This topic contains a solution. Click here to go to the answer

Author Question: For the two resistors shown in the figure below, rank the currents at points a through f from ... (Read 92 times)

jlmhmf

  • Hero Member
  • *****
  • Posts: 552
For the two resistors shown in the figure below, rank the currents at points a through f from largest to smallest.
 
Question 2

eH4cBO463drmMnZMZSI9C5cp2yjLXLZ+HVWQvt0PbrpA4BTuKBpRRTaszXNaxLOkZJ/I19OgqOHYOkOAHJgdatcupEHisWynEKAHny2F5sP5EHKIno17cfrw5NHqFu889ff4gFK9ZDVlVc1Kk1P/bdipm4+y8vwsMioUrUmTbsLSviUB2ZbUZKEl9kkRNQVBQPRMtp1iYwh8gHWXaCuQ/g6YefRBHCK/YjmMYhBbrABsPrfERTlyT+aBA92YR2AAAgAElEQVTnywq9/4FD23/Cum+3QPN50LTVhRjRr3Mwt7H1ufzdyP8BGC1lrvuhJqSiaRMibuq2kQVagJee+ieOF1EoRRKaZmeAxjkn/+9t9Ls6F0kOyhaslFj/tgasTOVsR0pyYOJE0/aduPK97jyjujKtQ+/B/Xf+AVKna3DvWMPPVAYL8bUEAeMVL3EsjQmhLtlnpD3h50jYuvlH3P6HP2PzES/6DB+LGdPfQrO0mKASxpXczpZfGGRJ4X64xNRstG6QCr9eDCWKXobGYzflb/ehKLkzcgd1hFeOQOuWbbB0zkvY62mA264dxP1OCs2RCzK1jNXhtFWckpHogYY8ZIzIHYvBb83Cmy88h0vatcCF2dGY+uqLKFSb4b8v/AUyPACLMPsmVtdjnclPnYzISBf2/LgWd912G5RIBbt2/oJVS77EKZ8fuXfejycevh8tM1INGcivJ7bAoABnFKjRmbj/4Uew5tpb8fgDD+CpP/8OSxbOxuofCzD19Wfx0oPDAfcePP6X27B330H858U3kKRKfHhO5/nJwwtQW5ESGcU08VHWGVxpbTBtwUd46eX/YcmC6fg5Iwc9R96IcSOG8AA/n6bAwZPWB2zs8NJ7lWtLHMM0Hc7kFPQaMAAu2YFiX08MG5yLdV9/jo8XvIkrFs1Cv4Ejcdvdd6JHh8CgQpXvYN8TyUFNdqZXcqDvqFvwydIUTJ22AFNefx05bS7C9GlPIS3ehd/f8ySKHFNx0qfi3y/+F10vbMwXqNRpEnnJ4lJh1E6DjYIK5eBJCtvjgZy6zig2reJNZ7rGSgIsKz4nvPfqzMsB2LJsGmsUJzHZobLLcu+vEJQl701lGdHcPGJRGQ3ZzKWrjPO0Ysb0yrVQYWE22mm0RY1RY/OzytubVhLJW1p5ar06M4OAQyMYVQRPVvPlSe8SnmJVOtuMIcr7Y/bqq3mjMLqMd8aoJ+E3Fo4sX/X+I2/B/fdNgCtChXbiIO6/+4/YtPeI4Zz1U0bw8NyMtsjXhwp4OSvGQa7AX0Stl2wkw/MURhZSACKbOborVrzYWxsIVO4rGjaoP1IjFbii43Dw1x8w98PPDFJSAnO4auP2ooywQUCQUtioOviK8rd94DKex5t/P5Oc4qJdSHSo8FH+KrhRtMsY8WRyeMXXBI+wuKIiBAQpVYRKmO9jumHhUMYF6uhSLiCWfxJuwoWiKQMOXD53C0C+24PjHjqVpu0AmtPoclDu7jMpLMzBFdU/JwKClM4JUfiecDS/CPluDbKqoPDkfnjIRSQbsTdETGZK7rVfrcJB3QPVVwQ9NgNXXNnFAI1m/YQvfKLm1URAkFI1gbPzZWZuqd0HjqBAA1yOCOzf8yPWr/+ZV5tSu0qBOYZb1q3CC5Nfg+SVcOoUcOtt92BIt3bQNK3kHDtjJepW+wjYKk6p9uEJnxJN74+sFWLVF1/hh82b8fIz/4WPDhQWoeBkHm4eNxYTbhuPzNQGYJoX329Yh3emz8LR/AJkN22Ba34/CU9O+j0ckpeyUYMFiCt8UBQ1rQ0EBCnVBopWL4NRig1KIi1D8hVg3ZovsHHLLvQaOgojE+IRFxcHv9+PI4cP4dctW7Bt8+aAJQTcNGEiul7eE126dETDtEBUN5zUywsMaVsdHCF/fSMgSKm+EQ/F+zEJiqZDV2TozgaY9OfHqycl08Ju8mj1gBJXnQ0BQUpnQydMjjGJ8vZQsJ5ujLSRjVMusxgPSq0ID8qJXjLGZqz/VtFpYp9AoKoICFKqKlJ2Po+GyPjKGUbOJCOr2+njZoyW5S4Tfcx/EyZ8H8UMGKld7QyTqFv9ICBIqX5wDum7EP0YFFT5YGxZQqLKlP3Nrz2dw0K6vkK40Eag8lYY2nIL6QQCAgGbIiBIyaaKFdUSCFgVAUFKVtWckFsgYFMEBCnZVLGiWgIBqyIgSMmqmhNyCwRsioAgJZsqVlRLIGBVBAQpWVVzQm6BgE0REKRkU8WKagkErIqAICWrak7ILRCwKQKClGyqWFEtgYBVERCkZFXNCbkFAjZFQJCSTRUrqiUQsCoCgpSsqjkht0DApggIUrKpYkW1BAJWRUCQklU1J+QWCNgUAUFKNlWsqJZAwKoICFKyquaE3AIBmyIgSMmmihXVEghYFQFBSlbVnJBbIGBTBAQp2VSxoloCAasiIEjJqpoTcgsEbIqAICWbKlZUSyBgVQQEKVlVc0JugYBNERCkZFPFimoJBKyKgCAlq2pOyC0QsCkCgpRsqlhRLYGAVREQpGRVzQm5BQI2RUC1ab1EtYJEoFj3w8c0SAyQZBlRsoOXwMAgQQqyNHG6QKD6CAhSqj52trryyXXvY86mT6BARfMGjTCr/x8QEemCHxocEM3EVsoO8cqI1hbiCqov8XafOIwtuzcDjki4ocMnMUQAcOgSIDNAWEv1pYqwv48gpbBvAgYATlkBolyAFIEIZwRYoMcmum+igdQ3AsLRXd+Ih+j9NEkCGAN0DbLOIEtG09CEOylENWZfsQQp2Ve3QdWMHNzQGSDr0Mu0CpnISmwCgXpEoEzzq8e7iluFNAJEQ8RRYhMInA8EBCmdD9RD/J7CrR3iCrK5eIKUbK5gUT2BgNUQEKRkNY0JeQUCNkdAkJLNFVyd6gmfUnVQE9fUFgKClGoLSRuVI3xKNlKmBasiSMmCShMiCwTsjIAgJTtrt5p1E923agInLqsVBAQp1QqM9ipEdN/spU+r1UaQktU0JuQVCNgcAUFKNlewqJ5AwGoICFKymsbqQV7hU6oHkMUtKkVAkFKl0ITvAeFTCl/dh0LNBSmFghYsLIMfOjRNr3ACL2OahWsmRD9fCIgkb+cLeRvdV2IMBcUeHCzKg0IpmSSGtOhYxKmRImGljfRcX1URpFRfSFvoPsH4lGRdgqzKWHdwC8bN/ieYU4bsk/DmiIkYcEFHC9VaiBoqCAhSChVNhJAcwfmUiMIAj7cYh7yHAE0G/AqKvb4QqpEQxUoICFKykrZCUFaJp6yU4JKdtMwAAAVQFUgO4a4MQXVZQiTRciyhpvoVMpjuW4lkPG2uYTWR1zvwreSw+CIQqCoCgpSqilQYnUfdN7EJBM4XAmFFSowx0J/Yzo2AsHTOjZE4o24QsDUpVURAgpjqpiGJUoNDoHw7pN+6rouXJmDv9ZilwPJAJjnRb/oj5ZvHgmtK4XF2tXxK4QFNrdWyfPsz26bZVmvtRhYsKCwsJVPhpn5k2dbVNqtZ7c/gQgKqfRtxYQUIlCerCk6x/S7bhQSUNYuJfMgqmjdvHj7//HOcOnUKqamp6N+/PwYMGMCVa55fnrhsr3lRwZBAYN++fZg7dy42bdoEv9+Pli1bYtSoUWjdunVJ+ww3orItKSmKgt27d+Ouu+7CsmXLuMJVVeWfr776KsaNG4fJkycjMTFR9OND4vG0vxDlX4CLFy/Gvffei19//RVOp5O3Q5/Ph1deeQWPPfYYbrvttrB0M9QKKYUSk5MsZCEVFBTg1ltvxfLly5GcnMxbPB2jhqFpGt544w0QcU2ZMoWfb/9Houo1FD6lqmMV7JnUBunvm2++wc0334z8/HzePs22SZ9k0U+YMAFJSUnIzc0N9haWP79GzpWIiIiQA4CUStucOXOwYsWKEoXTftPBTWSUkJCA6dOnY9WqVSFXh/MhEL2pEQiXqA2fUlRU1PmoRkjfk9qg2T6ffvppHD9+HPHx8fylSC9L2uiTsKMX65NPPoni4uKQqFN9PutBW0omeNSIyU9DDziZnKG0kUyzZ8/myqVGYMpc9judQ7+feeYZbNiwgVtPoVSH+pNFgoMB67EdsisSul/n0djVjuaSZUi6jFnvvouftAT4avTaqz8U6vpO1AapvVG7O3HiBNauXYu4uLjT2p3ZPunc6Oho7NixAw8++CCaNGnC3Q51LWP58s3nhp51ennXFzEFTUokOHV/HA4Hli5digULFpSvy3n7bSqVBIiJiYHL5SohpIqEonNWrlyJjz76qKLD4bUv92IovZoBefk1qzc9eA4H/vf6/4CfD9asLJteTe2ULHXycZrWe9m2S9/Nv5dffvm8EFJ56OlZInnJACGZ63ILmpQILHqYifFJSPMNUJdCBls2yVhYWFii8Iqup3NotIPeSCkpKWclr4qut80+xqD4GY5GRcGjaSVduJrUj9pEakoKXKkMfqcq5sEFwKQ2Rxs91OTzNK112m9aJWVxp/ZJ/lCyVOqaCMrel76TPGboDH2nP5KHnn1zf/lraut30KSUk5MDGjUwQawM0NoSMNhySC5SIoUB0AgG9dlpMxsEfTcB9nq9oDdR165dOeBmnYK9p5XPlyBBkSQ8snkx5m5bSUDx6hj/VqNmug5N9+Gxxx9Hn9SW8FeYk7Ia5drgErMNEsFMmjSJW+nkzC5POPTb7XajadOmmDp1KieC8ufUBxymvGWfCyKk7OzsOr190KREZlzbtm3rVKjaKHzixIk8FID6wqYlVBbkkydP4rrrrsNNN91UG7ezfBnJh74CtmgAWb81qQ132DI0a94crRqGfjupSVVrcu2jjz7KR+Bo9I2sddrogSfyoS4SvTD/9Kc/oUuXLjW5jSWvtZUbkhidlEp/sbGx/C3Tt29f7lgk52JeXh4f8aCGMHbsWLzwwgtcaXR+2beBJTVZQ6HJNDc3spJqRExAyIwamXUKtc9u3brhtdde48G8x44d42EA9KKkETny1z7//PMYP358WLbLoC2lUFNuWXlMS4hIhpzxzZo1w8KFC/lIHI0UEilRRDdFcw8fPrzkzUTnU/9ebAYCREjV7r4JEKuEAL0Ex4wZg06dOmHGjBn48ccfeZuliG7a37GjkUqY2iZZUGbbrlLhFj/JVqRk6oIIhpROfxTzQUFq9Fd+o+Ok7Lp23JW/r/gtECAEiHDIb0Rduco2ap/hREiEg+1IyVSg+VmZsmm/eY75ebZzxTGBQG0iQG2uKu0uHF+YtvIp1WajCeeyasOnFM74ibrXDAFBSjXDz5ZXC5+SLdVqmUoJUrKMqoSgAoHwQECQUnjoWdRSIGAZBAQpWUZV9Seo8CnVH9biTmciIEjpTEzCfk91fEo6X+zNXPCN1Tz60sZaMAJTGQ9QNf6t2wmuVoNSkJLVNBZi8uq6EWbJmA+SpkNmfsgyPXaiaZVVFdMBXTMoyECMZh1SkKrxq+y54f7ddnFK4a7Q2qg/PSbG2/zcpUkB7tH8DMzjA5MUwKvDrWvnvjiczpDIGmI4deQIPlu6FIfdOnzek/jltz3o0ecajB58aTihcda6ClI6KzzheTCY7huTyAIA2qY3wezr/84TxhGjXZLRBExnkGRhCfBWxGjCrTGVacfOnXhn3gys37SdMn+hy5XXh2dDq6TWgpQqAcZSuxlZJcp5mbAmweiSZMYkYkyLy06DjabxiM1AgCPh1ZGQmo7/++ujSIkuwA33TUbrrv0xoHcHAVMZBETHvwwYVvv65Zcf47VZH1BvifKBBtHpqr2aypSPSZEq9CBVZRpF7UkS2iUxGdBlBj4gADe+/vQLLnD3flcgJVI8hmW1J9Aoi4bFvn88bwrue/BlFOlkJXlrTfpgfEq1dlObF6QwCX7Vzx3bx3/bgM/WbwJiG2PwgH42r3nw1ROkFDxmIXNFdHQMEuMToXG3Da0sUzv+m2B8SiEDRogLQj1ZBy0XD+CbLz7FL/s9aNO+M3pc3CrEJa9/8WxNSuTt0JgGvYxvI+/UcWzbuh2FRp+nDOIWHC3SZWiyBgfnIlursoyerPmV2qKkOwB4sXTZpyCbqfdVQ5AUAezb9Su279rFO+BUO0bxA2G82dzRLYH0Sz6P3du/w7P/eB6rN29Gy+btIEsu5I66AksWfAhvbAM88djf0DApxlJNQWIMPkqBwaUW9k0oK4+nKlFV5B34Cau+2ojoxMbo1TULDz06Afu3F2Lr1o1IzWmNZ194ES0bpoRyVepcNpuTEqAqCj56bzruuP33OOhJxpQ3X8bYoQOxbO4rmHjnHdh9MB/t+o5DXKyRJ7nOEa/lG9ROh+10oahMMW52OiY1/WW+OjasXY1fdh1DastGmPbv13HR5VfhpdfG4tulM3HlqNtwTI/F0llTEENGVZhuNrT5yVCm/wwPy4fz38J142/EAW8a5i9djptzR8AVEYEevbpApiERRyRuuvF2xBl9IEs1A77wiKTACH+pPXoysasNMExd1EZZVi7DIHkNn3z4IYolFXu2/4ycrv3x9z//DrHR0bjiyqtwVZtUrFm2BBu2hfd6efYiJUYpRv3QNR3UK9+xbhEm3HEXTngc+OOj/8LQy9uA8Zge4NAvvyH/RD7iL+iCYQM7h2Z7Z5TM3/QvnGm7MMUBhflQmvK/omoYBH0+bB+6M1kINaVLYxjdgj6/suqQgOK8Xfj66w3wa360752Lx/94Y4lNWnjiGA67vVD9R3Dg+LGyV4bdd9t13yQmQZIVSN4C/O3hf2LnUTfa9sjF/90+nCvXx3Q4JQWrVn2JY14dI/v2QfMUV+DhDy2O3v3Tejxw3z04rKTBxTyAJPPHnNZmc8jkJ9sGX34hRvfvB1lVIRFvBbiLzjxeqOF3f7gPt44eGFTDrq3uG9HRL+vW4qdde6FGRkJitGpMFUWhuuoafI4o9OzZHWkxkVW8MDRPI0w3r1uL9b/uR0RUKu697/+Q5FCga37Iiop9u3di16F8yM5MJERZy7dZ24jbipT4lAdJhiIB65fNx4JP10J2JOO2CXcgJVoBNIr1V6F79mPJslWAEoNBgTgRnQ7V9JVey9qRVAei4xMQixhEyxHQiHADi0VSHSMjZKDAhZj4BDhpsQSqhLkxHZrih8sRPNFSKbUFxXtz/4XH/zUbUfFJgC5VGWOaQ+fzFsOVnIVPVixDWkyWWTPLfn62YgmOuXVcPGAQxvS72HiDBKaefPrZcpxw60hp2RzNGzWwbB1rQ3B7kRJHRAJYAabOmIETXg3NO16KUYN7GaubQINTUvHjmpVY/d0WJDXpiu5dL+FXyebM0tpAtZbKyG7VEW/MXVJpac8+ejOeW+TGjDmzEFXpWcaqLiaZVXpaHR246e6n0G/sA3wJK27n0YTdKm6MuuJqJBpnphrLiQcIuYqXh8hpBsXr7v1Y9flqnj1hyJixoCBupvkhKQ4w92F8+PGnoHfK5b17IyfF2lZhTYG3FSmRTcBkCYX7NuOr9d/z+WC9rh6KrGgFmk8HU2TIKMaMaTNw1MvQp3sfNEtxojD/MPbtL0LzljmGhVCbpkKNNHR2e0X3+qFTHBa5nSo1iMi6qpEQNbo4o3ET0F84bmWb0f7N3+LbjXsQnd0BQ3sbq976GOCkYMrVn+C7b7bCGZONG8fn1pqValXMK23KVq0QPX8H9+3DyWOH4UzIxJArA2H8sgxVlvHbmg/x9sKVgBKNK7v35GtMTfvPPzD51Q9KG0OVHR/nFyVq9OREMsQ1ftWGRIRh7ZVWGxJZuQzjjfDT99/jsNuPthdfivY5SdAYg6w4AFaMKS+/gAMaw7Bxd2JIt9YU8mvlCtdYdtuREkdE80L3A7EJmWjWNIPv4gvg+o7j0UeexfECDY7EVLTu2A7a8V8xbc6XGH3DiBqDaZcCyr7h7VKn+q6HMebJePAu3Xv3bwdBsxMv7HAht45owokqASveeQXTF6xDo3YD8MTjE6HSlF1yjobxZqvum6nHlEbNERftwLGCAjhL9OvGYw9OAtIvRIumB7HHF4WLmqbgH3+6Ds17XYMrO+aYl4eex7tUstO+0axzlUncF1F7runTbiF+VBMBs9mZ/JLeIJmX5Iw2RtYoLG7rxo9x6533Ie2CPnh/5mtomR4NTWeQeUK4at7YBpfZzlKiAbb4rI546C9/hXbyF/z5gb9gydIluP36sfhRz8KLL/0VsQ4fTh7ei9tHD8Knv0TimSf+AOkc0T6hqGuKuaIUq0ackhnPFIqShqNMREul/rzeY8ajV5c2mPXyU5j7/kd4/cV/YujQW9Cs97VY9NkcXHxhNg/5pRFgKYjBADsiaytLibodNPmW4mPGTXgYTdu2w/zFy/DRx8tx6YBbcP344aDo/Rf+/RxmLfgcUQmNcPuEu5EZEwka6QnBAbiztjndq8LnOwrjxUp+CONBOOtFlRzkk5bJY67r0CmeqJLzxO7qIRCT1gLzFy/G7LemY+XKZUiIi8I/pkzDsEFX8e6cxnRQbioeahrm/WeJ2Sg9INkKTPNB8jPoTgfU8sNOzAOfpsGhnj7PzaeR01GHQtkbLbRt+/k7/HbUj56XdUKEqkOWqj9h6vfLpuB/X88FVBWtMlrh2/FPI9oRCR0aZIvhEooqZJS2RD6zY6LBB6bJUGSDknhfnJtLoViL+pHJVqTEIQuMnDE+e56W+iF7mCZrBKY88LQQRuNgEgNFgOv0yY+f2WjqRw01vYvhVuVv2WoWtb/gOE6686nvgEg1AjnxaZA5qYf5a7uaeJ55mTHphtCkeK2Szfxa/gVackL4fbEfKYWfDkWNBQK2QsCqpoGtlCAqIxAQCJQiIEipFAvxTSAgEAgBBAQphYAShAgCAYFAKQKClEqxEN8EAgKBEEBAkFIIKEGIIBAQCJQiIEipFIvw/cYDvKj6lLozMBuX8mjQ/+aQdfiiI2pezwgIUqpnwEPydhQSznw8SZyPBKTAcFmCrmuBbOchKbUQyqYICFKyqWKDqZYmUWgpg84kKDLDTz98h51HjkKSGWRwmgqmOHGuQKBGCAhSqhF8drlYAXQHJFmClL8Ht48ejSdenA5JUnkKW9GDs4uerVEPW03ItQbkoSclTU/RZD9UScW3qz7Bxl9+w+HFS7DnwYnIjjl98goRFPmZZGjYtvk7TJ/zHhxyJOJTMuGMACT3MRzIL4bH7cXAYdfiis7tAk4qCT+t+RwzP1yKmMQEpMSlodh9CHv3F6DFpV1x89WDSpPshR5EQqJ6RECQUj2CHaq3kqDxFWAAP+bNmoNCh4KdP6/H4qVf4s5RPSsUm8gpITkFbVu1wnvTp2Dex19BV6k5RWLMjTdieN9uyE4zcggZBTAkZjXGha0bYvprL+KjL34BHFG45dY7MLhpIyPVpZmEqMI7ip1hgwBlCRBbeCOgs2KmM8YObf+KNYsHi4h1MUeEk/UdPZF56UC5TdcZ0+mfwFawZz27uFkKk50O1rjDYHbAbR5hjBfMf5aeP+eJCQxwsX/NXlJyot9Xerxkp/gSlggIn1LYvH4qr6gEB8+SsHDWO4hq0g5NU5LgjJSxZuVyrPrxQODC0hABWl+OVkcha4myOEWnN0ZOowzA74PP7cbJvDzeZfMzcpIb1/FoA37BScx47yMMumMSJo7pzwugVT1kmXcMKxdSHAkbBAQphY2qz1ZRCd78nZgxZyX++sJUDOnZFsVuwJP3C2bM+TBwoYf7khiFDwRaDfW2eAYqNRlZyQkgXvHmH0Ge28PjCmRGKxX7uBOKgfI9AasWvY1Nx+Lw1N8eNHxICiApaiDXkOi/nU1L4XJMkFK4aPoc9Vy3+AOcdDTFoF5dMHhIP8T6gUhXJL6Y/y72nCgGEIGSLPhlyjJzBDZpegGPb3L7inD4cCE/g9GIni7BJ3uhU4pX7Riee+oVjL3nUbRPpVzVIoVvGSjF1wACgpREUwDgxVvT5qNX7jWgnJyX9hmJi1ulQfJJ2LFjDeYv/dxYWI5HeZ9uzVCiPNqyGzeErsgo9hZg9+7jfB+FGFCOPYp2Iotq2dwp2OZtiUl3DAPlF6f9YhMIlEdAtIryiITJb6IEXfdyv9DBzZ9j7Y4CjB/fn9c+IqkRrh7eF77iIjh0P2bPfh9F5EeiKG9+RSlIlLmTtgZpGXAB8BcWYN/eXXyfJPn5GmYKHNCL92Lyc7Nwy333I9Ul8wU0hZ1UiqP4VoqAIKVSLMLoGy1g6YMGWn0MeHfaDDTq2AuXZKfw/YADQ3NHIT05Fi6HExs/+xgr1+8AFMojbVhGpWAZpJSZmYMG0Q5A8+PIwd/4YYmimXTKfQ7Mm/IfnExsiTuu7cG7bZJMifLFJhA4EwHRLs7EJCz2UJ5oWY4ETu3B/OXrcM0tNxiO58AM3OyLe+Oq7m1Q6GXw5R3AzFlzOC5KuSVfTJJKzcxCSmoS7woePHw8sMarBIfqQvGhLfj3yx/jrkf+ihgKEtdoVE41YpPCAm1RyWAQEKQUDFo2OZeWSTDXblm5eD7yojMxrE9HY2klpoCG6IEoXJt7NVTZjWgXsHzJx9h2uCAwW7cMEIzWOwHiUtORmJTIQwB27T2IIuIdviCDhFee/ydSOvfH9d07AJoOSE4+104K+KPKlCa+CgSEBR2ObYBIhOn0PvLgrRnzcNWom5FAa0gTj9C4faCT1mPAGFzcKgc+5sDx7V9j3uIvSuEKhBUFFosBXAlIT4rmI3B5e3fiRCGxkoJDP6/AG4tW44+P/dEIH6ClhCQpsFJKaXHim0DAREBYSiYSYfSpQIdDkbHn+0+wbtdJ3DR6BK+9LBFhyDw7AIUjOZMa45pBfeH3FCNSKsa8ObORT4xmboxyCzDIvMsXgaY5DXmXrLDwOI4WUqyShr8/PBmdr74T3ZqlQmN+Tlq0mpAxo84gQrM48SkQIAQEKYVhOzD9QO9On4Emlw5Gu6zTF+ekcXyNulkARuSORMMkFbIag+/XLsOKtVv5fj7oxjlFDkQbSWjU5AJaNg6nigtQUODBttXzsHxrIf5030QalxNhSWHY1qpTZUFK1UHNsteYI2cKvCe2Y9GyzRhzw81n1kZSoDkC8UcX9Ub/Hh1Q7PFDcx/BnJnvBM4nG4nW+pR4HibamdIgi0IsAXcBftv0Ax5/5hXcMPEhtEhS4SMjSRhGZ2It9pyBgCClMyCx6Q7qajFvibXy6cIP4E/rgJt6tzqzwhLgNDxAgByF62+8AzFOIMIZgeVLFmHjnnzD66TTNBJKUmlYVU3SM4EpSBwAAAK6SURBVJEYG4kopuHvf7kXe5yNcc+NA3n5qmz6q868ndgjECiLgEhdUhYNO3/nk2hleGUinEIsem8RDux3Y+Ldd6NIA2SdHNNnbqqqoDD/GBAbg0jdhxM7N2HOgmW4aMIoMFmHojPoEsUcyUhvko3k5Ej8fMSLooP78e9ZHyDGIRl5vimBnMiYdCbAYs8ZCAhSOgMSe+7wSxJUpoIG2fb+sBrLv9qEPflu/GfLOkCnZkBhAJVsDhmxsXFQGYNLlTB/5gxMuHkEMqJpoQEZemBoPyY9HanRsfhxxx5c/8gLGNLpAgpKgkZWEqXaJVISXbhKQBa7TQQEKZlIhMEnxSdRf33+nEX49WgB4pJi4IuJhctHxHEWtpBohI0AcsARGYttG77EijUbcUO/jtynRKN2tDljUhDjdyO+UXf8+Z5bAdBEXlWMtIVB26rNKkqURao2CxRlhSgCPK2RzqeR7NyzE0X5PqgKvZMMh/XZpKZul3kWhV0W+3XEpWehUUoiKLwAlAEgsE17/mGwC/rjphHdoes+yLLDPCQ+BQJVQkCQUpVgsv5J9O5hjEhJg6I4a6VCjPmN3hgtMMA3er8ZFhfz6dAVHxSZj8fVyv1EIeGBgNmawqO2YV1LGiGTuOXCdBaI3A4eED7OxnRIPHBSBihCu6QYcmqTSeYDUxxgJWRVcoL4IhA4JwLCUjonRHY5weils0CqkerGDFEpxDvkgjL7/aWkxOevgHxXFL9E+087ZhcoRT3qFAFBSnUKryhcICAQCBYBETwZLGLifIGAQKBOERCkVKfwisIFAgKBYBEQpBQsYuJ8gYBAoE4REKRUp/CKwgUCAoFgERCkFCxi4nyBgECgThEQpFSn8IrCBQICgWAREKQULGLifIGAQKBOERCkVKfwisIFAgKBYBEQpBQsYuJ8gYBAoE4R+H+SJke3J3VOlAAAAABJRU5ErkJggg== />
  1. Ia = Ib > Ie = If > Ic = Id
  2. Ia = Ib > Ic = Id > Ie = If
  3. Ie = If > Ic = Id > Ia = Ib"



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

gcook

  • Sr. Member
  • ****
  • Posts: 343
Answer to Question 1



Answer to Question 2

2




jlmhmf

  • Member
  • Posts: 552
Reply 2 on: Jul 28, 2018
YES! Correct, THANKS for helping me on my review


Kedrick2014

  • Member
  • Posts: 359
Reply 3 on: Yesterday
Great answer, keep it coming :)

 

Did you know?

Studies show that systolic blood pressure can be significantly lowered by taking statins. In fact, the higher the patient's baseline blood pressure, the greater the effect of statins on his or her blood pressure.

Did you know?

The shortest mature adult human of whom there is independent evidence was Gul Mohammed in India. In 1990, he was measured in New Delhi and stood 22.5 inches tall.

Did you know?

Chronic marijuana use can damage the white blood cells and reduce the immune system's ability to respond to disease by as much as 40%. Without a strong immune system, the body is vulnerable to all kinds of degenerative and infectious diseases.

Did you know?

For pediatric patients, intravenous fluids are the most commonly cited products involved in medication errors that are reported to the USP.

Did you know?

Cutaneous mucormycosis is a rare fungal infection that has been fatal in at least 29% of cases, and in as many as 83% of cases, depending on the patient's health prior to infection. It has occurred often after natural disasters such as tornados, and early treatment is essential.

For a complete list of videos, visit our video library