This topic contains a solution. Click here to go to the answer

Author Question: Rank the potential energies of the four systems of particles shown in Figure OQ25.5 from largest to ... (Read 277 times)

bclement10

  • Hero Member
  • *****
  • Posts: 560
Rank the potential energies of the four systems of particles shown in Figure OQ25.5 from largest to smallest. Include equalities if appropriate.
 
Question 2

x5BjSNIHnh0AYwA86kMY5IImRsNJ3rYakPI/ySydQev4phN/8BxTvfxBdb3wIvowS+Xxic+0N+Qyu0CgPg2cG8YH3fwDffPRRvPe978Ujj3wWW+s+e4t2ayHkGsh0kbbvy4zoU2Boeh4nR2YwMVdFLUkQ+B58D6DFHiaoKy7+RkV2bnoer07M4vuDYzjU340Hbu3DQFehrf9g2/c5boSWUzmJypPtyMwCXhydEQKkvPiS9wZkAw9hEMrfDQ2sKElQjRKMzJUxODWPY0OT2N9bxBs3JAhaAAAgAElEQVRu6cPerZ1X0ncboeOXaYPqj888/DA+9tGPSlWZz3zmEUm5apx0eR3TtvqlSWUy35ELMQ9NzeOl0VmMz1fAZx94HhhPTx2TCVIwK61ZJs5MlXBqfBaPnx7DkYFuvP6WPvQVaXQ3XbwB5KJPyxAhwfYQXXwVpSf+EbXhM4Afwi92CbOSgT0ycZIgjSOkUQzf85H6PtKQo8IMvGoV8ewMJr/6JZROHEPvz74XuSOvBezQdVEz2uGLh/PnzuEDv/5+fO+738Wv/av34bOPfLZpjT0PXIKIYczM+dGXCm3zmmmNz1ageeSVH9T6ImTb56FUjfDchSkMTZWE7HJhgA6PxQbUMiPN03KPSYBJAj8OVIA9D5k4ETfX8bPjODk6jQcPDOANt/S7dJH1fbjrcHfjyvQ81OIYLwzP4JWxOdTiFJnARy4TqAfeWPxJCkSeh8BPEMQQXUPDK+P7Ik/PXpzCydFZPHBrP960fwDZ0LjH1qFn135L1Qef/ewj+PjHP46+/n7894cfljJr9poMnOFSVHSVanI8f1msY5but+dufB1T7wrmKlU8d2EaQ1MLENdnJoAnozouvZRIKhpHg0KOSYow8RB4PgIfqMYeylGCxwfH8PzwDN56aAD37W2eqmsg0vzJEKEVTKOTPR/VV57G/Pe/hqSyIAToBQE8Eh3PJhMKCbJRAVI/Qup78k5qdHEAvswl6Zi1MnQaw1/4M/T+s/ei800/qz2WISs/NhNCc9M20mcPMzPT+J3f/m089thjeMdP/RT+4A/+s8x5TU1NynZ8fBy/9x9+D4cOHcJ//fSnzXyY9oHCKVZO41kv6RwxsGSz5Kd1+2raI1YPrXcPU6UKnjw7ialSVZRNEFA8+Z8ey3/pLk38FFHMEaKHGmIhOvmN1hw/ZIG5aoQvnziLsfkKHrp9F7Kh3zT/2A4ysW4Ppk1vrDIicp6qq6pUqeGpc5O4OFNGJvDE3Uk5078GnWWOUxpWCXyOBulMkstQXwVIQxEl4YKFWoyvn7yA4dkFvOuuvShkqdrsPdtDnv7+7/4Wv/+p35do8o9/8hN46KF3gIX+5eV5+JsvfQmf//zn8cgjj+Dee1sva9YgwjYSE/uY4GFiviw6ZrpcQz4TIKSbqT7Op7EdiH4JkhS+x3eCmpfIk05Bg5zaSGVoulLD3z4zJDrmbbftEK+VcJfxdjYjpERYFy4KqCHBx78KxBFCjgKDECRCmQMUj0bzaJBEGCDhxT3OHAExSS5J4MUBvCCE31FAUlrAxP/5KxHOzjf9nPZNyJLN2fiC+pdf/EvJxSkUCjgzOIh//f73o1zR6vDs+sJCGS88/zx+4Rd+QXpD4vyT//YnOPXyKfl7PH36tCwS+Zu/8ZuSRE/fNqNI9+zejY997GNS+aHxh9v8iNbrs3kmsiEJVnHszATmqxEKuRCh74srVFxY0kRPffZ+IiNCz0vhUXHJb5y78dWfH3hIUk8muCsAvvPqsFh4P3PHboScTKz/UaxXv9191wwBPlvREx4WqhGODU1gYr6CQpYKjxa9Gk9WG3AkyL+TiHqFSk80BfUM/Q4JEs5T+5xu8JETuYIQK9XgP79rj1xX5MlecM06ttoLexgdHcEnPvEJzM7OylTLF7/wRXz+f3xep6L4V+QBZwbPYKFcxvT0jNzwie9/H3/+F5+TylUXh4dRKVfw5S9/GUNDQ1KBhko/TmL8/LvehV9+93tMIzfYH5jlAE9JkDKxUIlQzIQIAx9UCTKQMGYN5UF0Z5LC49uGnqScR/ZkdEguSnwf+QywUE3x6KmLwn/vOLJTjPNWT0uIUOVTxSw6fwrzj39VFl0NOorwMhlxdcKMCOWJiGs0RhJHQFAT4eYIkLzMeTA/SbSsGM9JYnhJAC+XRVKtYurrf4ewpw/5Ox8gZbZq04bc17+tH/fcc4/8KbJ80ejo6KKxEB/WkSNH8ZNve5uMnFk2jQsWn3j2BMJMiG3bNGjoqaeekvkOHs9I0ltuuQWM9uoCi+huxJcqrR+dmxQS7MgE4r5SIaVLQv9I2XKOBuOUEX80gtQuo2yJ2koThKkvJEnyDD0PMZWfF+CJoQn0FHL4iYMmsGojwuDatEoEKCeiaURJP31uEhOlKjqyIbKi8HwxhHxfrXnejLqE7i+fcXiUJ7GTqGXUmApTD0mgMhWkqbhKkyDA0+cnJYLwp4/sFGW6yobfkNPDMMSRo0el0DanTybGx1VPNPlbGIvwwO1HcPDgAWkT1/t87LuPCZ6ZTAaHDx9GpVLFd77zHTUZPEgSPhes3ZCvJhKcK9fw1NAUFqqxyARd5NY4IhnKwzc6hjIRewnE2Db40GgKyUG+L1t6EoKEc8y+DMy+d3oUPYWMzCXrcG0xIppQL2t7+WBaxMzX/xrR1DiCQhF+Ng8vk4UfZgDO+zE0x77iGAkjRvmuVpDIuyrbtFpFUuG+KtJKBXEtkv2IIuHR3L796P+VDyLs3WnU5IY32aTXLIlWq0X2mVgkZMtnyj9iFuDOZrOyb2pqCqX5ktoy/Ctufplop2JnUXz+zT9tiM/sECet0wRPDU3i9OS8uJsoWNkgEKXFERwJjQ+Vc4RivYsLK0E1TiVIhoENjPyrRLF8p/++GkWoyD7uj0Ch7cln8S/u3osD/TafcgleGwIU14hrRkDkSc9+4eIMnh+ZFq8A55gpU1R6VH6c5yEVkjItEXIekfOHEkEaxagmCSo1lbFKrFGEDKevRKnMGdIQo2v0nUd24Z49TD5vB1nyUCrNY3Jysmn+bzHaxIMJ8Vu39sgP9CiNjY0hijj9sPjYxjcPvb1bxQvV2LcBPlkSFA9iiuNnJnB+egE0tDnHyxF+IHLh1d2j9KizVCWDqeQtgXgqFxVGk8ZW16i+YRqX6Jk4ksCavkIOv3T3Xuzt7VrCOzah3vMRTw2jcvJJRGPDOidI4pN3Fl42Cy/MwstwACmtQRpFMg8mMZAcAXDkF8fwA/pwfXiBr3OK/Ewrj/OLfFq+j9rwBZSOfRPdD72nzvQb4NFcoQkeBga2X+EY+zP/jIGenq3ytnuX3+rxy/++Xr+kkhbBwBix2mlticLyFo0K+Vgp1yRC+uw9WuqMJPYpzB4CWmccAYMjSLq5dM5UrH9+TlNwjueJwXHs7O4Qi1B6bMh4vXrv7nu9EfAwXarg1OisyBG9CjSkOA9E+cqEGvQg8mSI0I8TMFaQ/ia6vqhbRJ58usaSujyJlS+jBE2fqEUJjp+dkHD6rYWcdsQq3+VZ43p3eAXXU5LTyi9XOk31BYv3b9++40oHm983qI7xPJydnMf56ZIQoBjXEilsPU/qdarrGD53mUfWucAkjcVjIHpGgmasjiG12FQablPMVWp44sw4tnd3aEwCkTE6pj7EKz9/DJWTP5IRoAbGhDo3SDLM5ODn8/BzBfj5omy9XB5eNgdfXKc6h6jziL4mdbDl9TfTznTkYG+88OJTiIYH28RaE8R0ZGemZXUyi8LV6m1ls9VvrfbZ4zfQ1mNocoKXRuZk7i8QNyYJDTKXQ+udykuiRjMB8hn9zuWqRJhJgoz0M6RnhZJbun6sA4zfZQzgARdmF/Dq+GwDBCv9jT3uU1sjkOLlsTnJNRW3l0SCKhFSZjK+jgaYIJ0P1fOQCagQA2RYsEPmETk3rXOJDdlS9SKSxH9Mlg9dry9cnG4jxFrphlb7bJda/bbcPnvOBtp6nniHXh7Vv3nVMUZv+EyboYEUiI6hTEjahBjj+hsNKNExEq+gxjX1iugY6h0OwIysUMfQ8D47XcLgBL10NjiPeBlnaVqZR+WV5xCX5oT8RDHJSM6HL+kQoZChl+uAl++AbDlCDEIJoGFKhGT014mPDfANIzcaKHc0DBzPzaD84lMb6Km4pixFgDmCI7MLqnho3wiJMYydikiteSosFVJjwRnl5gcm8EEE0dhGIpi8C0eOKnzUW/xOceSIkoqyVuPcsQroZXw+S5vrvm9kBDxIlRjmhlEh8fmrUUR50kAZKj66xOge6wgpTw1DSr0HhvDoPrVKjgrOGFtyTcFAJhPFwTo4WZKRQJ0dxfDayEBtkrYZA3h0roLJharoFKEPQ2p0kZPkSHbUMR0ZBr80ZEKNIdVJcp4QYGNcRdlSE5tspuqE1MP5xVOjGmykoqJjQfk3ujiIZGaiERWqUiqCyihSRovSpcnRn8wbMoqU+7TlshW3p9r2cp74c6UlwtH6dPld9Bv/8VA79wrSEhslTd0kEtA+3aTPPkqZyCqmUZNh40slB5Kd5HOJNW8Jko+zoZzsk6UUWPdDY59iQQHlm2I3Nl/FxELVgGTIsH0gcy29DAIXpxdQriXqEaCMmL98tdp1pEdSzMhowEaRqlxQRdTVR/M9rDA17zOGFa87W6mJMSc/W0FbdKz7sl4IMP7g3NSCzN9RZ/BR8s1QlIaRBCFDeqAyQowqF6QeawDpmaorWoqDdFAm8UTHjM6VtctNB4tuqg29hCSOFwfDWIucWwoQyxsxkSeqSWoEGGAjgmW2cry5csq4LhMkJmW2lio0nTOszUwgmhpZr+fg7nsZBDjHMjJXEcNFn55GBPOZc9Le6hQmtjKBnqM5vrmfJy194jxn6UtF02pD/hH4EgGngioStPQU971NEaC6YIksyoiqFCsjDMgyMmW8AlqQgfKkdnML0amjYH+zOk22RnSoIHmtkdmykUvKmj2yfgn3YZ0QqESJ5Pg1PxJKRbN+oQxYHSNbUpFpr4iS/lPvwaVaxv7E566R7LWEATb0OlnTHLpCfeXsKXhBRhsQM+eLb5MryIikIEIa1EyuoCdEKNGiidYY5fHMGyQ5WqFuSJ4ZlrI9bLRhfhlpsobg5Aiw65DRhrbRbrveCDAyb2qBmX6qsFjOSHK2SHhcSSNhVRCqmgQxiynQ7WDr/5EYTX1IygNSjQIUojTiyN3NLxFJo6NYvJvn0Sq0MtN8rPvcfgiwytBkqabeIlF2Yltr7qkxpiKWVhMy1Mcu8iRGVqKFGixh0igXuSIOanyp3lHiJNEKF5pRw1w1FvXEKET32jgIMJKcBbTpCeIzE8OHz1bGVlqdioU5Kkgkl5RhU1EcS4EFKdxhjG8lRtUxi3hnSVeprTiK5It5rNkOygMVkYkarY2P6nyfCFfCUg6STK/l02oSqSWNTZj+oHXghAhrVc0lZD4hq4GTRIUQDas3C6w178S/L/+ocVbmxKV7bTQEKjGJLhXXpwgmE5dFYamfnXmjjBRmmrOfqFWvZY+43BSF2JZasyNFtfAbowHdz2tSNOs+/8BHRc5PNAdM5XajwePas0IEGO5eqkVyFkkrMQnQjATlqC3yWI5PCZDzgXqM1haVvDEp26fzyKKmTJQyU28oQ2pkKSmKb0HmDdXNxtB6iTZdYZvd4WuLQKmWSEAeS+XJ86N+oTwYw4hFFGpejCTVqRhSCA1syoO85blrSoWcT6NJDHcjD9ZwEqtbg2VoXFOllKoxtthKmDAjQi6lFOR9JTEpnRarG9TnKFAriHAU4LGGH2uK1muM1pDUqpJKoStQcIRIQlRS5GeaYhR6oXlyLx3AJr0ik8niiccfw5f/99cbI8W1xd5d/SoQYOrDwP4jGLj/LfBFUSUqoAmknJEv5dMSpMz7olw0pU/QitccH60Or0KrwkvlxnJZrDwkdpF43XVoqESowRHqar2KhrpD2gQBT+YGKRf886c3QdyfsRKgqia165kaIYVjmmvWGuWnrjGz6gCJkfa8KDslUP3McQNVDJUnk/QDzM3P4798+tOYnxw3S6W1CWw3cTPTJEb/waMYuPfN6gUQQ4fF1ulZYoBlQkcS+DQDVqkSY1uNHlvHmB4EfmYcg8iTIUaOxUSHkBjFo6DeJatjaGjxPH2ppa0l1kzdUGZ6JZEvuYBpJDOWciyJzA9IjrbWKP0XJLtI5gxTIUMm17MAd6RuUv4ub7aKn0XrgRVqhAgZKZYJcWHwAr76tcdkeOqM/40h+XEU4b4Hq3grhdSj9aWVPfiZSovuUIoRKzkwsmsREYpAW7cGXVJaco0WGxWZCKasTmErzmiQDYNueC2+6d5QenQSsTEkYvWtEAOIOoDuLS8Fa0VyqxVjdL6GPweSJyYMJ4UWRMGZJGqm89DQssYVr8lzLEHyM98UIStLoedL/AML5V88Myi6bfW9cVdYLQKsSnb/WxP03/2g1iamjjH1Q1k7lAqGDsjYpGtxJCczcFDSo1GlsqBkKLqlToicolNZoJ6S0muMVG7SMZQRdaCrptESayQqklgawJcC2jVhYh7ry91jxD5zBZl7oUIq84Ey8uPyS1V5S6WZOBJ3KQNrZOQoo0EZ0woBMuHeC0N5c9Ly7T/zs3jwg59Uk2616LrzrxMCHsYXIjx+cUGSliUVRsqmUSKoaXxxQdCyty5NETwjpFRUVGB0rdZMmSxRXlRiVliFICmmqSZXm/wgEiJXH+B1rf/+OnXKXWbdEEiRDVkWjVMn9DCpG1SMKto9ERPlgdhnWo0aVtRkdZJrkic7b0h5olFFchSSNaHxNLgkwlBWp9Br9XR14i8+9+fI0eW6bhi4GzcjwGd/dq6KHw6XhY/41+7FzC/WFzVDxmcpNRuB3hj902ziaLCuU4wXysoEdU+UJogZv2Cm56QQCKORzVv1S6NFQoR+Lifl0GRpJfprUYVvCI9uMlaMgV/T9AqeK+4ILsGkblBwHUJTbi0hobKkmowOZYwqFhmlWirTSF6ikiHCEF1925C56uoIjYa7T2uLQEe5hvjCK0jFTUEppehSBHX+RnIJbSKraYrO+6hbghYb5wpraSLvusISIdXRIYVUrHdxYZlqNSyWG+rSTWvbQ3f1G4lALgzFImfZK1/yjuld0FUDEhbM5npzpgKVKEPr5qJFb9a0pBFFOaKBpZ/1OxWgjjipPqlA6RLVBHwualLM57B31466kr2R/Xb3Wh4Bf76CY8OvmpVqKA8kHeNtkpKNrEVMY4a6h2axBtJQasTQphFkSu+Jt4CykTbmECVOIdW1UuvywKo1Rsc0t0yIMLt9F0ovPQ8/lxe/LH3tcmOOAiKSVqR5g9aisnM7MvqL1fUZRUhq6h4VEuQ6hSyzRVepEKknRMi6pbYajZ/NwevUunlq/Tc3zX1eTwRojeWCQAptq/XEeV6SoI84SBCwnBEteBFQCionqtWHT6XG0T5Xl5YRIRWXUV6MHhSLzVhq9Qo1ptYkLbbOHJUme2/tw/VEwt37eiDA59yVy+BCpSzrCqprSsvuS8AM3VbiYTAhn6IIOYrUkR/nlUmAJDzKFg0tRjbLqMC63emqN3Ik9UulmLeHYjbUVRycl+F6PMrrdo0cXeSeL2tS6t87WcAGSgWI/ViIkPqHJMia7apjaGw39Ah1CvWLeKC4NYYRR430KrBIg9UzrFJEUmSx92bOUSK89Q7MPfNDcV2K5U+/O+MBZR4whB/roruLFVOqI0I5hqPDGtKauliluDYjSGVUqPODflYJUEjQlGXzi53wt/RfN2Ddha4fAvkwxNZCVlYIoLBKPFbqi0IJUuNvT6xEWHtNFReJTuZtjOvK+vKlaLKQJC25WGYbWUJJ6kwaS40l23o6WLRcrylGotWa16977ko3GAEqn/5iDoMTcwg9qh2r8DiPTKPKlk4zk3wyT6zH2DUJ7ciPik5dY9b61yLM7JLKEgt4a0F4FnDuKWSbXO03uOPudssgkAoZUcecNdWGNBpYje0gNSRIL4FcQZ3aMmYkIRodI4bQIjcpZcIG0Gg6jpbpMyUgOfUSamnI5oYJEeZuvV2WW0rK9Nf6Oi/IyD7O5wUxYvpupcIMm2RCBKmhyLiMDDUuUnGVWreonXekwgt8+NmsjgSzrF3KIt4hwr6d8IpbFjFzc+Pc5/VDgBPLe3sKeHFkBlUaO1z7TaxzrQpP653rxImQNnGWnaTWeZtGYAMt+PoEN40kLtIrAqkCqpaah858iJ6OzPp13N15zRDY11uUNQhpEIlCC1JwKSXOA+lCq2Z+0LSAxzTkicaVUXJ1IjSEGOt8oi31Z2tScl6S5dr6bdFtua6q1TXrpLvwVSLgIRMG2L2lgFfG52TeOAn4vKlnuGSbygXjZuo6pkke7Pwx3eYyGkxi9RQYLwFHhxxdsjwbjes8K9OYBQO25DOaoyzjS5UHIcJwYC9ye/aj/OpLGvSShLroYUjXqFac4Qr0kuBsiFBClYUMNVXCzhfK1o4EZXkQQ4IkQJJhNouA73wHMrsPSSJ/8xD1KlF0h90ABA72d+J7p0PJ/0oD6KKXdGGZcmjiMq3779We4chRku/FXWUju+iuoEuL39WlQVdFs+JS5eVhoJhb7LZwo8Eb8KRvxC1SUXp9xZysIi+h8bSlKU82mo8r1Cxqis0H03ln9TKoa1RHhJCldzgCoEudoz9brJufqfj6Cll0cYVWeTkSXATven6hheN5OLitEz84My7LtIlxlNI44hqT9Dqx9osUpVUyFCJUmRAXqXic1F3OOWMu/cYRIqtikUztogB1mSAZBj62d+WtsqqvkSlEyFqinW94O+jSXDh9SgprM2GapMa8PyFAtqqulDhJyGtJCQAJhmEyPTWgzAsycZZzhIz4oUs0lwPnA2Wby8PPZBEO7Ea481Zt0Ho+EHfv1gikCbo7srhzxxZ85xUuQsxQZuYNaoi7BDYYebDqRS34RpoEFZd1Z0UpxIdPlwaFsSMTKhGaFSy4rzOXwa4thdbtcXvbHgGS0327t+IfTpRkBMAo0ZBRpCywzPB2mvlNM8NWnmzqjbjcqfxM5LF6GBJZ6osFmTuM9U+jKhv6KGQC7NlakHxCZ2xvQPFJU/QX87htWzeeGBoTfqF+EbngwMtEpS9tOQdh1jVqp2HERWrmj4UEfaNjMlzbkKNClYnuXAY765n01Fwqc0qEADrufD28XA4L//NPZTHdJBPKihJpwJGgIUFLhGRzvkiWzEGkANcT8Rkkk0h1+CCfk2syCMfjMk6yckUefqGI3MG74WWp9My19Iru3w2DAIXEw/17e/Hc8DRY/5PzhrJwqo3wW4YIKQ4UVlVYOrFNQaVCo4KyqwuI8qKgypI7Pvb0FLGl4Kz3DSMC17Mh/DP3Uhzd0Y0nz03i1Yl5WVEgYS5hokvmME+VL2tY8TNlhupmUZ4YCzvQXc/Rg6xWEdZliqtW6AjAx/YtBfR1Guv/evbFXWv1CBgO4iDrDft6cXJ0BtPlqugHDsIiSbNZ7Cq3NxV3OcNnbCqWGNm68DeP4UiwIwxREFngEnFGx4RqGBVzhvZE0FTatPgeR3ZBBvnb7kPXA29FvFBCUq5I1RhWneE7lXcVXH3evmUFeq5Gb97MJyQhcv6Prs8gn0fAESC3HR1ChEEui9z+owh3HjAk6IjQPuANt+WoMJ/FWw9ul8AWlshioVxZIZwrzJtV5stxAr51NWhuuTJ0Ku4OrkDPOSG+6ArlyuGirGjByzqGtNgCbOvMY9/WpppHGw4M16BVI5AC2TDE2w9vR0fooVSNVGYSyoquKk4ZsrLU2HL1cStPKl9UglR4xUwoIz/xMNDLYNbF3NqRxf7eoqyc4oztVT+5NbiAMiGnUno783jzgQHxHlEmqpGVAeoRu8q81S+x0SvcUmYSlGuRxB9wqoY6hjLRkVUCtDqGckeX6N6e1jrGSylRaWzcnj6S0izG/tfDKP3oGMCgFo9l1RhDo8xZR8SmUIjFpiHPXJqJuYKyXFNO5wJl8V6SIAkxl0N2zwHk73sb/Hxnvexaw+Vav7r7sN4I0Djiy4z6vnVqBF8/eUGsc87HUOjEZW6XxzH2jFhplAmJCtTIUObtcMKaIz91U6iQ0nKn4DJy7M6dPehmkIyMHJbI2npj4e6/egSsPIky8fDk0AT+/tkhUWCMKKV64RqX8mqSKR0RamoOPU8UR0aYNtxdHAHqm0qP5NidD3HHjh70cy7IzEWtvgPuCtcbAVmsQVSMRpt/7YUL+KeXR0wFGCsTl+qCukzIDJ2ubUodI4v4Zigb6hWQIBnqnQwjlvO4a+cWFHPW49TcG1N0u+GMSOAXutD/y7+BCS/A/InjIkecskwZw2xdoiKoyuh08PusOmMW8PVZNYbrFuaysoJ9wPnBvK5mn911K/J3P6gkKBE7S/wgzW1zn9cZAT5kK4Qp3nxwQNrzzVMXUY1Sk+dnyNI8RuvY4ml0cwV+KIqJ68vRJco5IioqcVVwhXuTKnFkxxaZj3SW+zo/8jW9vZUlvcl9e3tlKZxvnLxYz1X1PEYni3YzgXlUOTS4tOJMIAEwzAmjHGlwjCVEKjvKFnMVKU9CgrxVXYbXtHPu4teAgE2M4COnEfT223bIKiE/ODMmrm8JxrO6ZZGBbGqHSqCVj2xT7ij1DGUinwllS5noLWRxZKBrGRLUhuuI8JJ5Og/J3BRmvvE3mH/yMcTVii7OK5pOGyGOfK5CH/iSbG/LpnEruYKMECUJZrIIOgrI7LsN+TsegNfR5eYFr0FoNsIptOCODU7ge4Oj4FJJakBp8QUjTqLAGPgQchFNkxsoRCjEp+THHC9aawOdeRza1o0tkjeoNLoR+unacCMQEM2G5y5M4VsvD2N0vlKfG5RBnMkfozLkm/JEuWJQFT0S3NKjwKLaTJimUdVbzOJQfyf6O13swY14gtf1HvLQNTr4B4PjeGxwDHPlqjx71TAqL/Qc0BNVryVrZIE6RQ0kDYohAVLH7OjO41B/l6Rl6UCO8S5LW+6hNRGqJAJJDQs/+h7mnngUtZELEkVaL5pN15isXO/Bk3xDrR9aJ0ISYj6PTN92ZPffhcy+o0CYVXeos9KWPok2+G48Ap6Pocl5HDszjqGpkvjrrbLScGeNArSKiy4LEmLG8xGGXt1qZzTfvp4Cspl6vFYbYOCaeN0QMIqPWmlkdgHHhybw8tgsFmqxBmSZVW8YPk/5IgmKgUXr36xgz0lJI4UAAA8QSURBVG0m9NGZDbFzSwG39BZlDvq6tdFd6MYhQHngS7ghxenxOck5PTdVkrSruo4x6VqUBTGQjCxQ31AWJI0mCLClI4M9PQXs3VoUo6nubbL29iIOWpYI2SJmMtJn7yGeGUX5+eMov3wC8fgo0khXLqdjv06CUkw7A49zg7kCwr4BhLsPIbvnMLyiKaNm5wkWNUL77/7d4AgsenYsixSJsJ4am8PoXEUIUXughW1FULlCheTu6AiQI7+BzpwoLc7jyEsMvUtMtA0OhmveqhEQxWeqyLBYQxKLgXVydE5WlF9gYQ7jcxDrvynXkNZ+JvTAUPj+zjx29XSgl14FESMnS6t+NutyAXWJy63lEfqo1GpiHDHCeGyuLEE0HB1yRKhxCpC6odQ1dJVzBEgC3NbZgV1b8o38UatjFpFtcyeXI0Ie02Sx2bFksjCDaPQc4pFziKYnkFZKslaGBNQwT7DYhbCnH2HvDvhbB+DliuZudjTBr05Qmx9B23wWeVj67FgsOcHkQhVjcxVZ0X6Bq4Gb1eUprIzmY+1Qlk1jqSvOD9ZfIqD1b+7DZkKgLk9GAYpxTPlKMVmqYHy+gon5qowQmTBvrX/O/3TmsxJYxcjQYpbBfEvlcjMBeRP1dRHnNPrFKlWUh/H5KqYWqmJ0czlBVr+ijqGLnEUTKA8MuOP8YP1VlzPLaa1k5XJEWL+S/dDiAnEViKoSIejR7Rm0isixY1F7Hbe9uRBolgvmlWpCPZ+6dV+YUFDtNgWTL6e8FAf3bwsErEwpSZIIKTX0T1GmLh358Vd7TovLuV1tjkDzs6VMaMUq6hBxmZpgY5UQo19W1OMVEaFhVN5A2lW/+5JbXktDllzCfW0zBKwiss++WXCb5cbUqZWflxzTZj12zV1LBFrJkZUxe18zkuRXZ1RZUG7ebUsDmjrEygq7bj+vVLfU0yeuAj/bEDmUCq0ROq+7Vnrzq7inO6RNEDDPXnRVs3DaAu1N3XBKqwkM93FZBESn2TlEkp5Rcs3y0/x52Qu5H25eBCzxLTG2r6HDraNGr+FC7hSHgEPAIbA2CIiFtTaXdld1CDAy2aHgEHAIOAQ2NgLO27Sxn0/7t84RYfs/Q9cDh4BDwCHgEFgFAo4IVwGeO9Uh4BBwCDgE2h8BR4Tt/wxdDxwCDgGHgENgFQg4IlwFeO5Uh4BDwCHgEGh/BBwRtv8zdD1wCDgEHAIOgVUg4IhwFeC5Ux0CDgGHgEOg/RFwRNj+z9D1wCHgEHAIOARWgYAjwlWA5051CDgEHAIOgfZHwBFh+z9D1wOHgEPAIeAQWAUCjghXAZ471SHgEHAIOATaHwFHhO3/DF0PHAIOAYeAQ2AVCDgiXAV47lSHgEPAIeAQaH8EHBG2/zN0PXAIOAQcAg6BVSDgiPCK4HEJmKZ1r654vDvAIeAQcAisBIG11C9Wf63lPVbS1415bLgxm3Wzt4pC6ZaWudmfsuufQ+DKCFAXrOV4hHomdvrmCg/CEeEVAGoQ1vUiLmuZOTK8IvTuAIfATY+Aj2plDqOjp1FemIe3CjWjmsXol9RDd3c/+rftg+dnACQ3PZKr6aAjwiuitwrJbHltXq/5mpYYWx7sdjoEHAI3LQIe5mZH8cNjX8bw8Gkk6WrJinrF0GGaIhNmsf/APbjn3p9GEOZuWhSvR8ccEV6CoiUmJazZ6WGMjg4iiiqXHLniHXLpFPB89GzdgYHtBwwp8odmclzxld0JDgGHQJshkKYJnjvxTZw//xL8IITv+VeMRvBET6RyXIP27Ce7hYwso7iGl07+AL1bd+HWg6+vk2SbwXRDmuuIcFmYPYwMn8TxY/8X01OjKlnLHnv1P4io0lrL5nDbbT+Gu+5+BzzxhzgyvHoU3ZEOgXZHwEMc1zAxMQzfD+B5gXTIuyoq9OClNKj5PzUKXzxzsQ7hNZM4xcjoadx64LXXTYeZG95UG0eELR+nJ377Z55+FNNTI/AD+thX/7IiyyvFUYQXX3gM27cfwMCOwwDdIs0HrP527goOAYfABkeANnBapzNxGV1Fi1MkaYwkaZxJMm2pPzwfcRyZ0aBTMMuB64iwJTIe5ucmMD83aVwWDQG6WlFtdVkvBVJzKd/zEEU1TE5cVCJczSx5q5u5fQ4Bh8CGRkBVgW/462o1SwoOBrPZArI5nfdLkwTl8oKQ46UdTps8Tpf+6vYoAo4IL5EEFU9xMwg5XdlZccklltlhSZA/i9jz+o4Al0HL7XYIbAYEljo0L9/nNE3RkS/igTf+Irb27RH3aq1WwROP/y1GR4fg+culYjSM+cvfYXP+6ohw2ed+gwTnBt1m2W66HxwCDoG2QYDqgm7R6elh+EGAzq5+dHb2I5Ph6LDVqNIqGG75bnVM23R/zRrqiHDNoHUXdgg4BBwC1xkBj/ELFfzw+FcQBAHuufcdOHT4jeBIsfUk4XW+/016OUeE1+HBJkmMJObkdSyRW57nSyQYBZUCyncQOKivA9TuEg6BTYcA0ywY8EL9wglC6hfPp27h6JDRozrac1R47aLhtPM1Y+fBCmhHRxF9fXvQs3UngiCLcnkaE+PnMTV5ER2FTmSzHZieGTNW2zXf0J3oEHAI3PQILHZfkgDDMIOBgVtEx4SZAhZKkxgbHcTk5EWjU5y7c7Vi4YhwhQiqmCoJ0iQ7dOh+HDn6E+jq3r7kSglGh19BNleQDJ9/+tZfo7QwayK4lhzqvjoEHAIOAUFASY16hiTY37cbr3nN27F9122L8InjKk6dfAy5bF4yr8CQdDf/twijlXxxRLgStORYJv4wfyfF7Ud/HHff+zOyd3LiDIaHX0WlvACOEHftug3bth+S30rzEwh8Qu2cFyuG253gENh0CHhIkgi9fTvxxje9G8XOPkxNnsXQ0HMozU2iUOjBnn134Pajb0EclZGmdJluOpCua4cdEV4DnHSJ7tixXyw1SuDzzz4qyfGl8hzSJJYQ5i3dj+O++9+JXXvuVAIUi+0abuZOcQg4BDYRAmpoh2EWd9/9kJDguaFncfzYP2Bubroe+fnyy8dx/2vfiX233iuk6Yzs1YmII8IV4UeXaArf97H/wH3wggzOnH4SzzzzqExcawizXnB2dgpPPvkVdHcPiI9fJrVXdC93sEPAIbD5EGDVmATbevdi+85DqJRn8Owz/4j50hyydIMaQMrlEk48+yj6+vegWOw1ATP2182H2mp77IhwBQjq/GCKXK6Ivv5bZPR3ZvBZJEmCMJNdFAwThBnMzU3hiSf+HsXiFlQq8y68eQVYu0MdApsVARrbff17ZZ3CifEhzM5OIAgydRIkLn4Yin4ZHxtCsXOrDAgbdUc3K3LX3m9HhCvATmtAcESYQS5fRBSVUa7MSqqEDAmXXCvwA4zI8iopwiDjAmWW4OO+OgQcApciwPiDfEeX/LCwMCMGthagoimuL2uUl8uzdpeLQKgjsfIPy9XjWfmVNskZdD4kaYSoVkYQZqXmH0eErV48luTpU2obMtzqULfPIeAQcAjUEYijqnzO5Trr+5qViC3MpoRplYtzjTaBtaKPjghXBBdF0UOtsoCJiXMyMty58zA8T/36zZciOSYMf+7fgx07DspaY82/u88OAYeAQ6AVAkyYn5q6ID/19nIOsAdxHC9Kj6Bu4ZRLX+/eplxCJURLi62u7fa1RsARYWtclt1LIeWCl2dOP82xIfYffC32779PhDGqVSDvqCoBMocOvw4PvvnXcP/rfg65XIck4C97YfeDQ8Ah4BCg68jzMDZ6BnOzI+gobsWddz6IfK4gi4OzwHYUVeX7XXe9BcWufi3skcSIo5rD7xoRcHOE1wKc5+PsuRfR/9IPcPDwA3jdG96F/m17MTIyKOsMFopdkke4feftcvXTrxxHpbrg/KPXgrU7xyGwyRDgQt2l0iyeO/FPeN3rfx63HHgdCp1bMXTmhOxntapb9r0G/QO3IomqEjizd+9RKb02NjokUaebDLJVd9cR4Qoh1Dk/Xwjv6R99Q0aABw+/AQcO/Zi8my83NzOKl04+hldffUpcG7oSffMR7rNDwCHgEGggUF/0zfMxePpphGGIO+78SWwbOChve2RcW8Bzzz6K3q27sGP3URw8/OPo69+Hbz36V6jS6HbLu1mormrriHBZmJafeCYZct0vuimefvobOHf+RakF2N29XQJoFkpTGB8/C1pnc3OTcixdqpe8pGL8JXvdDoeAQ2CTIMBUCfGGSq0qDYGRrnvMWQZeeuk4xsfOYffu29Hds132zUwP4+KFUxifOI/e3p0YPPOMeJtKpWnUosolJMh7sAiIM8SXFypHhJdgQwLkdDMrPFzy46IdTKynkI2MnMHoyKDk/cipRvDAVSiCQAJsFp1ov4jVdoWb2GPd1iHgELjpEKAKkKJTLSpPkbg8L8DExAUhPWtMC3kCYHrW+Nh5jI6eFRqlvlm6yg1Xr5d9boR4WdlxRHgJPBpzRQvqSkzIiqMU1iDgOSmQ0rHBZVLIo1cDLS012wBLwPa72zoEHAI3LwIp/CDEwLZ9mBg7hzRknvEyvaVBbX6ilvCFPY2u8T0EKXWNjixVb+nBjFz3fQ+7dt0uhMrgPjXyl7nPJt59Ndp6c8FjXBW0okh0SobLSajQngiXHEkLzpyjZ9rzl4GQ6xT6VsSXOcbtdgg4BG5KBDjCO3rnW1CulHD+3EkJcmmpaWSn1SXNWwPLopPUsua/+Vwetx95ALv33HFFo/6mBHgFnXJE2BKsRGqEbtu2F6dPPyNVYYTf5NhFUicjwMYllDr5nYKYIlniFlUh5cgxjmsoFrowsH1/43T3ySHgENhECLCCzBY88MZfxOTkBdSqnN9brvvNBGj0yKJD7e+6k/Z8oaML3T07zVE8Z9mLL7rSZvzipeJwbgXsZoTD9pl4+JifG8dTP/x/srySwKSF4e1BK95qRJi6NDqLPbjn3ndg526uTmEr0zhBXTGo7gSHQNsjsNZ/906/X15EPDgivAQhKzQUTg9pXMXMzBiiuCrrEC7vyL/kQpfs0JgwdZ52dW1DNlesjx314LX+g7ikSW6HQ8AhsCEQaNY7G6JBm6gRjgiXPOxmYbSf13IOj/fgmwRot0ua5L46BBwCDgGHwBoiUCfCNbyHu7RDwCHgEHAIOAQ2MAL/HyOu4Fc6oGZWAAAAAElFTkSuQmCC />
  1.c > a > b = d
  2.b > c = d > a
  3.d > a > c > b
  4.a > b = d > c"



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

Koolkid240

  • Sr. Member
  • ****
  • Posts: 357
Answer to Question 1



Answer to Question 2

4




bclement10

  • Member
  • Posts: 560
Reply 2 on: Jul 28, 2018
YES! Correct, THANKS for helping me on my review


kilada

  • Member
  • Posts: 311
Reply 3 on: Yesterday
:D TYSM

 

Did you know?

People who have myopia, or nearsightedness, are not able to see objects at a distance but only up close. It occurs when the cornea is either curved too steeply, the eye is too long, or both. This condition is progressive and worsens with time. More than 100 million people in the United States are nearsighted, but only 20% of those are born with the condition. Diet, eye exercise, drug therapy, and corrective lenses can all help manage nearsightedness.

Did you know?

It is difficult to obtain enough calcium without consuming milk or other dairy foods.

Did you know?

Hip fractures are the most serious consequences of osteoporosis. The incidence of hip fractures increases with each decade among patients in their 60s to patients in their 90s for both women and men of all populations. Men and women older than 80 years of age show the highest incidence of hip fractures.

Did you know?

The cure for trichomoniasis is easy as long as the patient does not drink alcoholic beverages for 24 hours. Just a single dose of medication is needed to rid the body of the disease. However, without proper precautions, an individual may contract the disease repeatedly. In fact, most people develop trichomoniasis again within three months of their last treatment.

Did you know?

The Babylonians wrote numbers in a system that used 60 as the base value rather than the number 10. They did not have a symbol for "zero."

For a complete list of videos, visit our video library