For the two resistors shown in the figure below, rank the currents at points a through f from largest to smallest.
Question 2eH4cBO463drmMnZMZSI9C5cp2yjLXLZ+HVWQvt0PbrpA4BTuKBpRRTaszXNaxLOkZJ/I19OgqOHYOkOAHJgdatcupEHisWynEKAHny2F5sP5EHKIno17cfrw5NHqFu889ff4gFK9ZDVlVc1Kk1P/bdipm4+y8vwsMioUrUmTbsLSviUB2ZbUZKEl9kkRNQVBQPRMtp1iYwh8gHWXaCuQ/g6YefRBHCK/YjmMYhBbrABsPrfERTlyT+aBA92YR2AAAgAElEQVTnywq9/4FD23/Cum+3QPN50LTVhRjRr3Mwt7H1ufzdyP8BGC1lrvuhJqSiaRMibuq2kQVagJee+ieOF1EoRRKaZmeAxjkn/+9t9Ls6F0kOyhaslFj/tgasTOVsR0pyYOJE0/aduPK97jyjujKtQ+/B/Xf+AVKna3DvWMPPVAYL8bUEAeMVL3EsjQmhLtlnpD3h50jYuvlH3P6HP2PzES/6DB+LGdPfQrO0mKASxpXczpZfGGRJ4X64xNRstG6QCr9eDCWKXobGYzflb/ehKLkzcgd1hFeOQOuWbbB0zkvY62mA264dxP1OCs2RCzK1jNXhtFWckpHogYY8ZIzIHYvBb83Cmy88h0vatcCF2dGY+uqLKFSb4b8v/AUyPACLMPsmVtdjnclPnYzISBf2/LgWd912G5RIBbt2/oJVS77EKZ8fuXfejycevh8tM1INGcivJ7bAoABnFKjRmbj/4Uew5tpb8fgDD+CpP/8OSxbOxuofCzD19Wfx0oPDAfcePP6X27B330H858U3kKRKfHhO5/nJwwtQW5ESGcU08VHWGVxpbTBtwUd46eX/YcmC6fg5Iwc9R96IcSOG8AA/n6bAwZPWB2zs8NJ7lWtLHMM0Hc7kFPQaMAAu2YFiX08MG5yLdV9/jo8XvIkrFs1Cv4Ejcdvdd6JHh8CgQpXvYN8TyUFNdqZXcqDvqFvwydIUTJ22AFNefx05bS7C9GlPIS3ehd/f8ySKHFNx0qfi3y/+F10vbMwXqNRpEnnJ4lJh1E6DjYIK5eBJCtvjgZy6zig2reJNZ7rGSgIsKz4nvPfqzMsB2LJsGmsUJzHZobLLcu+vEJQl701lGdHcPGJRGQ3ZzKWrjPO0Ysb0yrVQYWE22mm0RY1RY/OzytubVhLJW1p5ar06M4OAQyMYVQRPVvPlSe8SnmJVOtuMIcr7Y/bqq3mjMLqMd8aoJ+E3Fo4sX/X+I2/B/fdNgCtChXbiIO6/+4/YtPeI4Zz1U0bw8NyMtsjXhwp4OSvGQa7AX0Stl2wkw/MURhZSACKbOborVrzYWxsIVO4rGjaoP1IjFbii43Dw1x8w98PPDFJSAnO4auP2ooywQUCQUtioOviK8rd94DKex5t/P5Oc4qJdSHSo8FH+KrhRtMsY8WRyeMXXBI+wuKIiBAQpVYRKmO9jumHhUMYF6uhSLiCWfxJuwoWiKQMOXD53C0C+24PjHjqVpu0AmtPoclDu7jMpLMzBFdU/JwKClM4JUfiecDS/CPluDbKqoPDkfnjIRSQbsTdETGZK7rVfrcJB3QPVVwQ9NgNXXNnFAI1m/YQvfKLm1URAkFI1gbPzZWZuqd0HjqBAA1yOCOzf8yPWr/+ZV5tSu0qBOYZb1q3CC5Nfg+SVcOoUcOtt92BIt3bQNK3kHDtjJepW+wjYKk6p9uEJnxJN74+sFWLVF1/hh82b8fIz/4WPDhQWoeBkHm4eNxYTbhuPzNQGYJoX329Yh3emz8LR/AJkN22Ba34/CU9O+j0ckpeyUYMFiCt8UBQ1rQ0EBCnVBopWL4NRig1KIi1D8hVg3ZovsHHLLvQaOgojE+IRFxcHv9+PI4cP4dctW7Bt8+aAJQTcNGEiul7eE126dETDtEBUN5zUywsMaVsdHCF/fSMgSKm+EQ/F+zEJiqZDV2TozgaY9OfHqycl08Ju8mj1gBJXnQ0BQUpnQydMjjGJ8vZQsJ5ujLSRjVMusxgPSq0ID8qJXjLGZqz/VtFpYp9AoKoICFKqKlJ2Po+GyPjKGUbOJCOr2+njZoyW5S4Tfcx/EyZ8H8UMGKld7QyTqFv9ICBIqX5wDum7EP0YFFT5YGxZQqLKlP3Nrz2dw0K6vkK40Eag8lYY2nIL6QQCAgGbIiBIyaaKFdUSCFgVAUFKVtWckFsgYFMEBCnZVLGiWgIBqyIgSMmqmhNyCwRsioAgJZsqVlRLIGBVBAQpWVVzQm6BgE0REKRkU8WKagkErIqAICWrak7ILRCwKQKClGyqWFEtgYBVERCkZFXNCbkFAjZFQJCSTRUrqiUQsCoCgpSsqjkht0DApggIUrKpYkW1BAJWRUCQklU1J+QWCNgUAUFKNlWsqJZAwKoICFKyquaE3AIBmyIgSMmmihXVEghYFQFBSlbVnJBbIGBTBAQp2VSxoloCAasiIEjJqpoTcgsEbIqAICWbKlZUSyBgVQQEKVlVc0JugYBNERCkZFPFimoJBKyKgCAlq2pOyC0QsCkCgpRsqlhRLYGAVREQpGRVzQm5BQI2RUC1ab1EtYJEoFj3w8c0SAyQZBlRsoOXwMAgQQqyNHG6QKD6CAhSqj52trryyXXvY86mT6BARfMGjTCr/x8QEemCHxocEM3EVsoO8cqI1hbiCqov8XafOIwtuzcDjki4ocMnMUQAcOgSIDNAWEv1pYqwv48gpbBvAgYATlkBolyAFIEIZwRYoMcmum+igdQ3AsLRXd+Ih+j9NEkCGAN0DbLOIEtG09CEOylENWZfsQQp2Ve3QdWMHNzQGSDr0Mu0CpnISmwCgXpEoEzzq8e7iluFNAJEQ8RRYhMInA8EBCmdD9RD/J7CrR3iCrK5eIKUbK5gUT2BgNUQEKRkNY0JeQUCNkdAkJLNFVyd6gmfUnVQE9fUFgKClGoLSRuVI3xKNlKmBasiSMmCShMiCwTsjIAgJTtrt5p1E923agInLqsVBAQp1QqM9ipEdN/spU+r1UaQktU0JuQVCNgcAUFKNlewqJ5AwGoICFKymsbqQV7hU6oHkMUtKkVAkFKl0ITvAeFTCl/dh0LNBSmFghYsLIMfOjRNr3ACL2OahWsmRD9fCIgkb+cLeRvdV2IMBcUeHCzKg0IpmSSGtOhYxKmRImGljfRcX1URpFRfSFvoPsH4lGRdgqzKWHdwC8bN/ieYU4bsk/DmiIkYcEFHC9VaiBoqCAhSChVNhJAcwfmUiMIAj7cYh7yHAE0G/AqKvb4QqpEQxUoICFKykrZCUFaJp6yU4JKdtMwAAAVQFUgO4a4MQXVZQiTRciyhpvoVMpjuW4lkPG2uYTWR1zvwreSw+CIQqCoCgpSqilQYnUfdN7EJBM4XAmFFSowx0J/Yzo2AsHTOjZE4o24QsDUpVURAgpjqpiGJUoNDoHw7pN+6rouXJmDv9ZilwPJAJjnRb/oj5ZvHgmtK4XF2tXxK4QFNrdWyfPsz26bZVmvtRhYsKCwsJVPhpn5k2dbVNqtZ7c/gQgKqfRtxYQUIlCerCk6x/S7bhQSUNYuJfMgqmjdvHj7//HOcOnUKqamp6N+/PwYMGMCVa55fnrhsr3lRwZBAYN++fZg7dy42bdoEv9+Pli1bYtSoUWjdunVJ+ww3orItKSmKgt27d+Ouu+7CsmXLuMJVVeWfr776KsaNG4fJkycjMTFR9OND4vG0vxDlX4CLFy/Gvffei19//RVOp5O3Q5/Ph1deeQWPPfYYbrvttrB0M9QKKYUSk5MsZCEVFBTg1ltvxfLly5GcnMxbPB2jhqFpGt544w0QcU2ZMoWfb/9Houo1FD6lqmMV7JnUBunvm2++wc0334z8/HzePs22SZ9k0U+YMAFJSUnIzc0N9haWP79GzpWIiIiQA4CUStucOXOwYsWKEoXTftPBTWSUkJCA6dOnY9WqVSFXh/MhEL2pEQiXqA2fUlRU1PmoRkjfk9qg2T6ffvppHD9+HPHx8fylSC9L2uiTsKMX65NPPoni4uKQqFN9PutBW0omeNSIyU9DDziZnKG0kUyzZ8/myqVGYMpc9judQ7+feeYZbNiwgVtPoVSH+pNFgoMB67EdsisSul/n0djVjuaSZUi6jFnvvouftAT4avTaqz8U6vpO1AapvVG7O3HiBNauXYu4uLjT2p3ZPunc6Oho7NixAw8++CCaNGnC3Q51LWP58s3nhp51ennXFzEFTUokOHV/HA4Hli5digULFpSvy3n7bSqVBIiJiYHL5SohpIqEonNWrlyJjz76qKLD4bUv92IovZoBefk1qzc9eA4H/vf6/4CfD9asLJteTe2ULHXycZrWe9m2S9/Nv5dffvm8EFJ56OlZInnJACGZ63ILmpQILHqYifFJSPMNUJdCBls2yVhYWFii8Iqup3NotIPeSCkpKWclr4qut80+xqD4GY5GRcGjaSVduJrUj9pEakoKXKkMfqcq5sEFwKQ2Rxs91OTzNK112m9aJWVxp/ZJ/lCyVOqaCMrel76TPGboDH2nP5KHnn1zf/lraut30KSUk5MDGjUwQawM0NoSMNhySC5SIoUB0AgG9dlpMxsEfTcB9nq9oDdR165dOeBmnYK9p5XPlyBBkSQ8snkx5m5bSUDx6hj/VqNmug5N9+Gxxx9Hn9SW8FeYk7Ia5drgErMNEsFMmjSJW+nkzC5POPTb7XajadOmmDp1KieC8ufUBxymvGWfCyKk7OzsOr190KREZlzbtm3rVKjaKHzixIk8FID6wqYlVBbkkydP4rrrrsNNN91UG7ezfBnJh74CtmgAWb81qQ132DI0a94crRqGfjupSVVrcu2jjz7KR+Bo9I2sddrogSfyoS4SvTD/9Kc/oUuXLjW5jSWvtZUbkhidlEp/sbGx/C3Tt29f7lgk52JeXh4f8aCGMHbsWLzwwgtcaXR+2beBJTVZQ6HJNDc3spJqRExAyIwamXUKtc9u3brhtdde48G8x44d42EA9KKkETny1z7//PMYP358WLbLoC2lUFNuWXlMS4hIhpzxzZo1w8KFC/lIHI0UEilRRDdFcw8fPrzkzUTnU/9ebAYCREjV7r4JEKuEAL0Ex4wZg06dOmHGjBn48ccfeZuliG7a37GjkUqY2iZZUGbbrlLhFj/JVqRk6oIIhpROfxTzQUFq9Fd+o+Ok7Lp23JW/r/gtECAEiHDIb0Rduco2ap/hREiEg+1IyVSg+VmZsmm/eY75ebZzxTGBQG0iQG2uKu0uHF+YtvIp1WajCeeyasOnFM74ibrXDAFBSjXDz5ZXC5+SLdVqmUoJUrKMqoSgAoHwQECQUnjoWdRSIGAZBAQpWUZV9Seo8CnVH9biTmciIEjpTEzCfk91fEo6X+zNXPCN1Tz60sZaMAJTGQ9QNf6t2wmuVoNSkJLVNBZi8uq6EWbJmA+SpkNmfsgyPXaiaZVVFdMBXTMoyECMZh1SkKrxq+y54f7ddnFK4a7Q2qg/PSbG2/zcpUkB7tH8DMzjA5MUwKvDrWvnvjiczpDIGmI4deQIPlu6FIfdOnzek/jltz3o0ecajB58aTihcda6ClI6KzzheTCY7huTyAIA2qY3wezr/84TxhGjXZLRBExnkGRhCfBWxGjCrTGVacfOnXhn3gys37SdMn+hy5XXh2dDq6TWgpQqAcZSuxlZJcp5mbAmweiSZMYkYkyLy06DjabxiM1AgCPh1ZGQmo7/++ujSIkuwA33TUbrrv0xoHcHAVMZBETHvwwYVvv65Zcf47VZH1BvifKBBtHpqr2aypSPSZEq9CBVZRpF7UkS2iUxGdBlBj4gADe+/vQLLnD3flcgJVI8hmW1J9Aoi4bFvn88bwrue/BlFOlkJXlrTfpgfEq1dlObF6QwCX7Vzx3bx3/bgM/WbwJiG2PwgH42r3nw1ROkFDxmIXNFdHQMEuMToXG3Da0sUzv+m2B8SiEDRogLQj1ZBy0XD+CbLz7FL/s9aNO+M3pc3CrEJa9/8WxNSuTt0JgGvYxvI+/UcWzbuh2FRp+nDOIWHC3SZWiyBgfnIlursoyerPmV2qKkOwB4sXTZpyCbqfdVQ5AUAezb9Su279rFO+BUO0bxA2G82dzRLYH0Sz6P3du/w7P/eB6rN29Gy+btIEsu5I66AksWfAhvbAM88djf0DApxlJNQWIMPkqBwaUW9k0oK4+nKlFV5B34Cau+2ojoxMbo1TULDz06Afu3F2Lr1o1IzWmNZ194ES0bpoRyVepcNpuTEqAqCj56bzruuP33OOhJxpQ3X8bYoQOxbO4rmHjnHdh9MB/t+o5DXKyRJ7nOEa/lG9ROh+10oahMMW52OiY1/WW+OjasXY1fdh1DastGmPbv13HR5VfhpdfG4tulM3HlqNtwTI/F0llTEENGVZhuNrT5yVCm/wwPy4fz38J142/EAW8a5i9djptzR8AVEYEevbpApiERRyRuuvF2xBl9IEs1A77wiKTACH+pPXoysasNMExd1EZZVi7DIHkNn3z4IYolFXu2/4ycrv3x9z//DrHR0bjiyqtwVZtUrFm2BBu2hfd6efYiJUYpRv3QNR3UK9+xbhEm3HEXTngc+OOj/8LQy9uA8Zge4NAvvyH/RD7iL+iCYQM7h2Z7Z5TM3/QvnGm7MMUBhflQmvK/omoYBH0+bB+6M1kINaVLYxjdgj6/suqQgOK8Xfj66w3wa360752Lx/94Y4lNWnjiGA67vVD9R3Dg+LGyV4bdd9t13yQmQZIVSN4C/O3hf2LnUTfa9sjF/90+nCvXx3Q4JQWrVn2JY14dI/v2QfMUV+DhDy2O3v3Tejxw3z04rKTBxTyAJPPHnNZmc8jkJ9sGX34hRvfvB1lVIRFvBbiLzjxeqOF3f7gPt44eGFTDrq3uG9HRL+vW4qdde6FGRkJitGpMFUWhuuoafI4o9OzZHWkxkVW8MDRPI0w3r1uL9b/uR0RUKu697/+Q5FCga37Iiop9u3di16F8yM5MJERZy7dZ24jbipT4lAdJhiIB65fNx4JP10J2JOO2CXcgJVoBNIr1V6F79mPJslWAEoNBgTgRnQ7V9JVey9qRVAei4xMQixhEyxHQiHADi0VSHSMjZKDAhZj4BDhpsQSqhLkxHZrih8sRPNFSKbUFxXtz/4XH/zUbUfFJgC5VGWOaQ+fzFsOVnIVPVixDWkyWWTPLfn62YgmOuXVcPGAQxvS72HiDBKaefPrZcpxw60hp2RzNGzWwbB1rQ3B7kRJHRAJYAabOmIETXg3NO16KUYN7GaubQINTUvHjmpVY/d0WJDXpiu5dL+FXyebM0tpAtZbKyG7VEW/MXVJpac8+ejOeW+TGjDmzEFXpWcaqLiaZVXpaHR246e6n0G/sA3wJK27n0YTdKm6MuuJqJBpnphrLiQcIuYqXh8hpBsXr7v1Y9flqnj1hyJixoCBupvkhKQ4w92F8+PGnoHfK5b17IyfF2lZhTYG3FSmRTcBkCYX7NuOr9d/z+WC9rh6KrGgFmk8HU2TIKMaMaTNw1MvQp3sfNEtxojD/MPbtL0LzljmGhVCbpkKNNHR2e0X3+qFTHBa5nSo1iMi6qpEQNbo4o3ET0F84bmWb0f7N3+LbjXsQnd0BQ3sbq976GOCkYMrVn+C7b7bCGZONG8fn1pqValXMK23KVq0QPX8H9+3DyWOH4UzIxJArA2H8sgxVlvHbmg/x9sKVgBKNK7v35GtMTfvPPzD51Q9KG0OVHR/nFyVq9OREMsQ1ftWGRIRh7ZVWGxJZuQzjjfDT99/jsNuPthdfivY5SdAYg6w4AFaMKS+/gAMaw7Bxd2JIt9YU8mvlCtdYdtuREkdE80L3A7EJmWjWNIPv4gvg+o7j0UeexfECDY7EVLTu2A7a8V8xbc6XGH3DiBqDaZcCyr7h7VKn+q6HMebJePAu3Xv3bwdBsxMv7HAht45owokqASveeQXTF6xDo3YD8MTjE6HSlF1yjobxZqvum6nHlEbNERftwLGCAjhL9OvGYw9OAtIvRIumB7HHF4WLmqbgH3+6Ds17XYMrO+aYl4eex7tUstO+0axzlUncF1F7runTbiF+VBMBs9mZ/JLeIJmX5Iw2RtYoLG7rxo9x6533Ie2CPnh/5mtomR4NTWeQeUK4at7YBpfZzlKiAbb4rI546C9/hXbyF/z5gb9gydIluP36sfhRz8KLL/0VsQ4fTh7ei9tHD8Knv0TimSf+AOkc0T6hqGuKuaIUq0ackhnPFIqShqNMREul/rzeY8ajV5c2mPXyU5j7/kd4/cV/YujQW9Cs97VY9NkcXHxhNg/5pRFgKYjBADsiaytLibodNPmW4mPGTXgYTdu2w/zFy/DRx8tx6YBbcP344aDo/Rf+/RxmLfgcUQmNcPuEu5EZEwka6QnBAbiztjndq8LnOwrjxUp+CONBOOtFlRzkk5bJY67r0CmeqJLzxO7qIRCT1gLzFy/G7LemY+XKZUiIi8I/pkzDsEFX8e6cxnRQbioeahrm/WeJ2Sg9INkKTPNB8jPoTgfU8sNOzAOfpsGhnj7PzaeR01GHQtkbLbRt+/k7/HbUj56XdUKEqkOWqj9h6vfLpuB/X88FVBWtMlrh2/FPI9oRCR0aZIvhEooqZJS2RD6zY6LBB6bJUGSDknhfnJtLoViL+pHJVqTEIQuMnDE+e56W+iF7mCZrBKY88LQQRuNgEgNFgOv0yY+f2WjqRw01vYvhVuVv2WoWtb/gOE6686nvgEg1AjnxaZA5qYf5a7uaeJ55mTHphtCkeK2Szfxa/gVackL4fbEfKYWfDkWNBQK2QsCqpoGtlCAqIxAQCJQiIEipFAvxTSAgEAgBBAQphYAShAgCAYFAKQKClEqxEN8EAgKBEEBAkFIIKEGIIBAQCJQiIEipFIvw/cYDvKj6lLozMBuX8mjQ/+aQdfiiI2pezwgIUqpnwEPydhQSznw8SZyPBKTAcFmCrmuBbOchKbUQyqYICFKyqWKDqZYmUWgpg84kKDLDTz98h51HjkKSGWRwmgqmOHGuQKBGCAhSqhF8drlYAXQHJFmClL8Ht48ejSdenA5JUnkKW9GDs4uerVEPW03ItQbkoSclTU/RZD9UScW3qz7Bxl9+w+HFS7DnwYnIjjl98goRFPmZZGjYtvk7TJ/zHhxyJOJTMuGMACT3MRzIL4bH7cXAYdfiis7tAk4qCT+t+RwzP1yKmMQEpMSlodh9CHv3F6DFpV1x89WDSpPshR5EQqJ6RECQUj2CHaq3kqDxFWAAP+bNmoNCh4KdP6/H4qVf4s5RPSsUm8gpITkFbVu1wnvTp2Dex19BV6k5RWLMjTdieN9uyE4zcggZBTAkZjXGha0bYvprL+KjL34BHFG45dY7MLhpIyPVpZmEqMI7ip1hgwBlCRBbeCOgs2KmM8YObf+KNYsHi4h1MUeEk/UdPZF56UC5TdcZ0+mfwFawZz27uFkKk50O1rjDYHbAbR5hjBfMf5aeP+eJCQxwsX/NXlJyot9Xerxkp/gSlggIn1LYvH4qr6gEB8+SsHDWO4hq0g5NU5LgjJSxZuVyrPrxQODC0hABWl+OVkcha4myOEWnN0ZOowzA74PP7cbJvDzeZfMzcpIb1/FoA37BScx47yMMumMSJo7pzwugVT1kmXcMKxdSHAkbBAQphY2qz1ZRCd78nZgxZyX++sJUDOnZFsVuwJP3C2bM+TBwoYf7khiFDwRaDfW2eAYqNRlZyQkgXvHmH0Ge28PjCmRGKxX7uBOKgfI9AasWvY1Nx+Lw1N8eNHxICiApaiDXkOi/nU1L4XJMkFK4aPoc9Vy3+AOcdDTFoF5dMHhIP8T6gUhXJL6Y/y72nCgGEIGSLPhlyjJzBDZpegGPb3L7inD4cCE/g9GIni7BJ3uhU4pX7Riee+oVjL3nUbRPpVzVIoVvGSjF1wACgpREUwDgxVvT5qNX7jWgnJyX9hmJi1ulQfJJ2LFjDeYv/dxYWI5HeZ9uzVCiPNqyGzeErsgo9hZg9+7jfB+FGFCOPYp2Iotq2dwp2OZtiUl3DAPlF6f9YhMIlEdAtIryiITJb6IEXfdyv9DBzZ9j7Y4CjB/fn9c+IqkRrh7eF77iIjh0P2bPfh9F5EeiKG9+RSlIlLmTtgZpGXAB8BcWYN/eXXyfJPn5GmYKHNCL92Lyc7Nwy333I9Ul8wU0hZ1UiqP4VoqAIKVSLMLoGy1g6YMGWn0MeHfaDDTq2AuXZKfw/YADQ3NHIT05Fi6HExs/+xgr1+8AFMojbVhGpWAZpJSZmYMG0Q5A8+PIwd/4YYmimXTKfQ7Mm/IfnExsiTuu7cG7bZJMifLFJhA4EwHRLs7EJCz2UJ5oWY4ETu3B/OXrcM0tNxiO58AM3OyLe+Oq7m1Q6GXw5R3AzFlzOC5KuSVfTJJKzcxCSmoS7woePHw8sMarBIfqQvGhLfj3yx/jrkf+ihgKEtdoVE41YpPCAm1RyWAQEKQUDFo2OZeWSTDXblm5eD7yojMxrE9HY2klpoCG6IEoXJt7NVTZjWgXsHzJx9h2uCAwW7cMEIzWOwHiUtORmJTIQwB27T2IIuIdviCDhFee/ydSOvfH9d07AJoOSE4+104K+KPKlCa+CgSEBR2ObYBIhOn0PvLgrRnzcNWom5FAa0gTj9C4faCT1mPAGFzcKgc+5sDx7V9j3uIvSuEKhBUFFosBXAlIT4rmI3B5e3fiRCGxkoJDP6/AG4tW44+P/dEIH6ClhCQpsFJKaXHim0DAREBYSiYSYfSpQIdDkbHn+0+wbtdJ3DR6BK+9LBFhyDw7AIUjOZMa45pBfeH3FCNSKsa8ObORT4xmboxyCzDIvMsXgaY5DXmXrLDwOI4WUqyShr8/PBmdr74T3ZqlQmN+Tlq0mpAxo84gQrM48SkQIAQEKYVhOzD9QO9On4Emlw5Gu6zTF+ekcXyNulkARuSORMMkFbIag+/XLsOKtVv5fj7oxjlFDkQbSWjU5AJaNg6nigtQUODBttXzsHxrIf5030QalxNhSWHY1qpTZUFK1UHNsteYI2cKvCe2Y9GyzRhzw81n1kZSoDkC8UcX9Ub/Hh1Q7PFDcx/BnJnvBM4nG4nW+pR4HibamdIgi0IsAXcBftv0Ax5/5hXcMPEhtEhS4SMjSRhGZ2It9pyBgCClMyCx6Q7qajFvibXy6cIP4E/rgJt6tzqzwhLgNDxAgByF62+8AzFOIMIZgeVLFmHjnnzD66TTNBJKUmlYVU3SM4EpSBwAAAK6SURBVJEYG4kopuHvf7kXe5yNcc+NA3n5qmz6q868ndgjECiLgEhdUhYNO3/nk2hleGUinEIsem8RDux3Y+Ldd6NIA2SdHNNnbqqqoDD/GBAbg0jdhxM7N2HOgmW4aMIoMFmHojPoEsUcyUhvko3k5Ej8fMSLooP78e9ZHyDGIRl5vimBnMiYdCbAYs8ZCAhSOgMSe+7wSxJUpoIG2fb+sBrLv9qEPflu/GfLOkCnZkBhAJVsDhmxsXFQGYNLlTB/5gxMuHkEMqJpoQEZemBoPyY9HanRsfhxxx5c/8gLGNLpAgpKgkZWEqXaJVISXbhKQBa7TQQEKZlIhMEnxSdRf33+nEX49WgB4pJi4IuJhctHxHEWtpBohI0AcsARGYttG77EijUbcUO/jtynRKN2tDljUhDjdyO+UXf8+Z5bAdBEXlWMtIVB26rNKkqURao2CxRlhSgCPK2RzqeR7NyzE0X5PqgKvZMMh/XZpKZul3kWhV0W+3XEpWehUUoiKLwAlAEgsE17/mGwC/rjphHdoes+yLLDPCQ+BQJVQkCQUpVgsv5J9O5hjEhJg6I4a6VCjPmN3hgtMMA3er8ZFhfz6dAVHxSZj8fVyv1EIeGBgNmawqO2YV1LGiGTuOXCdBaI3A4eED7OxnRIPHBSBihCu6QYcmqTSeYDUxxgJWRVcoL4IhA4JwLCUjonRHY5weils0CqkerGDFEpxDvkgjL7/aWkxOevgHxXFL9E+087ZhcoRT3qFAFBSnUKryhcICAQCBYBETwZLGLifIGAQKBOERCkVKfwisIFAgKBYBEQpBQsYuJ8gYBAoE4REKRUp/CKwgUCAoFgERCkFCxi4nyBgECgThEQpFSn8IrCBQICgWAREKQULGLifIGAQKBOERCkVKfwisIFAgKBYBEQpBQsYuJ8gYBAoE4R+H+SJke3J3VOlAAAAABJRU5ErkJggg== />
1. Ia = Ib > Ie = If > Ic = Id
2. Ia = Ib > Ic = Id > Ie = If
3. Ie = If > Ic = Id > Ia = Ib"