This topic contains a solution. Click here to go to the answer

Author Question: The nurse is preparing to administer medications, including verapamil (Verelan), a calcium channel ... (Read 39 times)

hbsimmons88

  • Hero Member
  • *****
  • Posts: 526
The nurse is preparing to administer medications, including verapamil (Verelan), a calcium channel blocker, and metoprolol (Lopressor), a beta1-adrenergic blocker, to a client with hypertension.
 
  An entry in the client's medical record indicates he has developed AV block. Which action by the nurse is the most appropriate?
  1. Administer both metoprolol (Lopressor) and verapamil (Verelan).
  2. Hold both metoprolol (Lopressor) and verapamil (Verelan), and notify the prescriber.
  3. Hold metoprolol (Lopressor), administer verapamil (Verelan), and notify the prescriber.
  4. Hold verapamil (Verelan), administer metoprolol (Lopressor), and notify the prescriber.

Question 2

The nurse preparing to administer both a calcium channel blocker and a beta1-adrenergic blocker to a client with hypertension plans to monitor the client's response based on which understanding of these drugs?
 
  1. They promote calcium influx into vascular smooth muscle.
  2. They block sympathetic impulses in sarcolemma membranes.
  3. They prevent calcium influx into vascular smooth muscle.
  4. They promote urinary excretion of sodium.



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

AaaA

  • Sr. Member
  • ****
  • Posts: 339
Answer to Question 1

Correct Answer: 2
Rationale 1: Administering both drugs could potentiate AV block in this client.
Rationale 2: Both drugs reduce conduction through the AV node and should be administered with caution to this client.
Rationale 3: Verapamil, a calcium channel blocker, mimics the action of the beta1-adrenergic blocker in blocking conduction through the AV node, and should not be administered to this client. Metoprolol, a beta1-adrenergic blocker, mimics the action of the calcium channel blocker verapamil in blocking conduction through the AV node, and should not be administered to this client.
Rationale 4: Both verapamil and metoprolol block conduction through the AV node, so neither drug should be administered to this client.
Global Rationale: Both drugs reduce conduction through the AV node and should be administered with caution to this client. Administering both drugs could potentiate AV block in this client. Verapamil, a calcium channel blocker, mimics the action of the beta1-adrenergic blocker in blocking conduction through the AV node, and should not be administered to this client. Metoprolol, a beta1-adrenergic blocker, mimics the action of the calcium channel blocker verapamil in blocking conduction through the AV node, and should not be administered to this client. Both verapamil and metoprolol block conduction through the AV node, so neither drug should be administered to this client.

Answer to Question 2

Correct Answer: 3
Rationale 1: Opening of calcium channels increases intracellular calcium and vascular smooth muscle contraction, raising blood pressure.
Rationale 2: Beta1-adrenergic blockers prevent sympathetic impulse generation that leads to calcium channel opening, but calcium channel blockers work at the level of the calcium ion channel, and do not directly suppress sympathetic impulse generation.
Rationale 3: Beta1-adrenergic blockers cause calcium ion channels to close by preventing sympathetic stimulation of membrane depolarization, and calcium channel blockers cause a change in calcium channel shape that prevents calcium influx into smooth muscle cells. Both mechanisms of drug action decrease intracellular calcium and prevent vascular smooth muscle contraction.
Rationale 4: Neither calcium channel blockers nor beta1-adrenergic blockers affect the renin-angiotensin-aldosterone system to promote urinary sodium excretion.
Global Rationale: Beta1-adrenergic blockers cause calcium ion channels to close by preventing sympathetic stimulation of membrane depolarization, and calcium channel blockers cause a change in calcium channel shape that prevents calcium influx into smooth muscle cells. Both mechanisms of drug action decrease intracellular calcium and prevent vascular smooth muscle contraction. Opening of calcium channels increases intracellular calcium and vascular smooth muscle contraction, raising blood pressure. Beta1-adrenergic blockers prevent sympathetic impulse generation that leads to calcium channel opening, but calcium channel blockers work at the level of the calcium ion channel, and do not directly suppress sympathetic impulse generation. Neither calcium channel blockers nor beta1-adrenergic blockers affect the renin-angiotensin-aldosterone system to promote urinary sodium excretion.



hbsimmons88

  • Hero Member
  • *****
  • Posts: 526
Both answers were spot on, thank you once again



AaaA

  • Sr. Member
  • ****
  • Posts: 339

 

Did you know?

About one in five American adults and teenagers have had a genital herpes infection—and most of them don't know it. People with genital herpes have at least twice the risk of becoming infected with HIV if exposed to it than those people who do not have genital herpes.

Did you know?

More than 50% of American adults have oral herpes, which is commonly known as "cold sores" or "fever blisters." The herpes virus can be active on the skin surface without showing any signs or causing any symptoms.

Did you know?

Cytomegalovirus affects nearly the same amount of newborns every year as Down syndrome.

Did you know?

In the United States, congenital cytomegalovirus causes one child to become disabled almost every hour. CMV is the leading preventable viral cause of development disability in newborns. These disabilities include hearing or vision loss, and cerebral palsy.

Did you know?

GI conditions that will keep you out of the U.S. armed services include ulcers, varices, fistulas, esophagitis, gastritis, congenital abnormalities, inflammatory bowel disease, enteritis, colitis, proctitis, duodenal diverticula, malabsorption syndromes, hepatitis, cirrhosis, cysts, abscesses, pancreatitis, polyps, certain hemorrhoids, splenomegaly, hernias, recent abdominal surgery, GI bypass or stomach stapling, and artificial GI openings.

For a complete list of videos, visit our video library