Question 1
By applying the rule
Bicond to “F ≡ (L v ~ M)” we can deduce
◦ [F ⊃ (L v ~ M) ⊃ (L v ~ M)] ∙ [(L v ~ M) ⊃ F]
◦ F ⊃ (L v ~ M) ∙ (L v ~ M) ⊃ F
◦ [F ⊃ (L v ~ M)] ∙ [(L v ~ M) ⊃ F]
Question 2
By applying the rule
Com to “(D v B) ∙ [~(O ⊃ B) ⊃ A]” we can deduce
◦ [~(O ⊃ B) ⊃ A] ∙ (D v B)
◦ ~(O ⊃ B) ⊃ A ∙ (D v B)
◦ ~(O ⊃ B) ⊃ A