Question 1
The following diagram shows a monopsony employer.
![](data:image/png;base64, /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAD4ASwDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9U64XRfibJr3i670uz8O6hLpFtdy6e+tq0ZiW5iGXVo929U/hDkYJ46EE91Xjfw4+DuqfDjx/4h1mw03wjbWev6hJdXk1jaTQXaxYwiDkqxJAZj8oLFjgk0Aek+LfGWkeBtKj1LW7xLCykurezWaTgGWaVYol/F3UfjW3XyV/wUo8EeJvH/wU0DS/D2sQ6HGfE+mfaLpwxcu9wkNuAF7CWVZCe3ljHNfT3hNtWfwvpJ1+KKDW/ssYvkt33xicKPM2nuu7JHtigDXooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAorjfiT8UtE+FenWF7rX2gxXt5HZRC2jDtvfoSMjCjBJPaoNW+MPhzRPGR8N3k00V1HYyajPctHi2t4kwT5khOFODnHpzWTqwTs3/TO6ngcVVgqkKbad7O38tr/ddfedzRXBeFPjBpPizVrewj07WNNa8jaWxm1OxaCO9RQCWiJ5PBBwwBwc4xXd5qozjNXi7mNfD1sLPkrR5X5jqKKKs5wooooAKKKKACiiigAooooAKKKKACiiigDw/9sH/klek/9jb4e/8ATpbV7hXh/wC2D/ySvSf+xt8Pf+nS2r3CgAooooAKKaPauG8fW3xIuNQtv+ELvvDNnYiI+d/bdtPNK0mf4fLdQFxjrk5ppXdjKpP2ceZRb9Du6K8cGsfHSw2+d4b8FasCNpFrqdzbEH+8d8bDB54/Wj/hZ3xS04L/AGh8IJLoY2l9K162ly3qA+whT6nn2rT2b6Nfejk+u018UZL/ALdl+iZ7HRXjP/DSMejqR4o8A+MvDZU4eZtMN3Avv5kBbI464rb0D9o74Z+JLj7PaeM9Mjuuht72Q2so/wCAShT+lJ05roVHHYaT5edJ9no/udmel0VWstQtdRhEtpcRXUR6SQuHX8xU9ZnandXQ6iiigYUUUUAFFFFABRSVxfxM+IQ8EabawWVt/aniLU5PsulaWr7WuJT1JP8ADGg+Z27AeuAZlJRV2bUKM8RUVKmrt/1r2S3b6I5D4/8Aw+174hfZLfS7RbiC106/kXfIqhrto1SBeSOuZOegxXIXfwO8V69b65LepbR6rfaOpe4klBjnvJJxJLCcciNUhhiBI+70717b4B0DVPDvh2GDW9Ym1zV5Wae6upThPMY5Kxr/AAxrnCjsAM810lcjw8Kjc5LVnvQznE4KMcNRcXGm9HZ979ejfddtDyPUPHXjjTtJutb1HwzZ+HdP0+FEFpd3KXMs8zSIu4NGcJGoLdeWyOBjn1tGDoGGOR2qpq+kWWvabPYajaxXtlOuyWCddyOPQg9aNI0iy0HT4bDTrWOzs4RiOCFdqoM54H1NbQjKL1d1/XkeZiK9GvTTjTUJJvRXtay6tt3vfe+++li9RRRW55wUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB4f+2D/wAkr0n/ALG3w9/6dLavcK8P/bB/5JXpP/Y2+Hv/AE6W1e4UAFFFFABRRRQAUUUUAJisPxB4J8PeK4jFrWhadq8Z/hvbSOb/ANCBrdopptbEShGatJXR5Bf/ALK3w5mkM+maRceGbvqtxoF9NZMjDGGARguRj09arr8Ovin4MOfC/wAQ4fEVmpyuneMrPzXx6faYdr/mp+tez0Vp7SXXX1OJ4ChvCPK/7vu/lv8AM8YPxr8YeERjxv8ADLVbeBAPM1Pw1Kup24Hdii7ZVHHTacetdj4E+Mngz4ktJHoGv2t5eRcS2Lkw3Mf+9C4Dj64xXaY/OuK8e/Bvwd8Sgr67okE97HzDqMGYbuBuzJMmHBH1xReEt1b0F7PE0vgnzLtLR/ev8jt6K8VPgz4qfDcZ8K+JYPHekJ00jxWfLvFXPRLxB8x/66KfrV7RP2jdFXU4NG8Zadf/AA912ZtiW+uIFtpm9IrpcxP9NwPtR7NvWOpSxkIvlrJwfnt8nt+vkeuUVGrrIiurBlYZDA5BFVtW1az0LTbnUNQuYrOyto2lmnmcKiKBkkk9BisW7bnoRTk0oq7Zm+NfGWneA/Dt1rGpu6wRYVI4l3yTSMcJGijlnZiAAOpNcp8NPBmozanceNvFca/8JPqMYSKz3b49KtjgrbxnpuOAXYfeb2VazPBel3fxV8SweO9dt3g0W1yfDmlXCYZFI5vJVP8Ay0cfcB+4p9WOPXK54/vHzvbp/n/l/VvXrNYGm8NB/vH8b7f3V/7c++i0V2tFFFdJ44UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcV8UPFlz4OstBvYbmK1tJNYt7e+kmUEfZmD7+T93oDn2rzLwt8ZPFniGXXbK5NlpmoX2rRvpEciDdpukG2ine4uQTguFLHkgbpUXsa9g8c+AtG+I2jQ6Vrtu91Yx3cF6I1kaPMkMiyJkqQSNyjI6EZB4NYeu/CnR/t3izX9N0axvfEuvWcFrcDU2ZredIQfLjYDOxeeSBycEg4AoA4T9r2/hn+DekXts4vLdvFPh6WNrYhxKv9qWxGwjg57V7HLrvl6pPZf2dft5URl+0LDmF8DO1Wzy3bFfOfxk8I3ngX9mvwtol75CTW/i7QysNuxdIEfWYHWPeQC5UMFL7RuIJwM19RUAYI8VZ023vP7H1YedN5X2f7N+9T/aZc8L71ZGu/wDEzu7P+zr/AP0eMyfaPJ/dS8A7UbPJ56exrVooAwW8VFbCzuv7H1Y/aXKeSLb95Fzjc4z8o96nHiDN5f2/9magPsiF/N8j5Jsdozn5j7cVr0UAYTeKCttp839kaoftjbfLFt88HOMyDPyjv3qV/EO2bUY/7M1E/Yl3bhB8s/tEc/MfyrYooAxV8S7odOk/srUx9tcptNv80HOMyjPyj35pH8TbH1Ff7J1M/Y+ci34n5x+65+b9K26KAMZfEW46b/xK9RH23PJt/wDj3/668/L+tNHibKak39lan/oRxj7PzPyR+65+bp7Vt0UAYx8RETabH/Zeon7aobeLf5YPaU5+U/nUa+KC1pfz/wBkaoPsjhPLNt88/OMxjPzDv24rdooAxY/EfmXVhB/ZepL9rj3+Y1vhIOvEhz8p46c9RWXr9xpnifw9qdrrHhi81WwSTyZLC6sVl+0DONyIxwy+9ddR0oWhLipKz1R8xfEHw/q/7PPhTU/Ffw6vtdi0vS9Mm1efwnqkbXmmtFGhdoIySZLeQgHG0lR6YrjPBXxu1H4vfFfR/A3xR1nwlZafLpdt4ktLPw7dSPbak0jnyrW4eQ/ejK79oIEvBxhSte4+ONTu/it4luvAGiXEtto9sF/4STVbc4KK2CLOJv78in5yPuIfVhiTwj8A/hfp+geJvDWl+EtGTRrq/wA3tjFp8cUayiJAANoB4BBDDkFjgis+dYh2nsuvf/P+kdccNPKKaqYd2qSV0ne0U9n/AHW1qrLTSXY9ZVQqgLwAMCnV4S3h74hfAmN5PDcs/wARfBUIz/YV9L/xNbJPS3mOfPUDokmG4ADGvTPh78SfD3xQ0NdU8P363cQOyaBhsntpO8csZ+ZGHoRXRKFldao8qliVOXs5rln2fX0fX+rnVUUUVmdgUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHh/wC2D/ySvSf+xt8Pf+nS2r3CvD/2wf8Aklek/wDY2+Hv/TpbV7hQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA2vNviZ411GTUrbwV4SkU+KtRTfLdYDR6XbZw1xIOfm6hFP3m9ga0vij8Q28E6da2mm2v9reKNWc2+laWpwZpO7sR92NB8zN2A9SBTvhf8PD4G0y4n1C8Or+JdTcXGras67WuZcYAC5+VFHyqo4AHqSTzzbm/Zx+b7f8H8vuPXw1OGGprGV1f+SL6vu1/Kvxem3NbU8CeCNN+Hvhm10XS0fyIQWeWVt0s8jHLySN1Z2JJJPUmrmipdJc6sbm0gtka8JgaEAGZPLT539WzkfRRWvXP+GDbfbvEH2e4mnf+0D5yyjiN/Kj+VP9nGD9Sa2UVFJI8ypUnWm6lR3k9Wzfryz4h/A+DXtZHivwlqB8IeOoh8uq2qZivAOkV1F0mQ+p+YdjXqlFaRk4u6OSrRhWjyzX/A9Ox5N8P/jXJe+IE8HeOtOXwn45AJitmfNpqaj/AJa2kp4ceqH5l7jjNer1zHxC+G+gfFDQH0jxBZLdQbt8MyHZNbSD7skTjlHHYivNPDvj3xB8GvEdh4R+It7/AGpot/J5GieMWG3zXydttedklxja/wB18djV2U9Y79jkVSphmoV3ePSX/wAl/nt6HulFIDkUtZHpBRRRQAUUUUAFFcfb/FTw1dfEi48CRX7P4lt7P7bLbCF9ix5XI8zGwsN6ErnIDA4waxj+0H4GHiz/AIR9dWle5F0LB7xLOZrFLnOBA10E8oSZ+XbuznjrxXbHBYqekaUnpzbP4e/p5k80e56TRR1oriKCisK68ZaVZ+LbXw3NcGPVrmzlv4ojG21oY3RHO/G3IMi8Zzzmub0X46+C/EPhOTxJpurG80hdTOjpLFA5aW7E3k+Wi43NlzgEDBHPTmuiOGrzjzRg2tOj63t99nb0ZPMj0GikByKWucoKKKKAPD/2wf8Aklek/wDY2+Hv/TpbV7hXh/7YP/JK9J/7G3w9/wCnS2r3CgAooooAKKKKACiiigAooooAKKKKAG9K53x745034eeGrjWNUkYQxlY4oYhulnlY7UijX+JmYgAe9amta1ZeHdKu9T1K5isrG1jaWaeZgqIoGSSTXl/gXRb34peKIPiB4itZLXTbXd/wjWkXClXgRhhrqZf+esg+6D9xT6scYVJte5Hd/h5npYTDwkniMRpTjv3k+kV5vq+i110T0/hd4F1L+0Lnxr4wSN/F2pJtW2Uh49Kt+q20Lf8AjzsPvN7AV6XmnUVpCCgrI58TiJ4qo6k/klsl0S8kFZekC7W41P7TBBChuj5DQ4zJHsX5n/2s7h9AK1KwfDK2S3uv/ZJZpJDqBNwJRwknlR8L/s42n6k1Zym9RRRQA2sjxZ4T0nxz4evtD1yxi1HS72MxzW8wyGHqPQg8gjkEAitmihaaomUVJOMldM8D0XxPrP7PGs2HhnxnqMuseA7x1t9H8U3I/eWLnhbW9bpjoEmPXo1e8qwYAggqe4rO8SeHdO8XaFf6Nq9pHfabfQtDPbyjKupGCP8A6/Y1434J8Sat8DvFGnfD/wAYXrah4avj5PhnxLcuN5wOLK5J/wCWgH3H/jAx1rZr2iut/wAzzot4OShJ3pvZ9vJ+Xb7j3iikpaxPTE4rI8Vard6H4b1K/wBP02bWb6CB3gsLcgPcSAfKgJ4GTgZPTrWueleUX/x4s9DkjkvrR57e/wBTubDThbNGu5bdhHK7vI6puL7tqA7iBwDg114XD1K87U481unfr+SZMmktTzDwX8FfiV4L+I3grWNZ1XTtdS4m1VtUutN09oprea7i8zfJI8rb0V4oolAUYATtxW18JpvF3hbwV4d+H1z8O5YH0UY1fWdV8p9NmVGZzPAVctLJK4DgFRtLEtyOfQNe+Pvhzw7bX89zBqDpZ3F7bSeVCGJa1h82THzc5Xgep4qpL8fbA3dlpR8La/Jrd+T5WkeTD5xi8oyCVj5m1UZVYctncCpANfUTxOPxsL1sPFq2lvdtZyd7Jpacz3VlpfzxSjF6M2dD1/V/iB8I9J1q1iFrq2pWcNz5drIUCM2CQpJHHXqateAdO8Q2NxenWnneNlXyvOnEnPOejtjtXnfwz+JPgzwpbeIU0jRrfR9CW5kktDp0BQTBLSCZldSeJcysoUAD5CO1ejeK/iRD4WuNNtV0fU9W1C8ia5ay0+JZJYIFKh5WBYZCl1GFyxJwAa8uvSrU5Sw1On7sndXVn3tvZW2LTT1bPOPjr4L8VeKfil4Mj0CzuF02/wBM1HSdV1mF1UadBI9s5bk5LOsUiLjoxB7Vi/BX4Ta1Y/EzxGmraJ/Y3hDw9rt3e6DDgbLyWeNFWdVHRYk3oued0jHtXoer/tB+HNF0+e8mttRkihfUEKxQKWJs8ebgFh1yMevfFWbv466BpGiyX2rwXmjy2880N1Z3SJ5tt5cfmM77WK7dhQggnPmKOprshXx8cIsNCjo04p63eru997XjtZLzdybR5r3PSKK8r0r46ad4j0+11HTlRYIdUg07U7eWaOSS38/CxMHjdkOWePgE8EjgjFepYBr5yvh6uGlyVVZmyaew6iiiucZ4f+2D/wAkr0n/ALG3w9/6dLavcK8P/bB/5JXpP/Y2+Hv/AE6W1e4UAFFFFABRRRQAUUUUAFFFFABTHkWJGZjhVGST2pegrxrxtq178YPFd14C0G6ltdAsSB4m1a3Yo+CMrZwOP42/5aEfdU46sMZVJ8i83sjtwmFeKm03aMdZPol3/RLq7Ir25k/aI8ULc5f/AIVno9x+6T/lnr10jfePrBEw4HR2XPIUZ9tUAAAcAcVU0rS7TRNNtrCxt47SztoxFFBCoVEUDAAA6DFXO1KnDl1lq3v/AF2LxmKVdqFNctOOkV+bfeT3b+SskklooorY88KytFa9a51b7WIVjF2Rb+TjJj2J97H8Wd3XtitWsHwytkt7r/2NZ1kOoE3PnDgy+VH9z/Zxt/HNAG9RRRQAUUUUANrn/HfgbR/iT4Vv/D2u2outPu02sP4o2/hdD/C6nBB7EV0VFC0d0RKMZxcZK6Z438JPGms+G/E9x8MfGt2LvXLKHz9H1hl2/wBsWQ43EdPOj6OB14bua9j968/+MvwwPxI8OwNp91/ZXinSZft2i6qo+a1uFHAPrG4+V17g+wpfg58Tv+Fk+HZvt9r/AGV4m0qU2Os6Ux+a1uV649Ub7yt3UitZLmXOvmcNGToz+rzf+F+Xb1X4r5nfEZrzXUPgpZa7peoaPqN9dJo8t/PdxW9nII90c53ywyqVKspcuQcZAbgg816V0rx74gftUeBfBGsNoFjc3XjPxcflTw54WgN/d7umJNnyxc95GWu/L6WNrVeXAxblvotvN9l5vQ7ZuKXvB4z/AGbdD13TdZGm3N5Y3V3a3MVtbyXLNaW8s0HkPIE65KgZOeoyMEmua8aeBfCPhDxT4JGr/EGbRtXkuWtY5bjUsaneySReTDDCcZ2AluCpHzZJ3c03+y/jx8aDuv7+z+CvheXOLTT9uoa7KnTDyn9zASOfkDketdt8M/2afAPws1JtY07Sn1TxLJ/rvEeuTtfajKcY5nkJZfouB7V9E67wULYrF800mlGFpWumrSm/dtrf3efXszK3M/diM1H4CaQZdHttNRbTSINXh1i7ieRmd3hhWONE7bW2KX3Zzz3PHWeMPh5p/jK5s7ie61DTru2V4hcaZcmCSSFypeJmAyUbaucYIxwRXV0V8s8ZiHKM3N3XX1N+VHl+qfs8+FdXv724nk1MRXS3I+yJeEQRGcKJmRccFtgJOTznGM1vaz8J/DXiDWdW1PULD7Tc6pp40y6DufLeEEn7vQNnHzdcKo7CuyooeNxMrXqPTRa/P80HKux5xafB600rT9P02zvZ5rFdTi1G9e9ZXlnMWGiQbVCgB1jPT+H1Oa9G/ClorGtWqV3zVHdjSSPMvjf4zXwDB4S1iW5njhXWhA1tDIVN4z2twI4MfxF5NgAOfmwe1eXeCPFeuJqHinw14l8UTmfSdcOueJNQ84hNNtHhhmisYiOVVnJVQOTHG/dufpHUNIsdWFt9us4Lz7NOtzAJ4w/lSr92Rc9GGTgjkVleIfDs7aNrn/COGw0jX9RTcNRnsxKpmChUklUFTJtCgDJ7CsBnjv7T/iTTfFvwQ0LVtHvI9QsJ/FmgGOaPPJGrW4KkHBBBBBBwQQQcV66/ifWV0prkeEtQa5FwYfsX2m23lMf63d5u3HbGc+1eIfHrwzeeEf2fPDmmahLZ3F+ni7QnuLixheOOaR9YgZpCHZmLMTliSckk19LUAY7avfjV5bQaJcm1WDzVvvOi8t3/AOeYXfuz7kY96or4l1g6NFeHwpfrdvOImsPtNv5iJ/z0LeZtI9gc+1dNRQBiS61qMer3VqugXclrDAZY71ZoQkz4B8sKX3Ak8ZIA461UbxLrA0i1ux4T1BrqWUpJYi5tvMhX++zeZtI9gSfaumooAxBrWo/2nf2x0C7FtbxGSG886HZctgfIo37lJ6ZYAcdaqv4j1ddP0+4HhW/ae4kKz2v2i3D2q5xuc+ZtYd8KSa6WigDEfWtRS91KEaBdNDaxeZBcCaHbdtj7iDflT2y4Ue9Vl8R6u1vpjnwrfCS6kKXEZuLfNoA2AznzMMCOfkyfxro64H4r/EpvA9lZ6fpVquq+LtYc2+k6WWI85+N0jkfdjjB3M3oMDkgVEpqEeaR0YehUxVVUqSu3/Tb7JLVt6JanKfFD4n+JLzWrzwF4O0a5HiaaLzG1ISwPHZ2vQzFd/wArtysavt3MCeimus8C6OPh/wCFvD+jaT4WvYLaRm+1CS4gaS3Ytlppm8z94zEliULHk1N8LvhyvgLSbiS8ujq3iPUpPtOq6tKuJLqY9vZFHyqvQKB3yT2/8qypxbftJ7/kv63O7F14QgsJhn7id2/5pd/RfZXRa7tmB/b+qb9WX/hG70C0BNs3nwYvev3Pn+X/AIHt61Zt9YvJIbBpdHuoZLgAyxl4m+zH0chsH/gOa16K6DyTMGq3BjvG/su6BgOEUlMz8/w/N/PFKmqXBks1OmXQE4y7kpiH2b5v5ZrSooAzDqtwIbt/7Lui0L7UTKZmH95fmxj64qho+o6ob+5S9tHeGa4LQPGU/wBGj2LhZMHO7du6Z6jmuirA8MtZNe+IPskM0Ug1Ai4MhyHl8qP5l9sbR9QaAKreNLkWGoXP/CMa2WtJhEsAii8y4BON8Y8zBUdeSPpVxvEk66nptp/YmplLyIStc7E8q2JBOyQ7shhjHAPXrW7RQBy6eM7ltHvL7/hGNbElvMIlszFH50w/voPMwV+pH0q7/wAJFN/bdrp/9jaj5c8Xmm98tPIiOCdjndkNxjgEcjmtuigDl28aXK6LPf8A/CMa0ZIrjyBZCKPz3H/PRR5mNvvnPtVyLxJNJrUennRNSSN4BMb1kTyFOM+WTvzu7YxjPesz4ifFrwd8JtK/tHxf4jsNBtm4T7VKA8h9EQZZz7KDXkn/AAu74mfF/wDc/CvwHJoejScDxd45RrWEqf8AlpBZj97KMcgtsHIzXr4XKsVioe2UeWn/ADyfLH73u/KN35Gcpxjp1PV9U+I6aJ4Um1/UNE1OxtoJGSaK58mN4kAyZWLSBQnvu/Cvkj4oftFaBq3xz8Pap8L/ABhYeF01KG40nXvHOraa02hOYoxLBEJS0cctwCrKDvwF3DngV7Xpf7JOmeIr+HWPiv4j1P4rawjeYlvqpEOlWzZz+5so8IPTL7zXonxK8L+GJ/hrd6Lq3h6LUvDmYYn0i1t1KEecgUBMYABIJ9ga1rwy7DQcKVSVWp3S5YL0uuaXzUPRmUoupZyjtr5/8D8T5++Efgfxx+1n8PNH8X/E7xxe2fhrU97w+E/Ckbaba3UKSOiSzT7jNIkoUSBQyjay/WvpPwD8MfCfwt0dNL8JeHtP0CxAwY7KAIXPq7fec+7En3rz34G3E/gLxT4k+Fl7cvLBo+zUNAef776ZKeI8/wAXkyBo8+myvavrWOJzHF1qSw8p2praKSjH1aVk35u78ycPONWPPaz2fk0LRRRXknWFFFFABRRRQAUUUUAFFUtR1iy0hrQXt1HbG7nW1txI2PNlYEhB6khTx7VQbxtoCw6vKdYs/K0iYW+oOJgRaylVYRyf3Ww6HHX5h60AeV/tg/8AJK9J/wCxt8Pf+nS2r3CvD/2wf+SVaR/2Nvh7/wBOttXuFABRRRQAUUUUAFFJWd4g17T/AAxo15q2qXcVjp1pGZZriZtqIo5JJpNpasqMZTkoxV2zI+IvxA034a+F7nWtREsoQrHBa26757mZjhIo06szHAA/E8A1zHwo8Aalb315418XBJvGWsRqrxIS0Wm24OUtYs+mcuw+82T0Axk/D3QtQ+KPiiD4jeJ7Sa0s4Ay+G9EugM2kTcG6kH/PWQdAeUU46lq9l9K5o/vZKo9un+f+R7WIlHL6TwlJ3m/ja/8ASF5L7T6vRaK7Wiiiuo8MKKKKACiiigArJ0UXYudV+1XcV0huz5CxkZhj2J8jY753H6EVqmuN8K+JvD0svi24tL21jjsdSddRna7RkSVYo9xYg4QAYGDjGDQk27IDs6K8C1n9rjR9a1CbR/hb4f1P4sa3G2x30QCPTIG/6a3z/ul7cKWPPSqP/CmPin8Yl834o+Of+Ea0WTGfCXgOR7dXXqVuL1v3r+hEewdeTmvoY5NUopTzCaoR7S1m/SC970cuWL/mMfaJ6R1/rudl8Sf2nfAXw11AaRPqUmv+KZOIPDfh6Fr/AFCVs4C+VHnZz3cqPeuOZ/j38ZuIhY/BLw1JnLShNT12VenQHyIM885dhxXq/wANvg/4M+EWmfYPCHhyw0OJv9bJbxZmnP8AellOXkPuxJrsscU/r+CwWmBo80v56iUn8ofAv+3ufyaDllL4n939f5Hknw6/Zf8AAnw81b+3TZXHinxY2DJ4l8TTm/1Bj/syPxGPZAor1oCnUV5GKxmIxs/aYmo5vzd9Oy7LyWhpGKirJBXP+OJLyLw1ctYalb6TdCSHbd3bBY1HmruBJ45GVHuRXQVzXxCW2fwndLd6XPrFv5kG6ztyQ7nzkwRjn5Thj7Ka5Cjhf2gvDl/aWWl/ELw/biXxJ4Rka78pThryxI/0q2PruQblz0ZF9a9L8NeILLxZ4f03WdOlE9hf28dzBIP4kdQwP5GtCWNZo3R1DIwIKkZBFeMfAdn8BeJvFvwvuWxFpE/9p6LluG064ZmVFz/zykDp/wB81qveh5r8jzn+4xCfSf5r/Nfkj2uiiisj0QooooAKKKKACiiigDzX48W+tyeGNGuvD2ky6zqtnrdlPFbRY4/ebDI2SPkQPub/AGVNea+E/hlqng/xd4qtLvR7q68L6ZJbeJZ77KmTxDqYtgGGCRnbJGZCWwNxiHRTX0pUU8MdzDJDIu6ORSrKe4PBFAHzn+0N4qXx/wDs4eDfEUMEmnrq2v8Ahm8WF2DvDv1K1baT0JGcZ6V74+mXzXV/INYnWKePZDD5MWLZsfeU7csfZiRXiv7Ueh2Phn4I+G9J0y3W006y8T+HLe3t0J2xxrqlsFUZ54Ar3+gDEXRtSFrYxnX7lpYJN003kQ5uFz91htwo7ZXBpz6RqLT6g4125VLhSIIxBDi2Pqp2Zb/gWa2aKAMRtG1Iwaeg1+5Elu2Z5PIhzcjPRhswvp8uKcNI1HfqB/ty5xcA+QvkRf6L/u/J83/As1s0hOBQBiS6XfxrYyPr1wkdqM3B8mHFzjqW+T5f+A4rxez0zUP2jPEt1fNq1yvw106536cDEgGp3SH/AFm0oA9vGw+UNuDsM5IAzreNtTuvjf4qu/AWizyQeFbBwviXVoDjzTwRYwuD95h/rCPuqdvVuPYNK0q00PTbXT7C2jtLK2jWGGCFQqRqBgAAdAAK5H+/lb7K/F/5I9+NsrpKb/jzWn9yL6/4pLbstd2rU4tG1GOXTz/btw0dsu2aMwQ4uT6thcr/AMBxTW0XVDFqCjxBdBp2Bgf7PDm2Gc4X5MNxx82a3KK6zwDJXS79biwkOsztHBHtmiMMWLlv7zHblT7LgVCNF1MWd9EfEF0Zp3DQ3H2eHdbjPRRsw3p8wNblFAGSdMvjf2Uw1i4EEMYWW28mLbcN/eY7dwPspAquuh6ounXMB8RXRuJJA8d0beAPEv8AdA2bSPcgmtz9K8w+J/7SPgL4S3Edhq+rm91+fIt9B0eFr3UJ29FhjBYemWwPeurDYXEYyoqWGg5yfRK7JclFXkzvP7Nvf7Uguf7Wm+yxx7Hs/Kj2Stj7xbbuB74BA4rkvHvi7Svhj4UuL3xX8QYfD0Bm3rqN8LeNgv8AzzVCmG/BS1ebtrvx3+M67dG0qz+C/hyQn/iY62q6hrUiYxlLZT5UJPP32YjHSuk8DfspeBfCWtReIdVhvPHPi5MH/hIfFdwb+5U/9Mw3yRDJOAijGa9n+z8Jg9cfWvL+SnaT+cvgj8nNrrEz55S+Ffeee678W/iJ8dbC+0v4RaBqlvo97YPZN4v8VRDTbKMupX7TbxbPtEzgHcMBVziuF+Cv7EMWo+KbSX4geE/Dem6D4f0aLRZdI0HUpZYtdvo3DfbrxFVA2FJKpLubMhLEgDP3CAFAAAAHYVh+HBELzXfKsJLJjfnfI5JFw3lx/vBnoMYXj+6a4q2OjGpCeBp+x5dmpScvVyutf8KivI0imouMne5f0jRtP8P6fDYaZZW+nWMK7Yra1iWONB6BVAAq7ilorypNyfNJ3YwooopDCiiigArn/HC3LeGrkWmqxaLceZDtvZjhUHmpkZ/2hlf+BV0Fc18QmhTwndm50l9ch82DNihOX/fJg8c/KcN/wGgDpDXivx9jbwR4h8H/ABOgysehXX2DV9o+9p1yyo7H2jfy5PoGr2o9KxvGfhq38Z+EtZ0K74ttStJbSQ4zgOhXP4Zq4PlldnLiabq0nFb7r1WqNaKVZo0dGDIwBDA5BFPry79mzxJca98I9Htr8/8AE30bfouoKTys9sxibP1Cq3/Aq9RFKS5W0aUaiq041F1QtFFFSbBRRRQAUUUUAFFFFAHh/wC2D/ySvSf+xt8Pf+nS2r3CvD/2wf8Aklek/wDY2+Hv/TpbV7hQAUUUUANryf4qeONU1TW4Ph94MuNnie+j8y91FMMuj2hODM3BHmNyI1PU5PRTXoPi2TWovDeoN4dgtLjW/KItY76Ro4S/YuVBOB14HbtXP/Cn4aR/DnRZ1uLyTV/EGoy/atV1ackyXc5GCcE/Kij5VUcKoA9SeeopTfJHRdX/AJef5HrYN0cPB4qraUlpGO933kv5V2+09Nrmt4D8D6X8O/DFnoWkQeTaWy8sxy8rnl5HbqzMSSSepNdDTqK2UVFWWx5tWpOtN1KjvJu7b6sKKwfGHjfw/wDD/RZdW8S61Y6FpkX37rULhYUz6ZYjJ9hzXij/ALSfij4oMbf4NeAbzXrR/lXxZ4kDabpAH9+MMPOuB/uKPrXr4TLMVjIurTjaC3lJqMV6ydlfyvd9Ec8pxjo9z6DnnjtoXmlkWKJBl3dgFUepJ6V4d4h/a58MS6rPoXw+03Ufit4jiO17TwugktoW/wCm14xEMfv8xPtWfD+y1qPxFuUvvjR41vfHWDvXw3p4OnaJEf8Arih3zYH/AD1c98ivcvDvhjSPCGkwaZoel2ej6dCMR2ljAsMa/RVAFd3JleB+NvET7K8af3v35fJQ8pMm85bafmeEj4YfGP4xqJPiD4zj+H2gyY3eGfA0h+0uh52z6g43A9j5QUHJ5r074Y/A7wN8HbR4vCnh2002eUf6RfFfMu7k92lnbLuSeeSa72iuXE5tisRTdCLUKX8kFyx+dtZPzk2/MpU4p36hRRRXjGgVjaA8r3etCXUEvVW9IREOTbr5afuz75y3/Aq2axtARFu9aK6c9gTektIxOLk+Wn70e38P/AaANmiiigAooooAKKKKACud8ehv+EWutmsDQW8yH/TySNn71OOMfe+7/wACroq53x6WHha52aQNdbzIf9BIJ3/vU54/u/e/4DQB0VJS0UAeK+AB/wAIV+0P488OH5bPxDbQeJLNTwPM/wBRcgevKxMf94ete0ivGPiyw8OfG34TeIsFYri5u9CuHHQieHfGD/20hH517PmtamtpeR5+F911KXZ/nr+otFFFZHoBRRRQAUUUUAFFFFAHh/7YP/JK9J/7G3w9/wCnS2r3CvD/ANsH/klek/8AY2+Hv/TpbV7hQAUUUUAFFZ2u311pmi313ZWEmq3kELyQ2UTqjTuASEDNwCTxk8c14Kngr43/ABoTf4v8SQfCXw5MP+QF4SkFxqrof4Zb5htibHH7lT/vV6eDwccSnUq1Y04Ldt6/KKvJ/dbu0RKVtErnofxQ/aE8A/CAxweI/EEMWqTZFvo9mrXN/cNjIVIIwXOfXAHPWvPW8Z/G/wCM4VPCfhyH4SeHZDn+3PFkYudUdfWOwU7Yz7yv+HSvRPhd8APAnwfSSTw5oMEWqT/8fWsXZNxqF0x5LS3D5dsnnGcegFeiV6H1zL8Fpg6XtJfz1LW9VTXu/wDgbmn2RHLOXxO3p/n/AMMeI+EP2SfBuk6zB4h8WS33xL8WxcrrPi2X7WYT38mEjyohnkBVyOOeK9sRFiRUVQqKMKqjAA9KkorysXjsTjpKeJqOVtr7JdktkvJJI0jFR2QUUUVwlBRRRQAUUUUAFY2gKwu9ZLakL8fbTtjBz9mHlp+6/wDZv+BVs1jaAT9r1rOnfYP9NP7zBH2n92n73/2X/gNAGzRRRQAUUUUAFFFFABXO+PHSPwvctJrD6CnmQj7fGCSn71Pl4/vfc/4FXRVzvj6OaXwtdLb6THrcvmQ4sZfuv+9TJ/4CPm/4DQB0VFNrwv8Aap8Qatpui6Ha6LqlzpNzHNLrE01rK0ZeC0TzHjYqc7GLIGHQjrVQjzuxz16yoU3Ua2PR/iN8Pbb4iafpNvcXctk+mapa6rBNCAWEkL7gOegIypI7GutAwK+T/iB8QPEXiLxLrOq6FqV+ttc6LJYaJp9pdmFZ2nuoraG4xnHmO/nlHP3VRT3NLZ6n4j8GQeNNTtf7e0GPQtJltrjS9a19tVnuryYJ9jeMFmCDcT84b5icY+U1v7J2SbPLWOgqkpRg/XvY+saK+c/hr4e8RaB4h0LUrhPFXh3SLOJk1mbxbry3SXrsgjjSOISyAEysrb8r02jO6voqsZx5WelQrOtG7jb+vkOoooqDqCiiigAooooA8P8A2wf+SV6T/wBjb4e/9OltXuFeH/tg/wDJK9J/7G3w9/6dLavcKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArE8PiMXet7NQa+P247kOf9GPlp+7H6N/wKtusjQjMbrWPNsEsl+2ERugwbhfLT94fU5yv/AaANeiiigAooooAKKKKACuY+I7Qr4QuzPqsmixeZBm9hUsyfvkwMLz8x+X/gVdPWF40jupPDtwtnpcGs3G+LbZXONjjzFyTnj5Rlh7qKANusXXfBmi+JZXl1TTor2R7ObT2aTPNvNt82Pr0baue/FblFO9tiXFSVmjmF+G3hlbmynGj24kslt0tiM4iWDd5IUZwAm98fWrGreB9B12/e9v9Mhubp1hR3fPzCGXzYgcHnbJ8wzW/RRd9yPZQtblX3HL/Efw9feKPB17p2mm3F+zwyw/amZYi0cqSYYqCQDsxkA9a2tJe+k02BtShgt74r+9jtpDJGp9FYgEj8BV6ii+lhqCUucKKKKRoFFFFABSEgDk4HvS14x8Wf7CPxC09fiAQPBH9mE2n2kuLM3/AJvz+dt+Xd5ezZv4/wBZjmgDqPjb8M5/ix4GGiWmpx6Rew6jY6nb3M0BnjEltcx3Cq6BlJVjHtOGBwarHS/i2SceJPBwH/YCuv8A5LqX4HfbR4KmExuTpf8AaF1/Y5vd/nnT/MPkb/M+fpnbu52bM16HQB5v/ZXxc/6GTwb/AOCK6/8Akuj+yvi5/wBDJ4N/8EV1/wDJdekUUAeb/wBlfFz/AKGTwb/4Irr/AOS6P7K+Ln/QyeDf/BFdf/JdekUUAeb/ANlfFz/oZPBv/giuv/kuj+yvi5/0Mng3/wAEV1/8l16RRQB5v/ZXxc/6GTwb/wCCK6/+S6P7K+Ln/QyeDf8AwRXX/wAl16RRQB5v/ZXxc/6GTwb/AOCK6/8Akuj+yvi5/wBDJ4N/8EV1/wDJdekUUAeb/wBlfFz/AKGTwb/4Irr/AOS6P7K+Ln/QyeDf/BFdf/JdekUUAeb/ANlfFz/oZPBv/giuv/kuj+yvi5/0Mng3/wAEV1/8l16RRQB5v/ZXxc/6GTwb/wCCK6/+S6pWHhv4uWM16/8AwlnhOf7TP522XQ7oiL5VGxP9L4X5c/Umum+LPiu78E/DzWtZsVQ3lvGqxPKu6OJndU8xxkfIm7e3PRTXCWM1x4G+I3h7TrTxtqHip7+SeLXLTU7uKUWwS3MwuAqqPIwdg2jCkSjjODQB0X9lfFz/AKGTwb/4Irr/AOS6P7K+Ln/QyeDf/BFdf/Jdd9p2o2msWFvfWFzDeWdwgkhuIHDpIh5DKw4IPqKtUAeb/wBlfFz/AKGTwb/4Irr/AOS6P7K+Ln/QyeDf/BFdf/JdekUUAeb/ANlfFz/oZPBv/giuv/kuj+yvi5/0Mng3/wAEV1/8l16RRQB5v/ZXxc/6GTwb/wCCK6/+S6y/Eng74seJdHm0+Txb4UtFkaNvOt9Dug42ur8f6X324PsTXrleD6zq83iUeLNc1Tx3feERpGo3Wm6XYWVzHAivboW3yowPntJguEPGzbgZyaAOwOl/Fsk48SeDgP8AsBXX/wAl0f2V8XP+hk8G/wDgiuv/AJLrU+GnxCtPGuh2EU95ZDxNHYW1xqmlwTK0lpLJGrFWTOV5J4PTpXaUAeb/ANlfFz/oZPBv/giuv/kuj+yvi5/0Mng3/wAEV1/8l16RRQB5v/ZXxc/6GTwb/wCCK6/+S6P7K+Ln/QyeDf8AwRXX/wAl16RRQB5v/ZXxc/6GTwb/AOCK6/8Akuj+yvi5/wBDJ4N/8EV1/wDJdekUUAfJnxt0H9qKfxx4Yf4b+INCW4RH/tSW4sGt9H8gn5BIkk0rtLnJ/dKp29T0r6R8DxeKovDNkvjCfSrjxAF/0mTRIpI7Ut/sCRi35muiooAKayqwwyhh706igAooooAKKKKACiiigAooooAKKKKACiiigAoorO8Qa5a+GdB1LV75illYW8l1Ow6hEUs2PwBoA0aK8pHxA8ZaHbaf4g8R6ZosHha+mt4jFZ3EjXliJ3VInkZgEk+Z0DBQuMkgtit3xX8XtE8Ia7/Zl3DqE3kpFJfXtrbGS205JGKxtcPn5QxB6A4AJOBzQB2dzbRXtvLb3EKTwSqUkilUMjqRgqQeCCO1cLpPwJ8C+HNS1DU9G8NWOm6jf2kljczwoR58L4/dyDOGQbRhTwvQYzWH4O+MereJ/BvxF8Rz6G2mW/h691C1sLa5Qq9wLQMC7sGIId0PQDA4561d0347aVNf+H9Kv7O7sdT1m3j+zzSRBbWW5a38/wAlGLbm+UNhtu35SN2aAOl+Fvg6T4e/Dnw54ZlnjuZNKsYrRpYk2I+xQMhew9q6qvFfBP7TWla54J0XWNZ0rVNK1DVLOO4tLQWbH+0JGZVMdpk5kIZlGDtOGDfdya7Hw78YNC8Salpumwpe2uqXoug1ldwbJbZ7fy/NjlGSFYCaMjBIYHIJFAHc0VwPgX4y6J8RdY+waLa6nKq6fbak95La7II0nTfEhYn75XJ2gHGOe1d9QAUUUUAFcP41+CXgX4i3Zu/EfhjT9VuyF/0iaPEm5fuNkYO9f4W6r2IruKKAPO/CPgvXNN+I+t65q0OhtYPC1rpclgJVuYoTIrlZQw2lnYbncEkkL2FeiUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVXv7GDU7G4s7qJZ7W4jaGWJ+Q6MMMp9iCRRRQB5Le/AC/v8AWdElm+IOvTaFo00ElvoMqxNbTLFIHVbghQ0uCo2tkEYGS1bnjH4NW3i7XL67/te80/T9Wihg1rTYI42TUY4iTGCzKWj4JVipGV4460UUAaenfDKx03wd4k8Ox3U5tdbmv5pZCBuiN0zs4Xthd5xn0rjdP/Zq02w8T6dqy63dvHp95Dfw27W8JczR25t8PMV8wx7WJEe4BT044oooAraX+zFbWWj6JZXfi3VdRk8NxKnh26mhgEmmOCp8wYTErHYF+fI2ZXHJNbCfAr7NLY6naeJ7+28Tx3Vxc3WtCCFnu/PWNJlMZXYo2wxBcDK7B15yUUAbPwt+Elh8KreaGxvrm9EllY2Ra52522sPlK3AHLDk+/Su9oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/2Q==)
What is the profit-maximising wage for the employer to pay?
◦
W1◦
W2◦
W3◦ Somewhere between
W1 and
W3, but it is impossible to say the precise wage rate without more information.
Question 2
The following diagram shows a monopsony employer, which also faces a single union representing all workers.
![](data:image/png;base64, /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAD4ASwDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9U64XRfibJr3i670uz8O6hLpFtdy6e+tq0ZiW5iGXVo929U/hDkYJ46EE91Xjfw4+DuqfDjx/4h1mw03wjbWev6hJdXk1jaTQXaxYwiDkqxJAZj8oLFjgk0Aek+LfGWkeBtKj1LW7xLCykurezWaTgGWaVYol/F3UfjW3XyV/wUo8EeJvH/wU0DS/D2sQ6HGfE+mfaLpwxcu9wkNuAF7CWVZCe3ljHNfT3hNtWfwvpJ1+KKDW/ssYvkt33xicKPM2nuu7JHtigDXooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAorjfiT8UtE+FenWF7rX2gxXt5HZRC2jDtvfoSMjCjBJPaoNW+MPhzRPGR8N3k00V1HYyajPctHi2t4kwT5khOFODnHpzWTqwTs3/TO6ngcVVgqkKbad7O38tr/ddfedzRXBeFPjBpPizVrewj07WNNa8jaWxm1OxaCO9RQCWiJ5PBBwwBwc4xXd5qozjNXi7mNfD1sLPkrR5X5jqKKKs5wooooAKKKKACiiigAooooAKKKKACiiigDw/9sH/klek/9jb4e/8ATpbV7hXh/wC2D/ySvSf+xt8Pf+nS2r3CgAooooAKKaPauG8fW3xIuNQtv+ELvvDNnYiI+d/bdtPNK0mf4fLdQFxjrk5ppXdjKpP2ceZRb9Du6K8cGsfHSw2+d4b8FasCNpFrqdzbEH+8d8bDB54/Wj/hZ3xS04L/AGh8IJLoY2l9K162ly3qA+whT6nn2rT2b6Nfejk+u018UZL/ALdl+iZ7HRXjP/DSMejqR4o8A+MvDZU4eZtMN3Avv5kBbI464rb0D9o74Z+JLj7PaeM9Mjuuht72Q2so/wCAShT+lJ05roVHHYaT5edJ9no/udmel0VWstQtdRhEtpcRXUR6SQuHX8xU9ZnandXQ6iiigYUUUUAFFFFABRSVxfxM+IQ8EabawWVt/aniLU5PsulaWr7WuJT1JP8ADGg+Z27AeuAZlJRV2bUKM8RUVKmrt/1r2S3b6I5D4/8Aw+174hfZLfS7RbiC106/kXfIqhrto1SBeSOuZOegxXIXfwO8V69b65LepbR6rfaOpe4klBjnvJJxJLCcciNUhhiBI+70717b4B0DVPDvh2GDW9Ym1zV5Wae6upThPMY5Kxr/AAxrnCjsAM810lcjw8Kjc5LVnvQznE4KMcNRcXGm9HZ979ejfddtDyPUPHXjjTtJutb1HwzZ+HdP0+FEFpd3KXMs8zSIu4NGcJGoLdeWyOBjn1tGDoGGOR2qpq+kWWvabPYajaxXtlOuyWCddyOPQg9aNI0iy0HT4bDTrWOzs4RiOCFdqoM54H1NbQjKL1d1/XkeZiK9GvTTjTUJJvRXtay6tt3vfe+++li9RRRW55wUUUUAFFFFABRRRQAUUUUAFFFFABRRRQB4f+2D/wAkr0n/ALG3w9/6dLavcK8P/bB/5JXpP/Y2+Hv/AE6W1e4UAFFFFABRRRQAUUUUAJisPxB4J8PeK4jFrWhadq8Z/hvbSOb/ANCBrdopptbEShGatJXR5Bf/ALK3w5mkM+maRceGbvqtxoF9NZMjDGGARguRj09arr8Ovin4MOfC/wAQ4fEVmpyuneMrPzXx6faYdr/mp+tez0Vp7SXXX1OJ4ChvCPK/7vu/lv8AM8YPxr8YeERjxv8ADLVbeBAPM1Pw1Kup24Hdii7ZVHHTacetdj4E+Mngz4ktJHoGv2t5eRcS2Lkw3Mf+9C4Dj64xXaY/OuK8e/Bvwd8Sgr67okE97HzDqMGYbuBuzJMmHBH1xReEt1b0F7PE0vgnzLtLR/ev8jt6K8VPgz4qfDcZ8K+JYPHekJ00jxWfLvFXPRLxB8x/66KfrV7RP2jdFXU4NG8Zadf/AA912ZtiW+uIFtpm9IrpcxP9NwPtR7NvWOpSxkIvlrJwfnt8nt+vkeuUVGrrIiurBlYZDA5BFVtW1az0LTbnUNQuYrOyto2lmnmcKiKBkkk9BisW7bnoRTk0oq7Zm+NfGWneA/Dt1rGpu6wRYVI4l3yTSMcJGijlnZiAAOpNcp8NPBmozanceNvFca/8JPqMYSKz3b49KtjgrbxnpuOAXYfeb2VazPBel3fxV8SweO9dt3g0W1yfDmlXCYZFI5vJVP8Ay0cfcB+4p9WOPXK54/vHzvbp/n/l/VvXrNYGm8NB/vH8b7f3V/7c++i0V2tFFFdJ44UUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAcV8UPFlz4OstBvYbmK1tJNYt7e+kmUEfZmD7+T93oDn2rzLwt8ZPFniGXXbK5NlpmoX2rRvpEciDdpukG2ine4uQTguFLHkgbpUXsa9g8c+AtG+I2jQ6Vrtu91Yx3cF6I1kaPMkMiyJkqQSNyjI6EZB4NYeu/CnR/t3izX9N0axvfEuvWcFrcDU2ZredIQfLjYDOxeeSBycEg4AoA4T9r2/hn+DekXts4vLdvFPh6WNrYhxKv9qWxGwjg57V7HLrvl6pPZf2dft5URl+0LDmF8DO1Wzy3bFfOfxk8I3ngX9mvwtol75CTW/i7QysNuxdIEfWYHWPeQC5UMFL7RuIJwM19RUAYI8VZ023vP7H1YedN5X2f7N+9T/aZc8L71ZGu/wDEzu7P+zr/AP0eMyfaPJ/dS8A7UbPJ56exrVooAwW8VFbCzuv7H1Y/aXKeSLb95Fzjc4z8o96nHiDN5f2/9magPsiF/N8j5Jsdozn5j7cVr0UAYTeKCttp839kaoftjbfLFt88HOMyDPyjv3qV/EO2bUY/7M1E/Yl3bhB8s/tEc/MfyrYooAxV8S7odOk/srUx9tcptNv80HOMyjPyj35pH8TbH1Ff7J1M/Y+ci34n5x+65+b9K26KAMZfEW46b/xK9RH23PJt/wDj3/668/L+tNHibKak39lan/oRxj7PzPyR+65+bp7Vt0UAYx8RETabH/Zeon7aobeLf5YPaU5+U/nUa+KC1pfz/wBkaoPsjhPLNt88/OMxjPzDv24rdooAxY/EfmXVhB/ZepL9rj3+Y1vhIOvEhz8p46c9RWXr9xpnifw9qdrrHhi81WwSTyZLC6sVl+0DONyIxwy+9ddR0oWhLipKz1R8xfEHw/q/7PPhTU/Ffw6vtdi0vS9Mm1efwnqkbXmmtFGhdoIySZLeQgHG0lR6YrjPBXxu1H4vfFfR/A3xR1nwlZafLpdt4ktLPw7dSPbak0jnyrW4eQ/ejK79oIEvBxhSte4+ONTu/it4luvAGiXEtto9sF/4STVbc4KK2CLOJv78in5yPuIfVhiTwj8A/hfp+geJvDWl+EtGTRrq/wA3tjFp8cUayiJAANoB4BBDDkFjgis+dYh2nsuvf/P+kdccNPKKaqYd2qSV0ne0U9n/AHW1qrLTSXY9ZVQqgLwAMCnV4S3h74hfAmN5PDcs/wARfBUIz/YV9L/xNbJPS3mOfPUDokmG4ADGvTPh78SfD3xQ0NdU8P363cQOyaBhsntpO8csZ+ZGHoRXRKFldao8qliVOXs5rln2fX0fX+rnVUUUVmdgUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAHh/wC2D/ySvSf+xt8Pf+nS2r3CvD/2wf8Aklek/wDY2+Hv/TpbV7hQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA2vNviZ411GTUrbwV4SkU+KtRTfLdYDR6XbZw1xIOfm6hFP3m9ga0vij8Q28E6da2mm2v9reKNWc2+laWpwZpO7sR92NB8zN2A9SBTvhf8PD4G0y4n1C8Or+JdTcXGras67WuZcYAC5+VFHyqo4AHqSTzzbm/Zx+b7f8H8vuPXw1OGGprGV1f+SL6vu1/Kvxem3NbU8CeCNN+Hvhm10XS0fyIQWeWVt0s8jHLySN1Z2JJJPUmrmipdJc6sbm0gtka8JgaEAGZPLT539WzkfRRWvXP+GDbfbvEH2e4mnf+0D5yyjiN/Kj+VP9nGD9Sa2UVFJI8ypUnWm6lR3k9Wzfryz4h/A+DXtZHivwlqB8IeOoh8uq2qZivAOkV1F0mQ+p+YdjXqlFaRk4u6OSrRhWjyzX/A9Ox5N8P/jXJe+IE8HeOtOXwn45AJitmfNpqaj/AJa2kp4ceqH5l7jjNer1zHxC+G+gfFDQH0jxBZLdQbt8MyHZNbSD7skTjlHHYivNPDvj3xB8GvEdh4R+It7/AGpot/J5GieMWG3zXydttedklxja/wB18djV2U9Y79jkVSphmoV3ePSX/wAl/nt6HulFIDkUtZHpBRRRQAUUUUAFFcfb/FTw1dfEi48CRX7P4lt7P7bLbCF9ix5XI8zGwsN6ErnIDA4waxj+0H4GHiz/AIR9dWle5F0LB7xLOZrFLnOBA10E8oSZ+XbuznjrxXbHBYqekaUnpzbP4e/p5k80e56TRR1oriKCisK68ZaVZ+LbXw3NcGPVrmzlv4ojG21oY3RHO/G3IMi8Zzzmub0X46+C/EPhOTxJpurG80hdTOjpLFA5aW7E3k+Wi43NlzgEDBHPTmuiOGrzjzRg2tOj63t99nb0ZPMj0GikByKWucoKKKKAPD/2wf8Aklek/wDY2+Hv/TpbV7hXh/7YP/JK9J/7G3w9/wCnS2r3CgAooooAKKKKACiiigAooooAKKKKAG9K53x745034eeGrjWNUkYQxlY4oYhulnlY7UijX+JmYgAe9amta1ZeHdKu9T1K5isrG1jaWaeZgqIoGSSTXl/gXRb34peKIPiB4itZLXTbXd/wjWkXClXgRhhrqZf+esg+6D9xT6scYVJte5Hd/h5npYTDwkniMRpTjv3k+kV5vq+i110T0/hd4F1L+0Lnxr4wSN/F2pJtW2Uh49Kt+q20Lf8AjzsPvN7AV6XmnUVpCCgrI58TiJ4qo6k/klsl0S8kFZekC7W41P7TBBChuj5DQ4zJHsX5n/2s7h9AK1KwfDK2S3uv/ZJZpJDqBNwJRwknlR8L/s42n6k1Zym9RRRQA2sjxZ4T0nxz4evtD1yxi1HS72MxzW8wyGHqPQg8gjkEAitmihaaomUVJOMldM8D0XxPrP7PGs2HhnxnqMuseA7x1t9H8U3I/eWLnhbW9bpjoEmPXo1e8qwYAggqe4rO8SeHdO8XaFf6Nq9pHfabfQtDPbyjKupGCP8A6/Y1434J8Sat8DvFGnfD/wAYXrah4avj5PhnxLcuN5wOLK5J/wCWgH3H/jAx1rZr2iut/wAzzot4OShJ3pvZ9vJ+Xb7j3iikpaxPTE4rI8Vard6H4b1K/wBP02bWb6CB3gsLcgPcSAfKgJ4GTgZPTrWueleUX/x4s9DkjkvrR57e/wBTubDThbNGu5bdhHK7vI6puL7tqA7iBwDg114XD1K87U481unfr+SZMmktTzDwX8FfiV4L+I3grWNZ1XTtdS4m1VtUutN09oprea7i8zfJI8rb0V4oolAUYATtxW18JpvF3hbwV4d+H1z8O5YH0UY1fWdV8p9NmVGZzPAVctLJK4DgFRtLEtyOfQNe+Pvhzw7bX89zBqDpZ3F7bSeVCGJa1h82THzc5Xgep4qpL8fbA3dlpR8La/Jrd+T5WkeTD5xi8oyCVj5m1UZVYctncCpANfUTxOPxsL1sPFq2lvdtZyd7Jpacz3VlpfzxSjF6M2dD1/V/iB8I9J1q1iFrq2pWcNz5drIUCM2CQpJHHXqateAdO8Q2NxenWnneNlXyvOnEnPOejtjtXnfwz+JPgzwpbeIU0jRrfR9CW5kktDp0BQTBLSCZldSeJcysoUAD5CO1ejeK/iRD4WuNNtV0fU9W1C8ia5ay0+JZJYIFKh5WBYZCl1GFyxJwAa8uvSrU5Sw1On7sndXVn3tvZW2LTT1bPOPjr4L8VeKfil4Mj0CzuF02/wBM1HSdV1mF1UadBI9s5bk5LOsUiLjoxB7Vi/BX4Ta1Y/EzxGmraJ/Y3hDw9rt3e6DDgbLyWeNFWdVHRYk3oued0jHtXoer/tB+HNF0+e8mttRkihfUEKxQKWJs8ebgFh1yMevfFWbv466BpGiyX2rwXmjy2880N1Z3SJ5tt5cfmM77WK7dhQggnPmKOprshXx8cIsNCjo04p63eru997XjtZLzdybR5r3PSKK8r0r46ad4j0+11HTlRYIdUg07U7eWaOSS38/CxMHjdkOWePgE8EjgjFepYBr5yvh6uGlyVVZmyaew6iiiucZ4f+2D/wAkr0n/ALG3w9/6dLavcK8P/bB/5JXpP/Y2+Hv/AE6W1e4UAFFFFABRRRQAUUUUAFFFFABTHkWJGZjhVGST2pegrxrxtq178YPFd14C0G6ltdAsSB4m1a3Yo+CMrZwOP42/5aEfdU46sMZVJ8i83sjtwmFeKm03aMdZPol3/RLq7Ir25k/aI8ULc5f/AIVno9x+6T/lnr10jfePrBEw4HR2XPIUZ9tUAAAcAcVU0rS7TRNNtrCxt47SztoxFFBCoVEUDAAA6DFXO1KnDl1lq3v/AF2LxmKVdqFNctOOkV+bfeT3b+SskklooorY88KytFa9a51b7WIVjF2Rb+TjJj2J97H8Wd3XtitWsHwytkt7r/2NZ1kOoE3PnDgy+VH9z/Zxt/HNAG9RRRQAUUUUANrn/HfgbR/iT4Vv/D2u2outPu02sP4o2/hdD/C6nBB7EV0VFC0d0RKMZxcZK6Z438JPGms+G/E9x8MfGt2LvXLKHz9H1hl2/wBsWQ43EdPOj6OB14bua9j968/+MvwwPxI8OwNp91/ZXinSZft2i6qo+a1uFHAPrG4+V17g+wpfg58Tv+Fk+HZvt9r/AGV4m0qU2Os6Ux+a1uV649Ub7yt3UitZLmXOvmcNGToz+rzf+F+Xb1X4r5nfEZrzXUPgpZa7peoaPqN9dJo8t/PdxW9nII90c53ywyqVKspcuQcZAbgg816V0rx74gftUeBfBGsNoFjc3XjPxcflTw54WgN/d7umJNnyxc95GWu/L6WNrVeXAxblvotvN9l5vQ7ZuKXvB4z/AGbdD13TdZGm3N5Y3V3a3MVtbyXLNaW8s0HkPIE65KgZOeoyMEmua8aeBfCPhDxT4JGr/EGbRtXkuWtY5bjUsaneySReTDDCcZ2AluCpHzZJ3c03+y/jx8aDuv7+z+CvheXOLTT9uoa7KnTDyn9zASOfkDketdt8M/2afAPws1JtY07Sn1TxLJ/rvEeuTtfajKcY5nkJZfouB7V9E67wULYrF800mlGFpWumrSm/dtrf3efXszK3M/diM1H4CaQZdHttNRbTSINXh1i7ieRmd3hhWONE7bW2KX3Zzz3PHWeMPh5p/jK5s7ie61DTru2V4hcaZcmCSSFypeJmAyUbaucYIxwRXV0V8s8ZiHKM3N3XX1N+VHl+qfs8+FdXv724nk1MRXS3I+yJeEQRGcKJmRccFtgJOTznGM1vaz8J/DXiDWdW1PULD7Tc6pp40y6DufLeEEn7vQNnHzdcKo7CuyooeNxMrXqPTRa/P80HKux5xafB600rT9P02zvZ5rFdTi1G9e9ZXlnMWGiQbVCgB1jPT+H1Oa9G/ClorGtWqV3zVHdjSSPMvjf4zXwDB4S1iW5njhXWhA1tDIVN4z2twI4MfxF5NgAOfmwe1eXeCPFeuJqHinw14l8UTmfSdcOueJNQ84hNNtHhhmisYiOVVnJVQOTHG/dufpHUNIsdWFt9us4Lz7NOtzAJ4w/lSr92Rc9GGTgjkVleIfDs7aNrn/COGw0jX9RTcNRnsxKpmChUklUFTJtCgDJ7CsBnjv7T/iTTfFvwQ0LVtHvI9QsJ/FmgGOaPPJGrW4KkHBBBBBBwQQQcV66/ifWV0prkeEtQa5FwYfsX2m23lMf63d5u3HbGc+1eIfHrwzeeEf2fPDmmahLZ3F+ni7QnuLixheOOaR9YgZpCHZmLMTliSckk19LUAY7avfjV5bQaJcm1WDzVvvOi8t3/AOeYXfuz7kY96or4l1g6NFeHwpfrdvOImsPtNv5iJ/z0LeZtI9gc+1dNRQBiS61qMer3VqugXclrDAZY71ZoQkz4B8sKX3Ak8ZIA461UbxLrA0i1ux4T1BrqWUpJYi5tvMhX++zeZtI9gSfaumooAxBrWo/2nf2x0C7FtbxGSG886HZctgfIo37lJ6ZYAcdaqv4j1ddP0+4HhW/ae4kKz2v2i3D2q5xuc+ZtYd8KSa6WigDEfWtRS91KEaBdNDaxeZBcCaHbdtj7iDflT2y4Ue9Vl8R6u1vpjnwrfCS6kKXEZuLfNoA2AznzMMCOfkyfxro64H4r/EpvA9lZ6fpVquq+LtYc2+k6WWI85+N0jkfdjjB3M3oMDkgVEpqEeaR0YehUxVVUqSu3/Tb7JLVt6JanKfFD4n+JLzWrzwF4O0a5HiaaLzG1ISwPHZ2vQzFd/wArtysavt3MCeimus8C6OPh/wCFvD+jaT4WvYLaRm+1CS4gaS3Ytlppm8z94zEliULHk1N8LvhyvgLSbiS8ujq3iPUpPtOq6tKuJLqY9vZFHyqvQKB3yT2/8qypxbftJ7/kv63O7F14QgsJhn7id2/5pd/RfZXRa7tmB/b+qb9WX/hG70C0BNs3nwYvev3Pn+X/AIHt61Zt9YvJIbBpdHuoZLgAyxl4m+zH0chsH/gOa16K6DyTMGq3BjvG/su6BgOEUlMz8/w/N/PFKmqXBks1OmXQE4y7kpiH2b5v5ZrSooAzDqtwIbt/7Lui0L7UTKZmH95fmxj64qho+o6ob+5S9tHeGa4LQPGU/wBGj2LhZMHO7du6Z6jmuirA8MtZNe+IPskM0Ug1Ai4MhyHl8qP5l9sbR9QaAKreNLkWGoXP/CMa2WtJhEsAii8y4BON8Y8zBUdeSPpVxvEk66nptp/YmplLyIStc7E8q2JBOyQ7shhjHAPXrW7RQBy6eM7ltHvL7/hGNbElvMIlszFH50w/voPMwV+pH0q7/wAJFN/bdrp/9jaj5c8Xmm98tPIiOCdjndkNxjgEcjmtuigDl28aXK6LPf8A/CMa0ZIrjyBZCKPz3H/PRR5mNvvnPtVyLxJNJrUennRNSSN4BMb1kTyFOM+WTvzu7YxjPesz4ifFrwd8JtK/tHxf4jsNBtm4T7VKA8h9EQZZz7KDXkn/AAu74mfF/wDc/CvwHJoejScDxd45RrWEqf8AlpBZj97KMcgtsHIzXr4XKsVioe2UeWn/ADyfLH73u/KN35Gcpxjp1PV9U+I6aJ4Um1/UNE1OxtoJGSaK58mN4kAyZWLSBQnvu/Cvkj4oftFaBq3xz8Pap8L/ABhYeF01KG40nXvHOraa02hOYoxLBEJS0cctwCrKDvwF3DngV7Xpf7JOmeIr+HWPiv4j1P4rawjeYlvqpEOlWzZz+5so8IPTL7zXonxK8L+GJ/hrd6Lq3h6LUvDmYYn0i1t1KEecgUBMYABIJ9ga1rwy7DQcKVSVWp3S5YL0uuaXzUPRmUoupZyjtr5/8D8T5++Efgfxx+1n8PNH8X/E7xxe2fhrU97w+E/Ckbaba3UKSOiSzT7jNIkoUSBQyjay/WvpPwD8MfCfwt0dNL8JeHtP0CxAwY7KAIXPq7fec+7En3rz34G3E/gLxT4k+Fl7cvLBo+zUNAef776ZKeI8/wAXkyBo8+myvavrWOJzHF1qSw8p2praKSjH1aVk35u78ycPONWPPaz2fk0LRRRXknWFFFFABRRRQAUUUUAFFUtR1iy0hrQXt1HbG7nW1txI2PNlYEhB6khTx7VQbxtoCw6vKdYs/K0iYW+oOJgRaylVYRyf3Ww6HHX5h60AeV/tg/8AJK9J/wCxt8Pf+nS2r3CvD/2wf+SVaR/2Nvh7/wBOttXuFABRRRQAUUUUAFFJWd4g17T/AAxo15q2qXcVjp1pGZZriZtqIo5JJpNpasqMZTkoxV2zI+IvxA034a+F7nWtREsoQrHBa26757mZjhIo06szHAA/E8A1zHwo8Aalb315418XBJvGWsRqrxIS0Wm24OUtYs+mcuw+82T0Axk/D3QtQ+KPiiD4jeJ7Sa0s4Ay+G9EugM2kTcG6kH/PWQdAeUU46lq9l9K5o/vZKo9un+f+R7WIlHL6TwlJ3m/ja/8ASF5L7T6vRaK7Wiiiuo8MKKKKACiiigArJ0UXYudV+1XcV0huz5CxkZhj2J8jY753H6EVqmuN8K+JvD0svi24tL21jjsdSddRna7RkSVYo9xYg4QAYGDjGDQk27IDs6K8C1n9rjR9a1CbR/hb4f1P4sa3G2x30QCPTIG/6a3z/ul7cKWPPSqP/CmPin8Yl834o+Of+Ea0WTGfCXgOR7dXXqVuL1v3r+hEewdeTmvoY5NUopTzCaoR7S1m/SC970cuWL/mMfaJ6R1/rudl8Sf2nfAXw11AaRPqUmv+KZOIPDfh6Fr/AFCVs4C+VHnZz3cqPeuOZ/j38ZuIhY/BLw1JnLShNT12VenQHyIM885dhxXq/wANvg/4M+EWmfYPCHhyw0OJv9bJbxZmnP8AellOXkPuxJrsscU/r+CwWmBo80v56iUn8ofAv+3ufyaDllL4n939f5Hknw6/Zf8AAnw81b+3TZXHinxY2DJ4l8TTm/1Bj/syPxGPZAor1oCnUV5GKxmIxs/aYmo5vzd9Oy7LyWhpGKirJBXP+OJLyLw1ctYalb6TdCSHbd3bBY1HmruBJ45GVHuRXQVzXxCW2fwndLd6XPrFv5kG6ztyQ7nzkwRjn5Thj7Ka5Cjhf2gvDl/aWWl/ELw/biXxJ4Rka78pThryxI/0q2PruQblz0ZF9a9L8NeILLxZ4f03WdOlE9hf28dzBIP4kdQwP5GtCWNZo3R1DIwIKkZBFeMfAdn8BeJvFvwvuWxFpE/9p6LluG064ZmVFz/zykDp/wB81qveh5r8jzn+4xCfSf5r/Nfkj2uiiisj0QooooAKKKKACiiigDzX48W+tyeGNGuvD2ky6zqtnrdlPFbRY4/ebDI2SPkQPub/AGVNea+E/hlqng/xd4qtLvR7q68L6ZJbeJZ77KmTxDqYtgGGCRnbJGZCWwNxiHRTX0pUU8MdzDJDIu6ORSrKe4PBFAHzn+0N4qXx/wDs4eDfEUMEmnrq2v8Ahm8WF2DvDv1K1baT0JGcZ6V74+mXzXV/INYnWKePZDD5MWLZsfeU7csfZiRXiv7Ueh2Phn4I+G9J0y3W006y8T+HLe3t0J2xxrqlsFUZ54Ar3+gDEXRtSFrYxnX7lpYJN003kQ5uFz91htwo7ZXBpz6RqLT6g4125VLhSIIxBDi2Pqp2Zb/gWa2aKAMRtG1Iwaeg1+5Elu2Z5PIhzcjPRhswvp8uKcNI1HfqB/ty5xcA+QvkRf6L/u/J83/As1s0hOBQBiS6XfxrYyPr1wkdqM3B8mHFzjqW+T5f+A4rxez0zUP2jPEt1fNq1yvw106536cDEgGp3SH/AFm0oA9vGw+UNuDsM5IAzreNtTuvjf4qu/AWizyQeFbBwviXVoDjzTwRYwuD95h/rCPuqdvVuPYNK0q00PTbXT7C2jtLK2jWGGCFQqRqBgAAdAAK5H+/lb7K/F/5I9+NsrpKb/jzWn9yL6/4pLbstd2rU4tG1GOXTz/btw0dsu2aMwQ4uT6thcr/AMBxTW0XVDFqCjxBdBp2Bgf7PDm2Gc4X5MNxx82a3KK6zwDJXS79biwkOsztHBHtmiMMWLlv7zHblT7LgVCNF1MWd9EfEF0Zp3DQ3H2eHdbjPRRsw3p8wNblFAGSdMvjf2Uw1i4EEMYWW28mLbcN/eY7dwPspAquuh6ounXMB8RXRuJJA8d0beAPEv8AdA2bSPcgmtz9K8w+J/7SPgL4S3Edhq+rm91+fIt9B0eFr3UJ29FhjBYemWwPeurDYXEYyoqWGg5yfRK7JclFXkzvP7Nvf7Uguf7Wm+yxx7Hs/Kj2Stj7xbbuB74BA4rkvHvi7Svhj4UuL3xX8QYfD0Bm3rqN8LeNgv8AzzVCmG/BS1ebtrvx3+M67dG0qz+C/hyQn/iY62q6hrUiYxlLZT5UJPP32YjHSuk8DfspeBfCWtReIdVhvPHPi5MH/hIfFdwb+5U/9Mw3yRDJOAijGa9n+z8Jg9cfWvL+SnaT+cvgj8nNrrEz55S+Ffeee678W/iJ8dbC+0v4RaBqlvo97YPZN4v8VRDTbKMupX7TbxbPtEzgHcMBVziuF+Cv7EMWo+KbSX4geE/Dem6D4f0aLRZdI0HUpZYtdvo3DfbrxFVA2FJKpLubMhLEgDP3CAFAAAAHYVh+HBELzXfKsJLJjfnfI5JFw3lx/vBnoMYXj+6a4q2OjGpCeBp+x5dmpScvVyutf8KivI0imouMne5f0jRtP8P6fDYaZZW+nWMK7Yra1iWONB6BVAAq7ilorypNyfNJ3YwooopDCiiigArn/HC3LeGrkWmqxaLceZDtvZjhUHmpkZ/2hlf+BV0Fc18QmhTwndm50l9ch82DNihOX/fJg8c/KcN/wGgDpDXivx9jbwR4h8H/ABOgysehXX2DV9o+9p1yyo7H2jfy5PoGr2o9KxvGfhq38Z+EtZ0K74ttStJbSQ4zgOhXP4Zq4PlldnLiabq0nFb7r1WqNaKVZo0dGDIwBDA5BFPry79mzxJca98I9Htr8/8AE30bfouoKTys9sxibP1Cq3/Aq9RFKS5W0aUaiq041F1QtFFFSbBRRRQAUUUUAFFFFAHh/wC2D/ySvSf+xt8Pf+nS2r3CvD/2wf8Aklek/wDY2+Hv/TpbV7hQAUUUUANryf4qeONU1TW4Ph94MuNnie+j8y91FMMuj2hODM3BHmNyI1PU5PRTXoPi2TWovDeoN4dgtLjW/KItY76Ro4S/YuVBOB14HbtXP/Cn4aR/DnRZ1uLyTV/EGoy/atV1ackyXc5GCcE/Kij5VUcKoA9SeeopTfJHRdX/AJef5HrYN0cPB4qraUlpGO933kv5V2+09Nrmt4D8D6X8O/DFnoWkQeTaWy8sxy8rnl5HbqzMSSSepNdDTqK2UVFWWx5tWpOtN1KjvJu7b6sKKwfGHjfw/wDD/RZdW8S61Y6FpkX37rULhYUz6ZYjJ9hzXij/ALSfij4oMbf4NeAbzXrR/lXxZ4kDabpAH9+MMPOuB/uKPrXr4TLMVjIurTjaC3lJqMV6ydlfyvd9Ec8pxjo9z6DnnjtoXmlkWKJBl3dgFUepJ6V4d4h/a58MS6rPoXw+03Ufit4jiO17TwugktoW/wCm14xEMfv8xPtWfD+y1qPxFuUvvjR41vfHWDvXw3p4OnaJEf8Arih3zYH/AD1c98ivcvDvhjSPCGkwaZoel2ej6dCMR2ljAsMa/RVAFd3JleB+NvET7K8af3v35fJQ8pMm85bafmeEj4YfGP4xqJPiD4zj+H2gyY3eGfA0h+0uh52z6g43A9j5QUHJ5r074Y/A7wN8HbR4vCnh2002eUf6RfFfMu7k92lnbLuSeeSa72iuXE5tisRTdCLUKX8kFyx+dtZPzk2/MpU4p36hRRRXjGgVjaA8r3etCXUEvVW9IREOTbr5afuz75y3/Aq2axtARFu9aK6c9gTektIxOLk+Wn70e38P/AaANmiiigAooooAKKKKACud8ehv+EWutmsDQW8yH/TySNn71OOMfe+7/wACroq53x6WHha52aQNdbzIf9BIJ3/vU54/u/e/4DQB0VJS0UAeK+AB/wAIV+0P488OH5bPxDbQeJLNTwPM/wBRcgevKxMf94ete0ivGPiyw8OfG34TeIsFYri5u9CuHHQieHfGD/20hH517PmtamtpeR5+F911KXZ/nr+otFFFZHoBRRRQAUUUUAFFFFAHh/7YP/JK9J/7G3w9/wCnS2r3CvD/ANsH/klek/8AY2+Hv/TpbV7hQAUUUUAFFZ2u311pmi313ZWEmq3kELyQ2UTqjTuASEDNwCTxk8c14Kngr43/ABoTf4v8SQfCXw5MP+QF4SkFxqrof4Zb5htibHH7lT/vV6eDwccSnUq1Y04Ldt6/KKvJ/dbu0RKVtErnofxQ/aE8A/CAxweI/EEMWqTZFvo9mrXN/cNjIVIIwXOfXAHPWvPW8Z/G/wCM4VPCfhyH4SeHZDn+3PFkYudUdfWOwU7Yz7yv+HSvRPhd8APAnwfSSTw5oMEWqT/8fWsXZNxqF0x5LS3D5dsnnGcegFeiV6H1zL8Fpg6XtJfz1LW9VTXu/wDgbmn2RHLOXxO3p/n/AMMeI+EP2SfBuk6zB4h8WS33xL8WxcrrPi2X7WYT38mEjyohnkBVyOOeK9sRFiRUVQqKMKqjAA9KkorysXjsTjpKeJqOVtr7JdktkvJJI0jFR2QUUUVwlBRRRQAUUUUAFY2gKwu9ZLakL8fbTtjBz9mHlp+6/wDZv+BVs1jaAT9r1rOnfYP9NP7zBH2n92n73/2X/gNAGzRRRQAUUUUAFFFFABXO+PHSPwvctJrD6CnmQj7fGCSn71Pl4/vfc/4FXRVzvj6OaXwtdLb6THrcvmQ4sZfuv+9TJ/4CPm/4DQB0VFNrwv8Aap8Qatpui6Ha6LqlzpNzHNLrE01rK0ZeC0TzHjYqc7GLIGHQjrVQjzuxz16yoU3Ua2PR/iN8Pbb4iafpNvcXctk+mapa6rBNCAWEkL7gOegIypI7GutAwK+T/iB8QPEXiLxLrOq6FqV+ttc6LJYaJp9pdmFZ2nuoraG4xnHmO/nlHP3VRT3NLZ6n4j8GQeNNTtf7e0GPQtJltrjS9a19tVnuryYJ9jeMFmCDcT84b5icY+U1v7J2SbPLWOgqkpRg/XvY+saK+c/hr4e8RaB4h0LUrhPFXh3SLOJk1mbxbry3SXrsgjjSOISyAEysrb8r02jO6voqsZx5WelQrOtG7jb+vkOoooqDqCiiigAooooA8P8A2wf+SV6T/wBjb4e/9OltXuFeH/tg/wDJK9J/7G3w9/6dLavcKACiiigAooooAKKKKACiiigAooooAKKKKACiiigArE8PiMXet7NQa+P247kOf9GPlp+7H6N/wKtusjQjMbrWPNsEsl+2ERugwbhfLT94fU5yv/AaANeiiigAooooAKKKKACuY+I7Qr4QuzPqsmixeZBm9hUsyfvkwMLz8x+X/gVdPWF40jupPDtwtnpcGs3G+LbZXONjjzFyTnj5Rlh7qKANusXXfBmi+JZXl1TTor2R7ObT2aTPNvNt82Pr0baue/FblFO9tiXFSVmjmF+G3hlbmynGj24kslt0tiM4iWDd5IUZwAm98fWrGreB9B12/e9v9Mhubp1hR3fPzCGXzYgcHnbJ8wzW/RRd9yPZQtblX3HL/Efw9feKPB17p2mm3F+zwyw/amZYi0cqSYYqCQDsxkA9a2tJe+k02BtShgt74r+9jtpDJGp9FYgEj8BV6ii+lhqCUucKKKKRoFFFFABSEgDk4HvS14x8Wf7CPxC09fiAQPBH9mE2n2kuLM3/AJvz+dt+Xd5ezZv4/wBZjmgDqPjb8M5/ix4GGiWmpx6Rew6jY6nb3M0BnjEltcx3Cq6BlJVjHtOGBwarHS/i2SceJPBwH/YCuv8A5LqX4HfbR4KmExuTpf8AaF1/Y5vd/nnT/MPkb/M+fpnbu52bM16HQB5v/ZXxc/6GTwb/AOCK6/8Akuj+yvi5/wBDJ4N/8EV1/wDJdekUUAeb/wBlfFz/AKGTwb/4Irr/AOS6P7K+Ln/QyeDf/BFdf/JdekUUAeb/ANlfFz/oZPBv/giuv/kuj+yvi5/0Mng3/wAEV1/8l16RRQB5v/ZXxc/6GTwb/wCCK6/+S6P7K+Ln/QyeDf8AwRXX/wAl16RRQB5v/ZXxc/6GTwb/AOCK6/8Akuj+yvi5/wBDJ4N/8EV1/wDJdekUUAeb/wBlfFz/AKGTwb/4Irr/AOS6P7K+Ln/QyeDf/BFdf/JdekUUAeb/ANlfFz/oZPBv/giuv/kuj+yvi5/0Mng3/wAEV1/8l16RRQB5v/ZXxc/6GTwb/wCCK6/+S6pWHhv4uWM16/8AwlnhOf7TP522XQ7oiL5VGxP9L4X5c/Umum+LPiu78E/DzWtZsVQ3lvGqxPKu6OJndU8xxkfIm7e3PRTXCWM1x4G+I3h7TrTxtqHip7+SeLXLTU7uKUWwS3MwuAqqPIwdg2jCkSjjODQB0X9lfFz/AKGTwb/4Irr/AOS6P7K+Ln/QyeDf/BFdf/Jdd9p2o2msWFvfWFzDeWdwgkhuIHDpIh5DKw4IPqKtUAeb/wBlfFz/AKGTwb/4Irr/AOS6P7K+Ln/QyeDf/BFdf/JdekUUAeb/ANlfFz/oZPBv/giuv/kuj+yvi5/0Mng3/wAEV1/8l16RRQB5v/ZXxc/6GTwb/wCCK6/+S6y/Eng74seJdHm0+Txb4UtFkaNvOt9Dug42ur8f6X324PsTXrleD6zq83iUeLNc1Tx3feERpGo3Wm6XYWVzHAivboW3yowPntJguEPGzbgZyaAOwOl/Fsk48SeDgP8AsBXX/wAl0f2V8XP+hk8G/wDgiuv/AJLrU+GnxCtPGuh2EU95ZDxNHYW1xqmlwTK0lpLJGrFWTOV5J4PTpXaUAeb/ANlfFz/oZPBv/giuv/kuj+yvi5/0Mng3/wAEV1/8l16RRQB5v/ZXxc/6GTwb/wCCK6/+S6P7K+Ln/QyeDf8AwRXX/wAl16RRQB5v/ZXxc/6GTwb/AOCK6/8Akuj+yvi5/wBDJ4N/8EV1/wDJdekUUAfJnxt0H9qKfxx4Yf4b+INCW4RH/tSW4sGt9H8gn5BIkk0rtLnJ/dKp29T0r6R8DxeKovDNkvjCfSrjxAF/0mTRIpI7Ut/sCRi35muiooAKayqwwyhh706igAooooAKKKKACiiigAooooAKKKKACiiigAoorO8Qa5a+GdB1LV75illYW8l1Ow6hEUs2PwBoA0aK8pHxA8ZaHbaf4g8R6ZosHha+mt4jFZ3EjXliJ3VInkZgEk+Z0DBQuMkgtit3xX8XtE8Ia7/Zl3DqE3kpFJfXtrbGS205JGKxtcPn5QxB6A4AJOBzQB2dzbRXtvLb3EKTwSqUkilUMjqRgqQeCCO1cLpPwJ8C+HNS1DU9G8NWOm6jf2kljczwoR58L4/dyDOGQbRhTwvQYzWH4O+MereJ/BvxF8Rz6G2mW/h691C1sLa5Qq9wLQMC7sGIId0PQDA4561d0347aVNf+H9Kv7O7sdT1m3j+zzSRBbWW5a38/wAlGLbm+UNhtu35SN2aAOl+Fvg6T4e/Dnw54ZlnjuZNKsYrRpYk2I+xQMhew9q6qvFfBP7TWla54J0XWNZ0rVNK1DVLOO4tLQWbH+0JGZVMdpk5kIZlGDtOGDfdya7Hw78YNC8Salpumwpe2uqXoug1ldwbJbZ7fy/NjlGSFYCaMjBIYHIJFAHc0VwPgX4y6J8RdY+waLa6nKq6fbak95La7II0nTfEhYn75XJ2gHGOe1d9QAUUUUAFcP41+CXgX4i3Zu/EfhjT9VuyF/0iaPEm5fuNkYO9f4W6r2IruKKAPO/CPgvXNN+I+t65q0OhtYPC1rpclgJVuYoTIrlZQw2lnYbncEkkL2FeiUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVXv7GDU7G4s7qJZ7W4jaGWJ+Q6MMMp9iCRRRQB5Le/AC/v8AWdElm+IOvTaFo00ElvoMqxNbTLFIHVbghQ0uCo2tkEYGS1bnjH4NW3i7XL67/te80/T9Wihg1rTYI42TUY4iTGCzKWj4JVipGV4460UUAaenfDKx03wd4k8Ox3U5tdbmv5pZCBuiN0zs4Xthd5xn0rjdP/Zq02w8T6dqy63dvHp95Dfw27W8JczR25t8PMV8wx7WJEe4BT044oooAraX+zFbWWj6JZXfi3VdRk8NxKnh26mhgEmmOCp8wYTErHYF+fI2ZXHJNbCfAr7NLY6naeJ7+28Tx3Vxc3WtCCFnu/PWNJlMZXYo2wxBcDK7B15yUUAbPwt+Elh8KreaGxvrm9EllY2Ra52522sPlK3AHLDk+/Su9oooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAP/2Q==)
What is the equilibrium wage, assuming that the employer wishes to maximise profits?
◦
W1◦
W2◦
W3◦ Somewhere between
W1 and
W3, but it is impossible to say the precise wage rate without more information.