This topic contains a solution. Click here to go to the answer

Author Question: Rank the potential energies of the four systems of particles shown in Figure OQ25.5 from largest to ... (Read 283 times)

bclement10

  • Hero Member
  • *****
  • Posts: 560
Rank the potential energies of the four systems of particles shown in Figure OQ25.5 from largest to smallest. Include equalities if appropriate.
 
Question 2

x5BjSNIHnh0AYwA86kMY5IImRsNJ3rYakPI/ySydQev4phN/8BxTvfxBdb3wIvowS+Xxic+0N+Qyu0CgPg2cG8YH3fwDffPRRvPe978Ujj3wWW+s+e4t2ayHkGsh0kbbvy4zoU2Boeh4nR2YwMVdFLUkQ+B58D6DFHiaoKy7+RkV2bnoer07M4vuDYzjU340Hbu3DQFehrf9g2/c5boSWUzmJypPtyMwCXhydEQKkvPiS9wZkAw9hEMrfDQ2sKElQjRKMzJUxODWPY0OT2N9bxBs3JAhaAAAgAElEQVRu6cPerZ1X0ncboeOXaYPqj888/DA+9tGPSlWZz3zmEUm5apx0eR3TtvqlSWUy35ELMQ9NzeOl0VmMz1fAZx94HhhPTx2TCVIwK61ZJs5MlXBqfBaPnx7DkYFuvP6WPvQVaXQ3XbwB5KJPyxAhwfYQXXwVpSf+EbXhM4Afwi92CbOSgT0ycZIgjSOkUQzf85H6PtKQo8IMvGoV8ewMJr/6JZROHEPvz74XuSOvBezQdVEz2uGLh/PnzuEDv/5+fO+738Wv/av34bOPfLZpjT0PXIKIYczM+dGXCm3zmmmNz1ageeSVH9T6ImTb56FUjfDchSkMTZWE7HJhgA6PxQbUMiPN03KPSYBJAj8OVIA9D5k4ETfX8bPjODk6jQcPDOANt/S7dJH1fbjrcHfjyvQ81OIYLwzP4JWxOdTiFJnARy4TqAfeWPxJCkSeh8BPEMQQXUPDK+P7Ik/PXpzCydFZPHBrP960fwDZ0LjH1qFn135L1Qef/ewj+PjHP46+/n7894cfljJr9poMnOFSVHSVanI8f1msY5but+dufB1T7wrmKlU8d2EaQ1MLENdnJoAnozouvZRIKhpHg0KOSYow8RB4PgIfqMYeylGCxwfH8PzwDN56aAD37W2eqmsg0vzJEKEVTKOTPR/VV57G/Pe/hqSyIAToBQE8Eh3PJhMKCbJRAVI/Qup78k5qdHEAvswl6Zi1MnQaw1/4M/T+s/ei800/qz2WISs/NhNCc9M20mcPMzPT+J3f/m089thjeMdP/RT+4A/+s8x5TU1NynZ8fBy/9x9+D4cOHcJ//fSnzXyY9oHCKVZO41kv6RwxsGSz5Kd1+2raI1YPrXcPU6UKnjw7ialSVZRNEFA8+Z8ey3/pLk38FFHMEaKHGmIhOvmN1hw/ZIG5aoQvnziLsfkKHrp9F7Kh3zT/2A4ysW4Ppk1vrDIicp6qq6pUqeGpc5O4OFNGJvDE3Uk5078GnWWOUxpWCXyOBulMkstQXwVIQxEl4YKFWoyvn7yA4dkFvOuuvShkqdrsPdtDnv7+7/4Wv/+p35do8o9/8hN46KF3gIX+5eV5+JsvfQmf//zn8cgjj+Dee1sva9YgwjYSE/uY4GFiviw6ZrpcQz4TIKSbqT7Op7EdiH4JkhS+x3eCmpfIk05Bg5zaSGVoulLD3z4zJDrmbbftEK+VcJfxdjYjpERYFy4KqCHBx78KxBFCjgKDECRCmQMUj0bzaJBEGCDhxT3OHAExSS5J4MUBvCCE31FAUlrAxP/5KxHOzjf9nPZNyJLN2fiC+pdf/EvJxSkUCjgzOIh//f73o1zR6vDs+sJCGS88/zx+4Rd+QXpD4vyT//YnOPXyKfl7PH36tCwS+Zu/8ZuSRE/fNqNI9+zejY997GNS+aHxh9v8iNbrs3kmsiEJVnHszATmqxEKuRCh74srVFxY0kRPffZ+IiNCz0vhUXHJb5y78dWfH3hIUk8muCsAvvPqsFh4P3PHboScTKz/UaxXv9191wwBPlvREx4WqhGODU1gYr6CQpYKjxa9Gk9WG3AkyL+TiHqFSk80BfUM/Q4JEs5T+5xu8JETuYIQK9XgP79rj1xX5MlecM06ttoLexgdHcEnPvEJzM7OylTLF7/wRXz+f3xep6L4V+QBZwbPYKFcxvT0jNzwie9/H3/+F5+TylUXh4dRKVfw5S9/GUNDQ1KBhko/TmL8/LvehV9+93tMIzfYH5jlAE9JkDKxUIlQzIQIAx9UCTKQMGYN5UF0Z5LC49uGnqScR/ZkdEguSnwf+QywUE3x6KmLwn/vOLJTjPNWT0uIUOVTxSw6fwrzj39VFl0NOorwMhlxdcKMCOWJiGs0RhJHQFAT4eYIkLzMeTA/SbSsGM9JYnhJAC+XRVKtYurrf4ewpw/5Ox8gZbZq04bc17+tH/fcc4/8KbJ80ejo6KKxEB/WkSNH8ZNve5uMnFk2jQsWn3j2BMJMiG3bNGjoqaeekvkOHs9I0ltuuQWM9uoCi+huxJcqrR+dmxQS7MgE4r5SIaVLQv9I2XKOBuOUEX80gtQuo2yJ2koThKkvJEnyDD0PMZWfF+CJoQn0FHL4iYMmsGojwuDatEoEKCeiaURJP31uEhOlKjqyIbKi8HwxhHxfrXnejLqE7i+fcXiUJ7GTqGXUmApTD0mgMhWkqbhKkyDA0+cnJYLwp4/sFGW6yobfkNPDMMSRo0el0DanTybGx1VPNPlbGIvwwO1HcPDgAWkT1/t87LuPCZ6ZTAaHDx9GpVLFd77zHTUZPEgSPhes3ZCvJhKcK9fw1NAUFqqxyARd5NY4IhnKwzc6hjIRewnE2Db40GgKyUG+L1t6EoKEc8y+DMy+d3oUPYWMzCXrcG0xIppQL2t7+WBaxMzX/xrR1DiCQhF+Ng8vk4UfZgDO+zE0x77iGAkjRvmuVpDIuyrbtFpFUuG+KtJKBXEtkv2IIuHR3L796P+VDyLs3WnU5IY32aTXLIlWq0X2mVgkZMtnyj9iFuDOZrOyb2pqCqX5ktoy/Ctufplop2JnUXz+zT9tiM/sECet0wRPDU3i9OS8uJsoWNkgEKXFERwJjQ+Vc4RivYsLK0E1TiVIhoENjPyrRLF8p/++GkWoyD7uj0Ch7cln8S/u3osD/TafcgleGwIU14hrRkDkSc9+4eIMnh+ZFq8A55gpU1R6VH6c5yEVkjItEXIekfOHEkEaxagmCSo1lbFKrFGEDKevRKnMGdIQo2v0nUd24Z49TD5vB1nyUCrNY3Jysmn+bzHaxIMJ8Vu39sgP9CiNjY0hijj9sPjYxjcPvb1bxQvV2LcBPlkSFA9iiuNnJnB+egE0tDnHyxF+IHLh1d2j9KizVCWDqeQtgXgqFxVGk8ZW16i+YRqX6Jk4ksCavkIOv3T3Xuzt7VrCOzah3vMRTw2jcvJJRGPDOidI4pN3Fl42Cy/MwstwACmtQRpFMg8mMZAcAXDkF8fwA/pwfXiBr3OK/Ewrj/OLfFq+j9rwBZSOfRPdD72nzvQb4NFcoQkeBga2X+EY+zP/jIGenq3ytnuX3+rxy/++Xr+kkhbBwBix2mlticLyFo0K+Vgp1yRC+uw9WuqMJPYpzB4CWmccAYMjSLq5dM5UrH9+TlNwjueJwXHs7O4Qi1B6bMh4vXrv7nu9EfAwXarg1OisyBG9CjSkOA9E+cqEGvQg8mSI0I8TMFaQ/ia6vqhbRJ58usaSujyJlS+jBE2fqEUJjp+dkHD6rYWcdsQq3+VZ43p3eAXXU5LTyi9XOk31BYv3b9++40oHm983qI7xPJydnMf56ZIQoBjXEilsPU/qdarrGD53mUfWucAkjcVjIHpGgmasjiG12FQablPMVWp44sw4tnd3aEwCkTE6pj7EKz9/DJWTP5IRoAbGhDo3SDLM5ODn8/BzBfj5omy9XB5eNgdfXKc6h6jziL4mdbDl9TfTznTkYG+88OJTiIYH28RaE8R0ZGemZXUyi8LV6m1ls9VvrfbZ4zfQ1mNocoKXRuZk7i8QNyYJDTKXQ+udykuiRjMB8hn9zuWqRJhJgoz0M6RnhZJbun6sA4zfZQzgARdmF/Dq+GwDBCv9jT3uU1sjkOLlsTnJNRW3l0SCKhFSZjK+jgaYIJ0P1fOQCagQA2RYsEPmETk3rXOJDdlS9SKSxH9Mlg9dry9cnG4jxFrphlb7bJda/bbcPnvOBtp6nniHXh7Vv3nVMUZv+EyboYEUiI6hTEjahBjj+hsNKNExEq+gxjX1iugY6h0OwIysUMfQ8D47XcLgBL10NjiPeBlnaVqZR+WV5xCX5oT8RDHJSM6HL+kQoZChl+uAl++AbDlCDEIJoGFKhGT014mPDfANIzcaKHc0DBzPzaD84lMb6Km4pixFgDmCI7MLqnho3wiJMYydikiteSosFVJjwRnl5gcm8EEE0dhGIpi8C0eOKnzUW/xOceSIkoqyVuPcsQroZXw+S5vrvm9kBDxIlRjmhlEh8fmrUUR50kAZKj66xOge6wgpTw1DSr0HhvDoPrVKjgrOGFtyTcFAJhPFwTo4WZKRQJ0dxfDayEBtkrYZA3h0roLJharoFKEPQ2p0kZPkSHbUMR0ZBr80ZEKNIdVJcp4QYGNcRdlSE5tspuqE1MP5xVOjGmykoqJjQfk3ujiIZGaiERWqUiqCyihSRovSpcnRn8wbMoqU+7TlshW3p9r2cp74c6UlwtH6dPld9Bv/8VA79wrSEhslTd0kEtA+3aTPPkqZyCqmUZNh40slB5Kd5HOJNW8Jko+zoZzsk6UUWPdDY59iQQHlm2I3Nl/FxELVgGTIsH0gcy29DAIXpxdQriXqEaCMmL98tdp1pEdSzMhowEaRqlxQRdTVR/M9rDA17zOGFa87W6mJMSc/W0FbdKz7sl4IMP7g3NSCzN9RZ/BR8s1QlIaRBCFDeqAyQowqF6QeawDpmaorWoqDdFAm8UTHjM6VtctNB4tuqg29hCSOFwfDWIucWwoQyxsxkSeqSWoEGGAjgmW2cry5csq4LhMkJmW2lio0nTOszUwgmhpZr+fg7nsZBDjHMjJXEcNFn55GBPOZc9Le6hQmtjKBnqM5vrmfJy194jxn6UtF02pD/hH4EgGngioStPQU971NEaC6YIksyoiqFCsjDMgyMmW8AlqQgfKkdnML0amjYH+zOk22RnSoIHmtkdmykUvKmj2yfgn3YZ0QqESJ5Pg1PxJKRbN+oQxYHSNbUpFpr4iS/lPvwaVaxv7E566R7LWEATb0OlnTHLpCfeXsKXhBRhsQM+eLb5MryIikIEIa1EyuoCdEKNGiidYY5fHMGyQ5WqFuSJ4ZlrI9bLRhfhlpsobg5Aiw65DRhrbRbrveCDAyb2qBmX6qsFjOSHK2SHhcSSNhVRCqmgQxiynQ7WDr/5EYTX1IygNSjQIUojTiyN3NLxFJo6NYvJvn0Sq0MtN8rPvcfgiwytBkqabeIlF2Yltr7qkxpiKWVhMy1Mcu8iRGVqKFGixh0igXuSIOanyp3lHiJNEKF5pRw1w1FvXEKET32jgIMJKcBbTpCeIzE8OHz1bGVlqdioU5Kkgkl5RhU1EcS4EFKdxhjG8lRtUxi3hnSVeprTiK5It5rNkOygMVkYkarY2P6nyfCFfCUg6STK/l02oSqSWNTZj+oHXghAhrVc0lZD4hq4GTRIUQDas3C6w178S/L/+ocVbmxKV7bTQEKjGJLhXXpwgmE5dFYamfnXmjjBRmmrOfqFWvZY+43BSF2JZasyNFtfAbowHdz2tSNOs+/8BHRc5PNAdM5XajwePas0IEGO5eqkVyFkkrMQnQjATlqC3yWI5PCZDzgXqM1haVvDEp26fzyKKmTJQyU28oQ2pkKSmKb0HmDdXNxtB6iTZdYZvd4WuLQKmWSEAeS+XJ86N+oTwYw4hFFGpejCTVqRhSCA1syoO85blrSoWcT6NJDHcjD9ZwEqtbg2VoXFOllKoxtthKmDAjQi6lFOR9JTEpnRarG9TnKFAriHAU4LGGH2uK1muM1pDUqpJKoStQcIRIQlRS5GeaYhR6oXlyLx3AJr0ik8niiccfw5f/99cbI8W1xd5d/SoQYOrDwP4jGLj/LfBFUSUqoAmknJEv5dMSpMz7olw0pU/QitccH60Or0KrwkvlxnJZrDwkdpF43XVoqESowRHqar2KhrpD2gQBT+YGKRf886c3QdyfsRKgqia165kaIYVjmmvWGuWnrjGz6gCJkfa8KDslUP3McQNVDJUnk/QDzM3P4798+tOYnxw3S6W1CWw3cTPTJEb/waMYuPfN6gUQQ4fF1ulZYoBlQkcS+DQDVqkSY1uNHlvHmB4EfmYcg8iTIUaOxUSHkBjFo6DeJatjaGjxPH2ppa0l1kzdUGZ6JZEvuYBpJDOWciyJzA9IjrbWKP0XJLtI5gxTIUMm17MAd6RuUv4ub7aKn0XrgRVqhAgZKZYJcWHwAr76tcdkeOqM/40h+XEU4b4Hq3grhdSj9aWVPfiZSovuUIoRKzkwsmsREYpAW7cGXVJaco0WGxWZCKasTmErzmiQDYNueC2+6d5QenQSsTEkYvWtEAOIOoDuLS8Fa0VyqxVjdL6GPweSJyYMJ4UWRMGZJGqm89DQssYVr8lzLEHyM98UIStLoedL/AML5V88Myi6bfW9cVdYLQKsSnb/WxP03/2g1iamjjH1Q1k7lAqGDsjYpGtxJCczcFDSo1GlsqBkKLqlToicolNZoJ6S0muMVG7SMZQRdaCrptESayQqklgawJcC2jVhYh7ry91jxD5zBZl7oUIq84Ey8uPyS1V5S6WZOBJ3KQNrZOQoo0EZ0woBMuHeC0N5c9Ly7T/zs3jwg59Uk2616LrzrxMCHsYXIjx+cUGSliUVRsqmUSKoaXxxQdCyty5NETwjpFRUVGB0rdZMmSxRXlRiVliFICmmqSZXm/wgEiJXH+B1rf/+OnXKXWbdEEiRDVkWjVMn9DCpG1SMKto9ERPlgdhnWo0aVtRkdZJrkic7b0h5olFFchSSNaHxNLgkwlBWp9Br9XR14i8+9+fI0eW6bhi4GzcjwGd/dq6KHw6XhY/41+7FzC/WFzVDxmcpNRuB3hj902ziaLCuU4wXysoEdU+UJogZv2Cm56QQCKORzVv1S6NFQoR+Lifl0GRpJfprUYVvCI9uMlaMgV/T9AqeK+4ILsGkblBwHUJTbi0hobKkmowOZYwqFhmlWirTSF6ikiHCEF1925C56uoIjYa7T2uLQEe5hvjCK0jFTUEppehSBHX+RnIJbSKraYrO+6hbghYb5wpraSLvusISIdXRIYVUrHdxYZlqNSyWG+rSTWvbQ3f1G4lALgzFImfZK1/yjuld0FUDEhbM5npzpgKVKEPr5qJFb9a0pBFFOaKBpZ/1OxWgjjipPqlA6RLVBHwualLM57B31466kr2R/Xb3Wh4Bf76CY8OvmpVqKA8kHeNtkpKNrEVMY4a6h2axBtJQasTQphFkSu+Jt4CykTbmECVOIdW1UuvywKo1Rsc0t0yIMLt9F0ovPQ8/lxe/LH3tcmOOAiKSVqR5g9aisnM7MvqL1fUZRUhq6h4VEuQ6hSyzRVepEKknRMi6pbYajZ/NwevUunlq/Tc3zX1eTwRojeWCQAptq/XEeV6SoI84SBCwnBEteBFQCionqtWHT6XG0T5Xl5YRIRWXUV6MHhSLzVhq9Qo1ptYkLbbOHJUme2/tw/VEwt37eiDA59yVy+BCpSzrCqprSsvuS8AM3VbiYTAhn6IIOYrUkR/nlUmAJDzKFg0tRjbLqMC63emqN3Ik9UulmLeHYjbUVRycl+F6PMrrdo0cXeSeL2tS6t87WcAGSgWI/ViIkPqHJMia7apjaGw39Ah1CvWLeKC4NYYRR430KrBIg9UzrFJEUmSx92bOUSK89Q7MPfNDcV2K5U+/O+MBZR4whB/roruLFVOqI0I5hqPDGtKauliluDYjSGVUqPODflYJUEjQlGXzi53wt/RfN2Ddha4fAvkwxNZCVlYIoLBKPFbqi0IJUuNvT6xEWHtNFReJTuZtjOvK+vKlaLKQJC25WGYbWUJJ6kwaS40l23o6WLRcrylGotWa16977ko3GAEqn/5iDoMTcwg9qh2r8DiPTKPKlk4zk3wyT6zH2DUJ7ciPik5dY9b61yLM7JLKEgt4a0F4FnDuKWSbXO03uOPudssgkAoZUcecNdWGNBpYje0gNSRIL4FcQZ3aMmYkIRodI4bQIjcpZcIG0Gg6jpbpMyUgOfUSamnI5oYJEeZuvV2WW0rK9Nf6Oi/IyD7O5wUxYvpupcIMm2RCBKmhyLiMDDUuUnGVWreonXekwgt8+NmsjgSzrF3KIt4hwr6d8IpbFjFzc+Pc5/VDgBPLe3sKeHFkBlUaO1z7TaxzrQpP653rxImQNnGWnaTWeZtGYAMt+PoEN40kLtIrAqkCqpaah858iJ6OzPp13N15zRDY11uUNQhpEIlCC1JwKSXOA+lCq2Z+0LSAxzTkicaVUXJ1IjSEGOt8oi31Z2tScl6S5dr6bdFtua6q1TXrpLvwVSLgIRMG2L2lgFfG52TeOAn4vKlnuGSbygXjZuo6pkke7Pwx3eYyGkxi9RQYLwFHhxxdsjwbjes8K9OYBQO25DOaoyzjS5UHIcJwYC9ye/aj/OpLGvSShLroYUjXqFac4Qr0kuBsiFBClYUMNVXCzhfK1o4EZXkQQ4IkQJJhNouA73wHMrsPSSJ/8xD1KlF0h90ABA72d+J7p0PJ/0oD6KKXdGGZcmjiMq3779We4chRku/FXWUju+iuoEuL39WlQVdFs+JS5eVhoJhb7LZwo8Eb8KRvxC1SUXp9xZysIi+h8bSlKU82mo8r1Cxqis0H03ln9TKoa1RHhJCldzgCoEudoz9brJufqfj6Cll0cYVWeTkSXATven6hheN5OLitEz84My7LtIlxlNI44hqT9Dqx9osUpVUyFCJUmRAXqXic1F3OOWMu/cYRIqtikUztogB1mSAZBj62d+WtsqqvkSlEyFqinW94O+jSXDh9SgprM2GapMa8PyFAtqqulDhJyGtJCQAJhmEyPTWgzAsycZZzhIz4oUs0lwPnA2Wby8PPZBEO7Ea481Zt0Ho+EHfv1gikCbo7srhzxxZ85xUuQsxQZuYNaoi7BDYYebDqRS34RpoEFZd1Z0UpxIdPlwaFsSMTKhGaFSy4rzOXwa4thdbtcXvbHgGS0327t+IfTpRkBMAo0ZBRpCywzPB2mvlNM8NWnmzqjbjcqfxM5LF6GBJZ6osFmTuM9U+jKhv6KGQC7NlakHxCZ2xvQPFJU/QX87htWzeeGBoTfqF+EbngwMtEpS9tOQdh1jVqp2HERWrmj4UEfaNjMlzbkKNClYnuXAY765n01Fwqc0qEADrufD28XA4L//NPZTHdJBPKihJpwJGgIUFLhGRzvkiWzEGkANcT8Rkkk0h1+CCfk2syCMfjMk6yckUefqGI3MG74WWp9My19Iru3w2DAIXEw/17e/Hc8DRY/5PzhrJwqo3wW4YIKQ4UVlVYOrFNQaVCo4KyqwuI8qKgypI7Pvb0FLGl4Kz3DSMC17Mh/DP3Uhzd0Y0nz03i1Yl5WVEgYS5hokvmME+VL2tY8TNlhupmUZ4YCzvQXc/Rg6xWEdZliqtW6AjAx/YtBfR1Guv/evbFXWv1CBgO4iDrDft6cXJ0BtPlqugHDsIiSbNZ7Cq3NxV3OcNnbCqWGNm68DeP4UiwIwxREFngEnFGx4RqGBVzhvZE0FTatPgeR3ZBBvnb7kPXA29FvFBCUq5I1RhWneE7lXcVXH3evmUFeq5Gb97MJyQhcv6Prs8gn0fAESC3HR1ChEEui9z+owh3HjAk6IjQPuANt+WoMJ/FWw9ul8AWlshioVxZIZwrzJtV5stxAr51NWhuuTJ0Ku4OrkDPOSG+6ArlyuGirGjByzqGtNgCbOvMY9/WpppHGw4M16BVI5AC2TDE2w9vR0fooVSNVGYSyoquKk4ZsrLU2HL1cStPKl9UglR4xUwoIz/xMNDLYNbF3NqRxf7eoqyc4oztVT+5NbiAMiGnUno783jzgQHxHlEmqpGVAeoRu8q81S+x0SvcUmYSlGuRxB9wqoY6hjLRkVUCtDqGckeX6N6e1jrGSylRaWzcnj6S0izG/tfDKP3oGMCgFo9l1RhDo8xZR8SmUIjFpiHPXJqJuYKyXFNO5wJl8V6SIAkxl0N2zwHk73sb/Hxnvexaw+Vav7r7sN4I0Djiy4z6vnVqBF8/eUGsc87HUOjEZW6XxzH2jFhplAmJCtTIUObtcMKaIz91U6iQ0nKn4DJy7M6dPehmkIyMHJbI2npj4e6/egSsPIky8fDk0AT+/tkhUWCMKKV64RqX8mqSKR0RamoOPU8UR0aYNtxdHAHqm0qP5NidD3HHjh70cy7IzEWtvgPuCtcbAVmsQVSMRpt/7YUL+KeXR0wFGCsTl+qCukzIDJ2ubUodI4v4Zigb6hWQIBnqnQwjlvO4a+cWFHPW49TcG1N0u+GMSOAXutD/y7+BCS/A/InjIkecskwZw2xdoiKoyuh08PusOmMW8PVZNYbrFuaysoJ9wPnBvK5mn911K/J3P6gkKBE7S/wgzW1zn9cZAT5kK4Qp3nxwQNrzzVMXUY1Sk+dnyNI8RuvY4ml0cwV+KIqJ68vRJco5IioqcVVwhXuTKnFkxxaZj3SW+zo/8jW9vZUlvcl9e3tlKZxvnLxYz1X1PEYni3YzgXlUOTS4tOJMIAEwzAmjHGlwjCVEKjvKFnMVKU9CgrxVXYbXtHPu4teAgE2M4COnEfT223bIKiE/ODMmrm8JxrO6ZZGBbGqHSqCVj2xT7ij1DGUinwllS5noLWRxZKBrGRLUhuuI8JJ5Og/J3BRmvvE3mH/yMcTVii7OK5pOGyGOfK5CH/iSbG/LpnEruYKMECUJZrIIOgrI7LsN+TsegNfR5eYFr0FoNsIptOCODU7ge4Oj4FJJakBp8QUjTqLAGPgQchFNkxsoRCjEp+THHC9aawOdeRza1o0tkjeoNLoR+unacCMQEM2G5y5M4VsvD2N0vlKfG5RBnMkfozLkm/JEuWJQFT0S3NKjwKLaTJimUdVbzOJQfyf6O13swY14gtf1HvLQNTr4B4PjeGxwDHPlqjx71TAqL/Qc0BNVryVrZIE6RQ0kDYohAVLH7OjO41B/l6Rl6UCO8S5LW+6hNRGqJAJJDQs/+h7mnngUtZELEkVaL5pN15isXO/Bk3xDrR9aJ0ISYj6PTN92ZPffhcy+o0CYVXeos9KWPok2+G48Ap6Pocl5HDszjqGpkvjrrbLScGeNArSKiy4LEmLG8xGGXt1qZzTfvp4Cspl6vFYbYOCaeN0QMIqPWmlkdgHHhybw8tgsFmqxBmSZVW8YPk/5IgmKgUXr36xgz0lJI4UAAA8QSURBVG0m9NGZDbFzSwG39BZlDvq6tdFd6MYhQHngS7ghxenxOck5PTdVkrSruo4x6VqUBTGQjCxQ31AWJI0mCLClI4M9PQXs3VoUo6nubbL29iIOWpYI2SJmMtJn7yGeGUX5+eMov3wC8fgo0khXLqdjv06CUkw7A49zg7kCwr4BhLsPIbvnMLyiKaNm5wkWNUL77/7d4AgsenYsixSJsJ4am8PoXEUIUXughW1FULlCheTu6AiQI7+BzpwoLc7jyEsMvUtMtA0OhmveqhEQxWeqyLBYQxKLgXVydE5WlF9gYQ7jcxDrvynXkNZ+JvTAUPj+zjx29XSgl14FESMnS6t+NutyAXWJy63lEfqo1GpiHDHCeGyuLEE0HB1yRKhxCpC6odQ1dJVzBEgC3NbZgV1b8o38UatjFpFtcyeXI0Ie02Sx2bFksjCDaPQc4pFziKYnkFZKslaGBNQwT7DYhbCnH2HvDvhbB+DliuZudjTBr05Qmx9B23wWeVj67FgsOcHkQhVjcxVZ0X6Bq4Gb1eUprIzmY+1Qlk1jqSvOD9ZfIqD1b+7DZkKgLk9GAYpxTPlKMVmqYHy+gon5qowQmTBvrX/O/3TmsxJYxcjQYpbBfEvlcjMBeRP1dRHnNPrFKlWUh/H5KqYWqmJ0czlBVr+ijqGLnEUTKA8MuOP8YP1VlzPLaa1k5XJEWL+S/dDiAnEViKoSIejR7Rm0isixY1F7Hbe9uRBolgvmlWpCPZ+6dV+YUFDtNgWTL6e8FAf3bwsErEwpSZIIKTX0T1GmLh358Vd7TovLuV1tjkDzs6VMaMUq6hBxmZpgY5UQo19W1OMVEaFhVN5A2lW/+5JbXktDllzCfW0zBKwiss++WXCb5cbUqZWflxzTZj12zV1LBFrJkZUxe18zkuRXZ1RZUG7ebUsDmjrEygq7bj+vVLfU0yeuAj/bEDmUCq0ROq+7Vnrzq7inO6RNEDDPXnRVs3DaAu1N3XBKqwkM93FZBESn2TlEkp5Rcs3y0/x52Qu5H25eBCzxLTG2r6HDraNGr+FC7hSHgEPAIbA2CIiFtTaXdld1CDAy2aHgEHAIOAQ2NgLO27Sxn0/7t84RYfs/Q9cDh4BDwCHgEFgFAo4IVwGeO9Uh4BBwCDgE2h8BR4Tt/wxdDxwCDgGHgENgFQg4IlwFeO5Uh4BDwCHgEGh/BBwRtv8zdD1wCDgEHAIOgVUg4IhwFeC5Ux0CDgGHgEOg/RFwRNj+z9D1wCHgEHAIOARWgYAjwlWA5051CDgEHAIOgfZHwBFh+z9D1wOHgEPAIeAQWAUCjghXAZ471SHgEHAIOATaHwFHhO3/DF0PHAIOAYeAQ2AVCDgiXAV47lSHgEPAIeAQaH8EHBG2/zN0PXAIOAQcAg6BVSDgiPCK4HEJmKZ1r654vDvAIeAQcAisBIG11C9Wf63lPVbS1415bLgxm3Wzt4pC6ZaWudmfsuufQ+DKCFAXrOV4hHomdvrmCg/CEeEVAGoQ1vUiLmuZOTK8IvTuAIfATY+Aj2plDqOjp1FemIe3CjWjmsXol9RDd3c/+rftg+dnACQ3PZKr6aAjwiuitwrJbHltXq/5mpYYWx7sdjoEHAI3LQIe5mZH8cNjX8bw8Gkk6WrJinrF0GGaIhNmsf/APbjn3p9GEOZuWhSvR8ccEV6CoiUmJazZ6WGMjg4iiiqXHLniHXLpFPB89GzdgYHtBwwp8odmclzxld0JDgGHQJshkKYJnjvxTZw//xL8IITv+VeMRvBET6RyXIP27Ce7hYwso7iGl07+AL1bd+HWg6+vk2SbwXRDmuuIcFmYPYwMn8TxY/8X01OjKlnLHnv1P4io0lrL5nDbbT+Gu+5+BzzxhzgyvHoU3ZEOgXZHwEMc1zAxMQzfD+B5gXTIuyoq9OClNKj5PzUKXzxzsQ7hNZM4xcjoadx64LXXTYeZG95UG0eELR+nJ377Z55+FNNTI/AD+thX/7IiyyvFUYQXX3gM27cfwMCOwwDdIs0HrP527goOAYfABkeANnBapzNxGV1Fi1MkaYwkaZxJMm2pPzwfcRyZ0aBTMMuB64iwJTIe5ucmMD83aVwWDQG6WlFtdVkvBVJzKd/zEEU1TE5cVCJczSx5q5u5fQ4Bh8CGRkBVgW/462o1SwoOBrPZArI5nfdLkwTl8oKQ46UdTps8Tpf+6vYoAo4IL5EEFU9xMwg5XdlZccklltlhSZA/i9jz+o4Al0HL7XYIbAYEljo0L9/nNE3RkS/igTf+Irb27RH3aq1WwROP/y1GR4fg+culYjSM+cvfYXP+6ohw2ed+gwTnBt1m2W66HxwCDoG2QYDqgm7R6elh+EGAzq5+dHb2I5Ph6LDVqNIqGG75bnVM23R/zRrqiHDNoHUXdgg4BBwC1xkBj/ELFfzw+FcQBAHuufcdOHT4jeBIsfUk4XW+/016OUeE1+HBJkmMJObkdSyRW57nSyQYBZUCyncQOKivA9TuEg6BTYcA0ywY8EL9wglC6hfPp27h6JDRozrac1R47aLhtPM1Y+fBCmhHRxF9fXvQs3UngiCLcnkaE+PnMTV5ER2FTmSzHZieGTNW2zXf0J3oEHAI3PQILHZfkgDDMIOBgVtEx4SZAhZKkxgbHcTk5EWjU5y7c7Vi4YhwhQiqmCoJ0iQ7dOh+HDn6E+jq3r7kSglGh19BNleQDJ9/+tZfo7QwayK4lhzqvjoEHAIOAUFASY16hiTY37cbr3nN27F9122L8InjKk6dfAy5bF4yr8CQdDf/twijlXxxRLgStORYJv4wfyfF7Ud/HHff+zOyd3LiDIaHX0WlvACOEHftug3bth+S30rzEwh8Qu2cFyuG253gENh0CHhIkgi9fTvxxje9G8XOPkxNnsXQ0HMozU2iUOjBnn134Pajb0EclZGmdJluOpCua4cdEV4DnHSJ7tixXyw1SuDzzz4qyfGl8hzSJJYQ5i3dj+O++9+JXXvuVAIUi+0abuZOcQg4BDYRAmpoh2EWd9/9kJDguaFncfzYP2Bubroe+fnyy8dx/2vfiX233iuk6Yzs1YmII8IV4UeXaArf97H/wH3wggzOnH4SzzzzqExcawizXnB2dgpPPvkVdHcPiI9fJrVXdC93sEPAIbD5EGDVmATbevdi+85DqJRn8Owz/4j50hyydIMaQMrlEk48+yj6+vegWOw1ATP2182H2mp77IhwBQjq/GCKXK6Ivv5bZPR3ZvBZJEmCMJNdFAwThBnMzU3hiSf+HsXiFlQq8y68eQVYu0MdApsVARrbff17ZZ3CifEhzM5OIAgydRIkLn4Yin4ZHxtCsXOrDAgbdUc3K3LX3m9HhCvATmtAcESYQS5fRBSVUa7MSqqEDAmXXCvwA4zI8iopwiDjAmWW4OO+OgQcApciwPiDfEeX/LCwMCMGthagoimuL2uUl8uzdpeLQKgjsfIPy9XjWfmVNskZdD4kaYSoVkYQZqXmH0eErV48luTpU2obMtzqULfPIeAQcAjUEYijqnzO5Trr+5qViC3MpoRplYtzjTaBtaKPjghXBBdF0UOtsoCJiXMyMty58zA8T/36zZciOSYMf+7fgx07DspaY82/u88OAYeAQ6AVAkyYn5q6ID/19nIOsAdxHC9Kj6Bu4ZRLX+/eplxCJURLi62u7fa1RsARYWtclt1LIeWCl2dOP82xIfYffC32779PhDGqVSDvqCoBMocOvw4PvvnXcP/rfg65XIck4C97YfeDQ8Ah4BCg68jzMDZ6BnOzI+gobsWddz6IfK4gi4OzwHYUVeX7XXe9BcWufi3skcSIo5rD7xoRcHOE1wKc5+PsuRfR/9IPcPDwA3jdG96F/m17MTIyKOsMFopdkke4feftcvXTrxxHpbrg/KPXgrU7xyGwyRDgQt2l0iyeO/FPeN3rfx63HHgdCp1bMXTmhOxntapb9r0G/QO3IomqEjizd+9RKb02NjokUaebDLJVd9cR4Qoh1Dk/Xwjv6R99Q0aABw+/AQcO/Zi8my83NzOKl04+hldffUpcG7oSffMR7rNDwCHgEGggUF/0zfMxePpphGGIO+78SWwbOChve2RcW8Bzzz6K3q27sGP3URw8/OPo69+Hbz36V6jS6HbLu1mormrriHBZmJafeCYZct0vuimefvobOHf+RakF2N29XQJoFkpTGB8/C1pnc3OTcixdqpe8pGL8JXvdDoeAQ2CTIMBUCfGGSq0qDYGRrnvMWQZeeuk4xsfOYffu29Hds132zUwP4+KFUxifOI/e3p0YPPOMeJtKpWnUosolJMh7sAiIM8SXFypHhJdgQwLkdDMrPFzy46IdTKynkI2MnMHoyKDk/cipRvDAVSiCQAJsFp1ov4jVdoWb2GPd1iHgELjpEKAKkKJTLSpPkbg8L8DExAUhPWtMC3kCYHrW+Nh5jI6eFRqlvlm6yg1Xr5d9boR4WdlxRHgJPBpzRQvqSkzIiqMU1iDgOSmQ0rHBZVLIo1cDLS012wBLwPa72zoEHAI3LwIp/CDEwLZ9mBg7hzRknvEyvaVBbX6ilvCFPY2u8T0EKXWNjixVb+nBjFz3fQ+7dt0uhMrgPjXyl7nPJt59Ndp6c8FjXBW0okh0SobLSajQngiXHEkLzpyjZ9rzl4GQ6xT6VsSXOcbtdgg4BG5KBDjCO3rnW1CulHD+3EkJcmmpaWSn1SXNWwPLopPUsua/+Vwetx95ALv33HFFo/6mBHgFnXJE2BKsRGqEbtu2F6dPPyNVYYTf5NhFUicjwMYllDr5nYKYIlniFlUh5cgxjmsoFrowsH1/43T3ySHgENhECLCCzBY88MZfxOTkBdSqnN9brvvNBGj0yKJD7e+6k/Z8oaML3T07zVE8Z9mLL7rSZvzipeJwbgXsZoTD9pl4+JifG8dTP/x/srySwKSF4e1BK95qRJi6NDqLPbjn3ndg526uTmEr0zhBXTGo7gSHQNsjsNZ/906/X15EPDgivAQhKzQUTg9pXMXMzBiiuCrrEC7vyL/kQpfs0JgwdZ52dW1DNlesjx314LX+g7ikSW6HQ8AhsCEQaNY7G6JBm6gRjgiXPOxmYbSf13IOj/fgmwRot0ua5L46BBwCDgGHwBoiUCfCNbyHu7RDwCHgEHAIOAQ2MAL/HyOu4Fc6oGZWAAAAAElFTkSuQmCC />
  1.c > a > b = d
  2.b > c = d > a
  3.d > a > c > b
  4.a > b = d > c"



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

Koolkid240

  • Sr. Member
  • ****
  • Posts: 357
Answer to Question 1



Answer to Question 2

4




bclement10

  • Member
  • Posts: 560
Reply 2 on: Jul 28, 2018
Thanks for the timely response, appreciate it


essyface1

  • Member
  • Posts: 347
Reply 3 on: Yesterday
Gracias!

 

Did you know?

Persons who overdose with cardiac glycosides have a better chance of overall survival if they can survive the first 24 hours after the overdose.

Did you know?

To prove that stomach ulcers were caused by bacteria and not by stress, a researcher consumed an entire laboratory beaker full of bacterial culture. After this, he did indeed develop stomach ulcers, and won the Nobel Prize for his discovery.

Did you know?

Hippocrates noted that blood separates into four differently colored liquids when removed from the body and examined: a pure red liquid mixed with white liquid material with a yellow-colored froth at the top and a black substance that settles underneath; he named these the four humors (for blood, phlegm, yellow bile, and black bile).

Did you know?

Excessive alcohol use costs the country approximately $235 billion every year.

Did you know?

People who have myopia, or nearsightedness, are not able to see objects at a distance but only up close. It occurs when the cornea is either curved too steeply, the eye is too long, or both. This condition is progressive and worsens with time. More than 100 million people in the United States are nearsighted, but only 20% of those are born with the condition. Diet, eye exercise, drug therapy, and corrective lenses can all help manage nearsightedness.

For a complete list of videos, visit our video library