLzxu4OPqKvmv4zfDvxd8WviZ4cm0nw74h8Jat4Z1u0urPxhJr8b6NLYo4acCwS5JeeSOSWL95bL7y7QMzFqLhC2l1f00T172+el3fW8y+GT62dvXV/n8tbK11b6J0nTIdF0qy0+3e4kt7SFLeN7u5kuZmVVCgvLIzPI2By7sWY5JJJJq3RRTGFFFFABRRRQAUUUUAFY3jK11G+8LapbaTa6ZfajNA0cVrrO77HMSMFJdqsQjDIJCt16Hodmik1dWGnZ3PE/B/wt8U6D4x8cfE2fSfD8PjrxDYWmnp4fstWmGmhLdpCry3htBI8jmVsv8AZ/lCooDYLHzj4Tfs66z8NPgXo+j+PdP13Vdc8PRNY2Vr8M/HWr2q6hHJcSSqWhWSxhjkDTFS8hI2oC0gACr9Z1y3xKv9SsPCV3/ZnhvU/Fck5FtNp2i6jFYXvkv8ryQzSSwqrqDuB82NuMqwYChtxjyx0Wmnz/4L8kNPv6v7v8vRnnn7OEPhHxBa6r4i8Op47sL+yu7nQdR0rxl4o1HUntLiJ0MiGKe8uINwwmJIyeGIDYZgfbK8T/Zb+Fmu/CzQfFUGovfWOi6rrcup6LoGq3/2+80q3kRN8c9zvk8yRpRK5AkkC7hh2JNe2VTs0n5L77a9+vm/Vmavqn3f3X0/D/hlsFFFFIoKKKKACiiigAooooAK+btT/Zw1j4j/ABf0jxp4o0Twp4Sv9InuvO13wjcyyal4gt5LeS3jguy9vF5Uao0bFTJccoFUqOT9I0VEoRnpJXQ02tnY+Z/gT+zf4x8Da78On8U32iSaf8PNCu9A0qbSpppZtTSVo1SedHjRbdljiUFFaUMzE7hjFfTFFFaN338/m27t/Nv+kQoqO39dAooopFBRRRQB8q/8PR/2Yv8Aopv/AJQNU/8Akaj/AIej/sxf9FN/8oGqf/I1FFAB/wAPR/2Yv+im/wDlA1T/AORqP+Ho/wCzF/0U3/ygap/8jUUUAH/D0f8AZi/6Kb/5QNU/+RqP+Ho/7MX/AEU3/wAoGqf/ACNRRQAf8PR/2Yv+im/+UDVP/kaj/h6P+zF/0U3/AMoGqf8AyNRRQAf8PR/2Yv8Aopv/AJQNU/8Akaj/AIej/sxf9FN/8oGqf/I1FFAB/wAPR/2Yv+im/wDlA1T/AORqP+Ho/wCzF/0U3/ygap/8jUUUAH/D0f8AZi/6Kb/5QNU/+RqP+Ho/7MX/AEU3/wAoGqf/ACNRRQAf8PR/2Yv+im/+UDVP/kaj/h6P+zF/0U3/AMoGqf8AyNRRQAf8PR/2Yv8Aopv/AJQNU/8Akaj/AIej/sxf9FN/8oGqf/I1FFAB/wAPR/2Yv+im/wDlA1T/AORqP+Ho/wCzF/0U3/ygap/8jUUUAH/D0f8AZi/6Kb/5QNU/+RqP+Ho/7MX/AEU3/wAoGqf/ACNRRQAf8PR/2Yv+im/+UDVP/kaj/h6P+zF/0U3/AMoGqf8AyNRRQAf8PR/2Yv8Aopv/AJQNU/8Akaj/AIej/sxf9FN/8oGqf/I1FFAB/wAPR/2Yv+im/wDlA1T/AORqP+Ho/wCzF/0U3/ygap/8jUUUAH/D0f8AZi/6Kb/5QNU/+RqP+Ho/7MX/AEU3/wAoGqf/ACNRRQAf8PR/2Yv+im/+UDVP/kaj/h6P+zF/0U3/AMoGqf8AyNRRQAf8PR/2Yv8Aopv/AJQNU/8Akaj/AIej/sxf9FN/8oGqf/I1FFAB/wAPR/2Yv+im/wDlA1T/AORqP+Ho/wCzF/0U3/ygap/8jUUUAH/D0f8AZi/6Kb/5QNU/+RqP+Ho/7MX/AEU3/wAoGqf/ACNRRQAf8PR/2Yv+im/+UDVP/kaj/h6P+zF/0U3/AMoGqf8AyNRRQAf8PR/2Yv8Aopv/AJQNU/8Akaj/AIej/sxf9FN/8oGqf/I1FFAB/wAPR/2Yv+im/wDlA1T/AORqP+Ho/wCzF/0U3/ygap/8jUUUAH/D0f8AZi/6Kb/5QNU/+RqP+Ho/7MX/AEU3/wAoGqf/ACNRRQAf8PR/2Yv+im/+UDVP/kaj/h6P+zF/0U3/AMoGqf8AyNRRQAf8PR/2Yv8Aopv/AJQNU/8Akaj/AIej/sxf9FN/8oGqf/I1FFAB/wAPR/2Yv+im/wDlA1T/AORqP+Ho/wCzF/0U3/ygap/8jUUUAe//AAt+KXhj40+BNM8ZeDdT/tnw3qXm/ZL37PLB5nlyvE/ySqrjDxuOVGcZHBBooooA/9k=)
Find each school's apportionment of teachers under Hamilton's method.
◦ North: 18; Central; 52; South: 30
◦ North: 18; Central; 51; South: 31
◦ North: 19; Central; 51; South: 30
◦ North: 17; Central; 52; South: 31
◦ none of these