Question 1
Let
B be a constant vector and let G(
r) = (
B × r) ×
r be
a vector potential of the
solenoidal vector field
F. Find
F.◦
F = B◦
F = 3(
B × r)
◦
F = r◦
F =

(
B × r)
◦
F =
r × BQuestion 2
Verify that the vector field
F = (2xy
2z
2 - sin(x)sin(y))
i + (2x
2yz
2 + cos(x)cos(y))
j + (2x
2y
2z + e
z)
k is conservative and find a scalar potential f(x, y, z) for it that satisfies f(0, 0, 0) = 1.
◦ f(x, y, z) = x
2y
2z
2 + cos
2(x)sin
2(y) + e
z◦ f(x, y, z) = x
2y
2z
2 + cos(x)sin(y) + e
z + 1
◦ f(x, y, z) = x
2y
2z
2 + cos(x)sin(y) + e
z◦ f(x, y, z) = x
2y
2z
2 + sin(x)cos(y) + e
z + 1
◦ f(x, y, z) = xyz + cos(x)sin(y) + e
z