This topic contains a solution. Click here to go to the answer

Author Question: The nurse is preparing to administer medications, including verapamil (Verelan), a calcium channel ... (Read 36 times)

hbsimmons88

  • Hero Member
  • *****
  • Posts: 526
The nurse is preparing to administer medications, including verapamil (Verelan), a calcium channel blocker, and metoprolol (Lopressor), a beta1-adrenergic blocker, to a client with hypertension.
 
  An entry in the client's medical record indicates he has developed AV block. Which action by the nurse is the most appropriate?
  1. Administer both metoprolol (Lopressor) and verapamil (Verelan).
  2. Hold both metoprolol (Lopressor) and verapamil (Verelan), and notify the prescriber.
  3. Hold metoprolol (Lopressor), administer verapamil (Verelan), and notify the prescriber.
  4. Hold verapamil (Verelan), administer metoprolol (Lopressor), and notify the prescriber.

Question 2

The nurse preparing to administer both a calcium channel blocker and a beta1-adrenergic blocker to a client with hypertension plans to monitor the client's response based on which understanding of these drugs?
 
  1. They promote calcium influx into vascular smooth muscle.
  2. They block sympathetic impulses in sarcolemma membranes.
  3. They prevent calcium influx into vascular smooth muscle.
  4. They promote urinary excretion of sodium.



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

AaaA

  • Sr. Member
  • ****
  • Posts: 339
Answer to Question 1

Correct Answer: 2
Rationale 1: Administering both drugs could potentiate AV block in this client.
Rationale 2: Both drugs reduce conduction through the AV node and should be administered with caution to this client.
Rationale 3: Verapamil, a calcium channel blocker, mimics the action of the beta1-adrenergic blocker in blocking conduction through the AV node, and should not be administered to this client. Metoprolol, a beta1-adrenergic blocker, mimics the action of the calcium channel blocker verapamil in blocking conduction through the AV node, and should not be administered to this client.
Rationale 4: Both verapamil and metoprolol block conduction through the AV node, so neither drug should be administered to this client.
Global Rationale: Both drugs reduce conduction through the AV node and should be administered with caution to this client. Administering both drugs could potentiate AV block in this client. Verapamil, a calcium channel blocker, mimics the action of the beta1-adrenergic blocker in blocking conduction through the AV node, and should not be administered to this client. Metoprolol, a beta1-adrenergic blocker, mimics the action of the calcium channel blocker verapamil in blocking conduction through the AV node, and should not be administered to this client. Both verapamil and metoprolol block conduction through the AV node, so neither drug should be administered to this client.

Answer to Question 2

Correct Answer: 3
Rationale 1: Opening of calcium channels increases intracellular calcium and vascular smooth muscle contraction, raising blood pressure.
Rationale 2: Beta1-adrenergic blockers prevent sympathetic impulse generation that leads to calcium channel opening, but calcium channel blockers work at the level of the calcium ion channel, and do not directly suppress sympathetic impulse generation.
Rationale 3: Beta1-adrenergic blockers cause calcium ion channels to close by preventing sympathetic stimulation of membrane depolarization, and calcium channel blockers cause a change in calcium channel shape that prevents calcium influx into smooth muscle cells. Both mechanisms of drug action decrease intracellular calcium and prevent vascular smooth muscle contraction.
Rationale 4: Neither calcium channel blockers nor beta1-adrenergic blockers affect the renin-angiotensin-aldosterone system to promote urinary sodium excretion.
Global Rationale: Beta1-adrenergic blockers cause calcium ion channels to close by preventing sympathetic stimulation of membrane depolarization, and calcium channel blockers cause a change in calcium channel shape that prevents calcium influx into smooth muscle cells. Both mechanisms of drug action decrease intracellular calcium and prevent vascular smooth muscle contraction. Opening of calcium channels increases intracellular calcium and vascular smooth muscle contraction, raising blood pressure. Beta1-adrenergic blockers prevent sympathetic impulse generation that leads to calcium channel opening, but calcium channel blockers work at the level of the calcium ion channel, and do not directly suppress sympathetic impulse generation. Neither calcium channel blockers nor beta1-adrenergic blockers affect the renin-angiotensin-aldosterone system to promote urinary sodium excretion.



hbsimmons88

  • Hero Member
  • *****
  • Posts: 526
Both answers were spot on, thank you once again



AaaA

  • Sr. Member
  • ****
  • Posts: 339

 

Did you know?

Nearly all drugs pass into human breast milk. How often a drug is taken influences the amount of drug that will pass into the milk. Medications taken 30 to 60 minutes before breastfeeding are likely to be at peak blood levels when the baby is nursing.

Did you know?

The familiar sounds of your heart are made by the heart's valves as they open and close.

Did you know?

On average, the stomach produces 2 L of hydrochloric acid per day.

Did you know?

The tallest man ever known was Robert Wadlow, an American, who reached the height of 8 feet 11 inches. He died at age 26 years from an infection caused by the immense weight of his body (491 pounds) and the stress on his leg bones and muscles.

Did you know?

More than 4.4billion prescriptions were dispensed within the United States in 2016.

For a complete list of videos, visit our video library