The following question refers to a country with five states. There are 250 seats in the legislature, and the populations of the states are given in the table below.
![](data:image/png;base64, /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAAiAWgDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD2/wCOuifBj4f/ABfsPASeBPgh8Nkn0R9Xi8ReO/BttLZX0gl8v7LCVktkRlHzMzSsfmUCM8kbPhvTvgM/xNsfAevfArwGl+vhW28Q3uvaZ4Pin00PIuWCyJavGkICSMJnl2nCqCzE49u+LPwk8YfEXUtQgs/Fvh+DwrqNglncaH4g8LHVRG4Mm6eF/tUSpIVkx88cg+ReD0riJf2OJNBEln4K8cXfhfSZfA6eCSz2r3GoQpF5hhuobpZ4/LkDSZYFGBxhdmRjOLlFaq+r/Kdvx5fXd21CeusfL8439dOZ67bLocB8Qta/Zf8ACfgDxD4i0b4IeFPEF5od9Y2F5pE3gI2FzG924WF2SWx8zy2BLK6owbGFJJAPYXugfsn6bqljp958MfBtpc3UltC32j4e+WllLcBTBFeObQLZyOHQqlwY2O4cVgw/sAS2i+LzZeMNH0x/ENho8ciaf4YMMSXunzJIt0y/ayZBKVbzFZt5LZ83jB6+7/Y8gvPjTe/ES7m8Fa9eat9hm1O28SeCo9QaG5t41RpdPnNysloH2htjmYKQCCe+iXvW6X38rf53d91daPpLvq1209f6036PXa/e/wDDJ3wQ/wCiN/D/AP8ACXsf/jVH/DJ3wQ/6I38P/wDwl7H/AONV6rRQUeVf8MnfBD/ojfw//wDCXsf/AI1R/wAMnfBD/ojfw/8A/CXsf/jVeq0UAeVf8MnfBD/ojfw//wDCXsf/AI1R/wAMnfBD/ojfw/8A/CXsf/jVeq0UAeVf8MnfBD/ojfw//wDCXsf/AI1R/wAMnfBD/ojfw/8A/CXsf/jVeq0UAeVf8MnfBD/ojfw//wDCXsf/AI1R/wAMnfBD/ojfw/8A/CXsf/jVeq0UAeVf8MnfBD/ojfw//wDCXsf/AI1R/wAMnfBD/ojfw/8A/CXsf/jVeq0UAeVf8MnfBD/ojfw//wDCXsf/AI1R/wAMnfBD/ojfw/8A/CXsf/jVeq0UAeVf8MnfBD/ojfw//wDCXsf/AI1R/wAMnfBD/ojfw/8A/CXsf/jVeq0UAeVf8MnfBD/ojfw//wDCXsf/AI1R/wAMnfBD/ojfw/8A/CXsf/jVeq0UAfG37VXhb4Qfs+aDo2q6d8Avh5rVsl5Fda8X8LWh+w6Qs0cVxcALF98GaPaOf4jtIU49tsv2WvgVqNnBd23wf+H0tvPGsscg8L2WGVhkH/VdwawvHn7L1v8AFLxD421XxmngzxY2qWC2Hh8a14S+0yaCiq44ka5zJlpC58vyGLY+YAKF7P8AZ8+GeufBv4SaB4L17xUnjKfRYBZ22qrYNZu9ugAiR0M0uWUfLuDAEBflyCSoaxfNo73/AEt8rJ+revREviVvT8rP8X9y06uh/wAMnfBD/ojfw/8A/CXsf/jVH/DJ3wQ/6I38P/8Awl7H/wCNV6rRTA+W/wBpn4GfDL4VfAjxn4z8LfB34Wf2xoGnS6kkWseDbW4t5liG5oysflMCwBAbdwecHpXmf7Mvh74a/F/4j6loN18M/gb400C38O2erv4h8H+EbW3js72ZyG0+VHkuA7qoLFlcbeAyqWFfWfx4+Gdz8Zfg74t8DWmsR6DLr9g+ntqMtmbsQI+A58oSR7iV3AfMMEg84weJ+Ff7N194S+JVl488WeJbHxH4h0zw9H4Y07+x9GOl28VorKzNKr3E7yykooDF1VRuwmTkKGk3zbP/ACl+vL+fdNTTaVv61j+nN/Vmt7/hk74If9Eb+H//AIS9j/8AGqP+GTvgh/0Rv4f/APhL2P8A8ar1WimM8q/4ZO+CH/RG/h//AOEvY/8AxqvOf2gvhh8CvgV8LdS8Vt8C/AGr3kcsFlYacPDljF9qu55VhhjLmE7FLuCzYOFBOCeD9N1xHxp+EWh/Hb4aa14J8Qm4j07UkXFzZuEntpUcSRTRMQcOjqrDII4wQQSKl7f1t1t5228xo8d8AfsiaRbajbyeN/hd8DNSsJ7dzPb+H/AyWktnNlSgWSVpRcoRuBJSAjAIByQPRP8Ahk74If8ARG/h/wD+EvY//Gq0Phr4Q+I3hz7Jb+MPiDp3i2ys4PKjez8O/wBn3dy2MB7mQ3MqOcc/uo4ctz0+U+i1rLfQleZ5V/wyd8EP+iN/D/8A8Jex/wDjVH/DJ3wQ/wCiN/D/AP8ACXsf/jVeq0VAzya4/ZN+CrQSCD4PfD2OYqQjyeFLJ1VscEqIxkZ7ZH1FfJXw5+F198Q/hH4i8c6d8LP2e7m40TVNSsjoUnw2+zfbEsp3jfbdfa5BE0ixkjMTBSQDkDNfodXzD4N/ZU+IHhX4fa34C/4WtpcfhXXb+/vNRl0vwo9vqmy8leSeKG4kvpYo8+Yyq5gcqOevNYyjUcvcdtHvte6tpr530/Qtcvu823Mr/wCGzv8AjbqvzNj4OfBj4DfGP4VeFPG9l8EfAdhba/p0N+trL4ZsWaEuoJQsIRuwcjOBnGcCux/4ZO+CH/RG/h//AOEvY/8Axqu98HeE9L8BeE9H8N6JbCz0fSbSKxtIFOdkUahVGe5wBknknmtiumfK5Pl2MYcyiubc8q/4ZO+CH/RG/h//AOEvY/8Axqj/AIZO+CH/AERv4f8A/hL2P/xqvVaKgs/O7wdoHgvxB8bfGfgG/wDDX7N+lapoPiODSbHQrr4fxxahrNu8UczvF/pjMjKjuu4RSLuTJwCQPrz/AIZO+CH/AERv4f8A/hL2P/xquR8P/s8+PfCHxA8fa9ovxB8Oxaf4w11NauLW88Iy3FzabI0iVIZjfhA4jjHztCw3Ettx8tfQdZ0uZUoxnukr/cr/AI3B39pLtd29Lu34W6fecV4K+CHw6+Guqy6n4Q8A+F/CupSwm2kvNE0a2s5niLKxjLxopKlkQ7c4yoPYUV2tFaAfF/xX0uTwL8ZdM8BaF4e8Ra5/aWiXeuW+oal8bvE+ngR22wTI6L5wVsyLtO4ggEkrWv8AD3Ufgz4n+Engvxz4o8Y+Kfh2vii28+00/wARfF3Wrd2IYqVjd9QUSjjIZRyGU4Ga7H4p/ATXfib+0p4U8U6r4c8IeIPh3pmjXWkXthrd3JNPc+fJDIZPsrWjxN5bQrhWk+bOcqRgs+JnwJ8Yt8YNS8Z+C7fwvrGn6z4P/wCEQu9G8SXM9ollEsruslu0UEwZD5mHhKoG2Lhx2wg5qD5tW27fLmsv+3vdV3tv3G1eo9bJW/FRu/l7zt127FS+0/8AZ90vU5tOvPjHf2moQzpbSWk/xl1dJUlcEpGyHUshmAOFIyccVa1Pw38CtFuNUg1D4savYz6VcR2moRXPxh1iNrOeTPlxShtSBjdtrYVsE7TgcV85fDn9nDWLf4q/FD4LQSaPq2m/8ID4f8P6r4i1JnWe3iEUo8y3tvLdZWJHCvLGFKo2Xxtr134w/sq/EPXpfibp/gq/8Lw6J4t0zQ7eGXWZ7lbm3k05x+7cJE4ZZUyDLncpA+Rs5HQ1ZpPbvr0bTdrdldb726e82raPeyf3pNL8fLa/XTV8KeFvCGq/Eb4o+GdduPGXh6y8ECymbV3+LXiF4ri3uYpJRJIHuoxAVEfI3OOfvcVT8Za3+z94L0fwtrE/xI8UahoniPVP7Js9W0/4tavJZrKBl3kmOphFRAMsckjgYJIBf4r+A3xh8Qa/8XdW06fwp4fuPGA0J7Qw6tPcMn2FgJoXZ7ACPzEaTbMgZkZUIXJyuD4e/ZJ+I/hLVbq9sZ9AvobX4ip4002y1HxFfzmSB7VoZoZriW2kkEgO1g+JN/OdmBmI3uub+78/ein98W30tyvuhVGuWThvrp/263+DSXzW+p1fgzQ/hj4g8L+KfE2r+LNd0Lw1ousz6ZHrKfGrVruzmijCbZpJk1DZAzFyDC53rgZ+8K010T4CNa6fcr8XdTNtqEU09nMPjHrGy5jhBMzxn+0sOqAEsRkKBziuNf8AZd+JtzDfamX8J2+tWXxNb4g6VYPqd1cWN4jxGI21y32VGidRh0kRZMN/DxzRsv2QfH7fG/w94/vYfCAt5PGF14p1jSIdRuGjtBLZJaBLctaAXD4UzM7iHLfLgfeBDmko33svvtH9XLy922nMrOVlKVnpr+crflHv8V/su/rF38LfhZa+ArrxqnjHxneeFreyk1E6rZfE3X54HgRSzOjpfkOMA42k5rjk8NeDh4h+HmlXF14ssZfFNjc6ncwXnxm1mG8062SAyxuLZr4PcZxtcx5WMhiWZRk9D8OP2b9Ysv2RdX+DPiqXTLWW6tNT06O80a4kni8m5llkjch4oirL52CgBHycNzw/V/hh8QdW8cfAzxHa6XoMUPgqzu4tVtr/AFeWKZ5ZrX7MfIEdvKrIMbwWZSQQCqnOJbfO7baW+fN/wL7dt3oaJpbrW/ytb79e/fbc8M+Dfgl40v7Kx8PfFDXNevb2B7q1ttM+LutXEk8KMUeRFTUSWRWVlLDIBBB5FcR8Rb74T+CPGfiHwPBr/jO68c6ZoEmuwaXf/FjXLOK8CqzCBX+3PJ5hVHbCxNhVycAjNX4KfsneP/hvqHwn1HULfwi154W17X77UjZancMZrXUVODE7Wil5ELsCjBVIjX5xuwvo3xK+DXjbVPiv4v8AE/hyLQL6w8R+Cn8NNHqmpT2cttcBpmRwEtpg6EyqCcqVwSA3SorOoo+4tbS+/lbX48q21f3FxUFOzd1deWnMk3/4Dd23/M5z4HaN8LfjZ4I0bV7TxR4rs9cutJttVv8Aw/D8WtdubnTEmQOolAvlYDB4ZkXPXFamm6D8BtY03WNRsPi3qt9p+jLv1O7tvjFrEkViucZmcakRGM8fMRzXnfhf9i3xnZ+HNK0K9uvD2kwTfCy5+H2p3+kXs7zQ3DSl47mJTbJ5yEBdys0ZG9wC2Mt0ug/sxeOtf1bStQ8WnwloM+h+A7zwTaL4dmuLuO+E6IizSrJDD5MaeWCsKmTl2+fpXTiH783SSt71lr0c7avvaOj196/RmcErxUn2v81G/wB15f8AgNuqOmtvCXwPvGuhb/FPWpza2CarcCP4v6y3k2TBSly+NR+WEh1IkPyncOeRSXXhX4G2PhK18U3PxV1m38MXUnk2+tS/F/WVspn5+VJjqOxjweAc8V5BrP7IHxZ8Rw+HINag8GajZ6b4NsPCzQWHiTUNMnt5rK7SeG9guUs3YOTFGcFMRt2kA+bp9X/ZU+KWr+DvD2hX3i+01WzFnrkOqwz6nLa3Iku1H2Zvt1taxzXYjIIl3CDzs5cHG2lUtGMnHVq9vNJu3neSXayb1CNnJKWidvyV/ud13fRHca34U+B3hm6lttY+Kms6VcRWaahJDffF/WYXS1dgqTkNqIIjZmUB/ukkAHmsb456B8Mvgr8Mr7xVceLNfe4+ySXOl2Or/GPXdNj1VkTzPKhma9fc7L90KrZJXoDkcTpX7IfxLuZPCEevL4QuodG+GV74Gln/ALWubiRrmVCsc6q9mo8v5IwcsCA7YB2gNr3X7LvxQXwzHaWl14Se9vvhkngO9jvbueaHT54VcR3Fs32bMscuV8yN1jKkBgX2bWisnFSVN3avbz1nbfvyxf8A2/5WLp8t4uWu11t/Jf8AOXry76nT+D/Dfwr8U6R4Vim8Y+JNK8Y+IdHt9WtvC1z8Xtc+1/vYRIFC/bg7qMkbwnYnHat74b/Cr4f/ABP8JW2vaXq/xCSJ5ZrWe3l+I/iDzLe4hlaGaF8X+NySI65HBxkZBFeY/CP9lf4jeAfG+geI7t9N0eKwitZdXsNA8RzalbaxLbWItUK2V5ZRJBO4RB56TptUbdpyWr6B/Z++Fs3wk+HraVeSpLqV/qd/rV6Im3RxzXdzJO0aHAyqeYEz325wM4reooczcNtfz0/p9r2Vznhz8sVLfS/3a/jby1td2Kf/AAzT4R/6C/xA/wDDj+If/k6uc8bfAKx0mxtl8MQ+Ntf1a5mMaxah8VfEljaxKEZi8syXEzKPlCgCNiWcdBkj3ivJf2ktC+K/ifwVBpXwnn8LWt/cz7dSm8UXN3BGbXHzRxm1UyBn+6WDIyrnaQxBHPNtLQ2Suz5O8dfFLSPDvwz8HeK9H8IeMLyXW5tQt7uz8RfHrU9BitXtJlgdorm5vfLuEaRjtKlWIAO3rt6Txzr2meENLvpYPDHjfU9S8PeF7TxX4psY/jN4g/0C3nL/ALm1kSd1u5VEUrf8skIUYc7gK9a8NeCfjYnw8tfD/iPwt8IbmdrS40ll0ee/trSwtHEYTyo5beUzD5cvCWiDFE+cdRxt/wDsZeJPCOl3/h3wPq2l3ug674FtPBGp3XiC4ljubT7OZQl5CkcTrMSk7gws0QyFw+OKqfN73Il5fdLR9lflu79d1ZivFpabb/8AgS1+6/3bXaPXtH/Z98Fa5pNlqNrrPxBa1vIEuIifiN4hyUdQy/8AL/6EVc/4Zp8I/wDQX+IH/hx/EP8A8nV6J4d0aPw74f0zSYXMkVhaxWqORgsEQKD+laNXK13y7GcOblXPv1PirR9R8M6/4/n0XTtN8cX+mJrF/oO60+L3iGTVoLq1SRmkuLD7R+5t38rCy+azfvYSUHmCuM8NeJPF1z4j1bSfFfwW8d+DDp3hm68TySXPx81m6byY1IjR0imJjMkgKDfgjZIcHYRXr+l/sk6tN8ZfDni/Vrfw4uoaFr11rDeNbK4uDrWsW8nnCOxuYTGEVEEkS7vOkG2ABUjDHHpnhr4b+KdJ0v4j6zqEXh/VvGnii+leOC6llk08WMY8qzs5GMe4IItxfCEeZNKcMDznqqab3tr69153e1rWXnd66c/ldfne3pZWvfeSfRpeI/suWFt+0Da+IrrWtD8SeFLbS5o7eOTRvj5qfiPzpSGLo5tL3bCUAXhzk7+Bwa92/wCGafCP/QX+IH/hx/EP/wAnVD8LfhPqekfEzxb8SfEltpekeJPEVnaadLpOhXT3VpFFbmQrI07wwtNK5lOWMa7VVVG7BY+t1bd7aWf9fnuZrr/X9frueAfE74V+Avhb4J1HxHqGpfEW7S2CxwWVt8RvEJmu53YJDBGDf8s7sqjsM5PANeCa94k1Gf4Q+C/iF4I+FnxC8X6PrWhS69qj3Hxw1nTItHhQAgPLNdbZCV3sduCAh4xzX09+0X8HtW+K2gaXP4f1q80vxFoU8l3pkKXdtb2ss8kTQFp2msrzGyKWXaViyC3BBIZfM/hd+zd8RNB/Zz8BfCjxTqmj3thp2pQJrzw37TLcaVCBItrb7bOA4klRFZZNx8syAyvuAGSjOTlZ22t+X4Xu/JaedvRxe6s797qzS+aTSe13rseV6h43tLDwbJq58EePf7U0fwta+L/EujyfGTxEsunWVw8nlRwN5p+0XHlwvI0bCJV4XeTWp4J8aeC/HWu+DrzT9N8fP8PPF2tXfh/SPEifFrxC9w91Ash3S2v2nakMhhkCOJmY4GUG4V6t8av2d/GHi/x1431PwreaIumeO/CsXhjV/wC155o5dPMbzFLqBI4nE/yTuDEzRcqp39RXN/Cb9j7xH8Nj4K8IC/0dvh54J8UXXiTSLxJ5n1K4SRZfLtJYTGETY07EzCVywUDYuSauN22/6+J833Rs493davQid4wtHV//AGv/AMlo+3ktT2H/AIZp8I/9Bf4gf+HH8Q//ACdTZP2a/CSRsy6r8QZGAJCL8R/EOW9hm/xXq9Q3v2g2c/2QxC78tvJMwJQPj5d2OcZxnFKWiZa1Z8dLbad4d17xrpnjPw34/wBMPhzw03igSaB8XPEWqebAC4+zyAzw+VcHYSEBdSASHIGak+H2m2Hj+11eOy0fxZf6hDa2F5p0+hfGjxFqGl3Ud0zKoluxMphkjVTJIojkwhUqX3AVvj9lzxT4i8VeI/GvleGPhP4w1Pw9eaRKfBFxNcw6nd3DpJ9uvJDBbMzIysAu1n/eFvNyAKydG/Zk+Ivw4/4TrxN8LtH+H3w88XeINPtNLg0azvruXSImjkkaW/ZhbIfPZWVVjWEAbcs7kmndqLutbfjd/muX03a3snq/d79fSN/u9712T2v5R8QfirbeB9OkRPBPie41qw1m90XVItS/aC1XSdPjkt0t23215d3Ua3CsLpBtKxupBGw4JH1P4M+AGg+IPCOi6pqs3jrSNSvbOK4uNPt/inr95HbSOgYxrOt6FkCk43qMHGRxXA/Dv4bftAaR4a1Dw54o8KfBW60u5tZbKCXR73VUlt1nObiWb7TBM10WYI5QvGXZctJnBHv/AMJPh1afCL4Y+F/BVhdz31poOnQ6fHdXOPMlEahdzY4GcZwOnSr6NP8Au6/LXTprZ633snowk02uVd7/AH6fhp02vbVHL/8ADNPhH/oL/ED/AMOP4h/+Tq8l+OXgq3+D9rHrFnoXjfxD4ailtoLucfF/xFb3zPNMIgtrbC4cTsu4EhpIic4Xdzj6vr5//aU+Bmu/tAQ3Xhm68O+DJdCltwuneLr6aVta0CdsebLawfZyrPlIyrLcQ9PmDBeYu007X127+XzHZNNN28zxfxhq0Og/tJW3wu0vwx4i1SymvLa2/ti8/aC1Owu9skUcsrppsl558ojWQn92G3beCDkC9o2t+FdX8ceHrVdK8fDwR4g8R3/hXT/EKfFnxE1wb6180MZbT7SAkLtBKqOJmY4GUXcK9e8e/BHxL8ULyw8Oa3ZeHrXwjp2t2OtxeI7W9lk1q6a0MTRrJC1uESR/KVHnEzEoMCMZG3mfB/7L3izQ/FGg6Zd3+it4H8OeNL/xjp15FPM+oz/aTM62kkJiWNAj3DnzRK+4Ko2LkmlByaV11+9Xj9zS5rLq1re6RNR+63Ba2X32l96b5fv6WZ7b4K+EOheANVl1DTL/AMUXVxLCbdk1vxZquqwhSysSIru5lRWyo+cKGAyAcMQSu1oqhn81n/DWPxv/AOiyfED/AMKi+/8AjtH/AA1j8b/+iyfED/wqL7/47RRQBzOn/GPx9pHjC98WWPjjxJZeKr1Sl1rlvq1xHfXCnGRJOHDsPlXgk/dHpXTf8NY/G/8A6LJ8QP8AwqL7/wCO0UVS/g0v8P6scv4k/UP+Gsfjf/0WT4gf+FRff/HaP+Gsfjf/ANFk+IH/AIVF9/8AHaKKkQf8NY/G/wD6LJ8QP/Covv8A47R/w1j8b/8AosnxA/8ACovv/jtFFAB/w1j8b/8AosnxA/8ACovv/jtH/DWPxv8A+iyfED/wqL7/AOO0UUAH/DWPxv8A+iyfED/wqL7/AOO0f8NY/G//AKLJ8QP/AAqL7/47RRQAf8NY/G//AKLJ8QP/AAqL7/47R/w1j8b/APosnxA/8Ki+/wDjtFFAB/w1j8b/APosnxA/8Ki+/wDjtH/DWPxv/wCiyfED/wAKi+/+O0UUAH/DWPxv/wCiyfED/wAKi+/+O0f8NY/G/wD6LJ8QP/Covv8A47RRQAf8NY/G/wD6LJ8QP/Covv8A47R/w1j8b/8AosnxA/8ACovv/jtFFAB/w1j8b/8AosnxA/8ACovv/jtH/DWPxv8A+iyfED/wqL7/AOO0UUAH/DWPxv8A+iyfED/wqL7/AOO0f8NY/G//AKLJ8QP/AAqL7/47RRQAf8NY/G//AKLJ8QP/AAqL7/47R/w1j8b/APosnxA/8Ki+/wDjtFFAB/w1j8b/APosnxA/8Ki+/wDjtH/DWPxv/wCiyfED/wAKi+/+O0UUAH/DWPxv/wCiyfED/wAKi+/+O0f8NY/G/wD6LJ8QP/Covv8A47RRQAf8NY/G/wD6LJ8QP/Covv8A47R/w1j8b/8AosnxA/8ACovv/jtFFAB/w1j8b/8AosnxA/8ACovv/jtH/DWPxv8A+iyfED/wqL7/AOO0UUAH/DWPxv8A+iyfED/wqL7/AOO0f8NY/G//AKLJ8QP/AAqL7/47RRQAf8NY/G//AKLJ8QP/AAqL7/47R/w1j8b/APosnxA/8Ki+/wDjtFFAB/w1j8b/APosnxA/8Ki+/wDjtH/DWPxv/wCiyfED/wAKi+/+O0UUAH/DWPxv/wCiyfED/wAKi+/+O0f8NY/G/wD6LJ8QP/Covv8A47RRQAf8NY/G/wD6LJ8QP/Covv8A47R/w1j8b/8AosnxA/8ACovv/jtFFAH2/wD8Eifjf8RfiV+0l4k0zxf4+8UeKtNi8JXNzHZ63rNzeQpKLyzUSBJHYBgruN2M4YjuaKKKAP/Z)
Using a divisor of D = 40,500, the modified quotas (to 3 decimal places) are
◦ State A: 6.242; State B: 21.848; State C: 117.353; State D: 95.506; State E: 8.739.
◦ State A: 6.250; State B: 21.875; State C: 117.500; State D: 95.625; State E: 8.750.
◦ State A: 6.329; State B: 22.152; State C: 118.987; State D: 96.835; State E: 8.861.
◦ State A: 6.173; State B: 21.605; State C: 116.049; State D: 94.444; State E: 8.642.
◦ none of these