This topic contains a solution. Click here to go to the answer

Author Question: For the two resistors shown in the figure below, rank the currents at points a through f from ... (Read 102 times)

jlmhmf

  • Hero Member
  • *****
  • Posts: 552
For the two resistors shown in the figure below, rank the currents at points a through f from largest to smallest.
 
Question 2

eH4cBO463drmMnZMZSI9C5cp2yjLXLZ+HVWQvt0PbrpA4BTuKBpRRTaszXNaxLOkZJ/I19OgqOHYOkOAHJgdatcupEHisWynEKAHny2F5sP5EHKIno17cfrw5NHqFu889ff4gFK9ZDVlVc1Kk1P/bdipm4+y8vwsMioUrUmTbsLSviUB2ZbUZKEl9kkRNQVBQPRMtp1iYwh8gHWXaCuQ/g6YefRBHCK/YjmMYhBbrABsPrfERTlyT+aBA92YR2AAAgAElEQVTnywq9/4FD23/Cum+3QPN50LTVhRjRr3Mwt7H1ufzdyP8BGC1lrvuhJqSiaRMibuq2kQVagJee+ieOF1EoRRKaZmeAxjkn/+9t9Ls6F0kOyhaslFj/tgasTOVsR0pyYOJE0/aduPK97jyjujKtQ+/B/Xf+AVKna3DvWMPPVAYL8bUEAeMVL3EsjQmhLtlnpD3h50jYuvlH3P6HP2PzES/6DB+LGdPfQrO0mKASxpXczpZfGGRJ4X64xNRstG6QCr9eDCWKXobGYzflb/ehKLkzcgd1hFeOQOuWbbB0zkvY62mA264dxP1OCs2RCzK1jNXhtFWckpHogYY8ZIzIHYvBb83Cmy88h0vatcCF2dGY+uqLKFSb4b8v/AUyPACLMPsmVtdjnclPnYzISBf2/LgWd912G5RIBbt2/oJVS77EKZ8fuXfejycevh8tM1INGcivJ7bAoABnFKjRmbj/4Uew5tpb8fgDD+CpP/8OSxbOxuofCzD19Wfx0oPDAfcePP6X27B330H858U3kKRKfHhO5/nJwwtQW5ESGcU08VHWGVxpbTBtwUd46eX/YcmC6fg5Iwc9R96IcSOG8AA/n6bAwZPWB2zs8NJ7lWtLHMM0Hc7kFPQaMAAu2YFiX08MG5yLdV9/jo8XvIkrFs1Cv4Ejcdvdd6JHh8CgQpXvYN8TyUFNdqZXcqDvqFvwydIUTJ22AFNefx05bS7C9GlPIS3ehd/f8ySKHFNx0qfi3y/+F10vbMwXqNRpEnnJ4lJh1E6DjYIK5eBJCtvjgZy6zig2reJNZ7rGSgIsKz4nvPfqzMsB2LJsGmsUJzHZobLLcu+vEJQl701lGdHcPGJRGQ3ZzKWrjPO0Ysb0yrVQYWE22mm0RY1RY/OzytubVhLJW1p5ar06M4OAQyMYVQRPVvPlSe8SnmJVOtuMIcr7Y/bqq3mjMLqMd8aoJ+E3Fo4sX/X+I2/B/fdNgCtChXbiIO6/+4/YtPeI4Zz1U0bw8NyMtsjXhwp4OSvGQa7AX0Stl2wkw/MURhZSACKbOborVrzYWxsIVO4rGjaoP1IjFbii43Dw1x8w98PPDFJSAnO4auP2ooywQUCQUtioOviK8rd94DKex5t/P5Oc4qJdSHSo8FH+KrhRtMsY8WRyeMXXBI+wuKIiBAQpVYRKmO9jumHhUMYF6uhSLiCWfxJuwoWiKQMOXD53C0C+24PjHjqVpu0AmtPoclDu7jMpLMzBFdU/JwKClM4JUfiecDS/CPluDbKqoPDkfnjIRSQbsTdETGZK7rVfrcJB3QPVVwQ9NgNXXNnFAI1m/YQvfKLm1URAkFI1gbPzZWZuqd0HjqBAA1yOCOzf8yPWr/+ZV5tSu0qBOYZb1q3CC5Nfg+SVcOoUcOtt92BIt3bQNK3kHDtjJepW+wjYKk6p9uEJnxJN74+sFWLVF1/hh82b8fIz/4WPDhQWoeBkHm4eNxYTbhuPzNQGYJoX329Yh3emz8LR/AJkN22Ba34/CU9O+j0ckpeyUYMFiCt8UBQ1rQ0EBCnVBopWL4NRig1KIi1D8hVg3ZovsHHLLvQaOgojE+IRFxcHv9+PI4cP4dctW7Bt8+aAJQTcNGEiul7eE126dETDtEBUN5zUywsMaVsdHCF/fSMgSKm+EQ/F+zEJiqZDV2TozgaY9OfHqycl08Ju8mj1gBJXnQ0BQUpnQydMjjGJ8vZQsJ5ujLSRjVMusxgPSq0ID8qJXjLGZqz/VtFpYp9AoKoICFKqKlJ2Po+GyPjKGUbOJCOr2+njZoyW5S4Tfcx/EyZ8H8UMGKld7QyTqFv9ICBIqX5wDum7EP0YFFT5YGxZQqLKlP3Nrz2dw0K6vkK40Eag8lYY2nIL6QQCAgGbIiBIyaaKFdUSCFgVAUFKVtWckFsgYFMEBCnZVLGiWgIBqyIgSMmqmhNyCwRsioAgJZsqVlRLIGBVBAQpWVVzQm6BgE0REKRkU8WKagkErIqAICWrak7ILRCwKQKClGyqWFEtgYBVERCkZFXNCbkFAjZFQJCSTRUrqiUQsCoCgpSsqjkht0DApggIUrKpYkW1BAJWRUCQklU1J+QWCNgUAUFKNlWsqJZAwKoICFKyquaE3AIBmyIgSMmmihXVEghYFQFBSlbVnJBbIGBTBAQp2VSxoloCAasiIEjJqpoTcgsEbIqAICWbKlZUSyBgVQQEKVlVc0JugYBNERCkZFPFimoJBKyKgCAlq2pOyC0QsCkCgpRsqlhRLYGAVREQpGRVzQm5BQI2RUC1ab1EtYJEoFj3w8c0SAyQZBlRsoOXwMAgQQqyNHG6QKD6CAhSqj52trryyXXvY86mT6BARfMGjTCr/x8QEemCHxocEM3EVsoO8cqI1hbiCqov8XafOIwtuzcDjki4ocMnMUQAcOgSIDNAWEv1pYqwv48gpbBvAgYATlkBolyAFIEIZwRYoMcmum+igdQ3AsLRXd+Ih+j9NEkCGAN0DbLOIEtG09CEOylENWZfsQQp2Ve3QdWMHNzQGSDr0Mu0CpnISmwCgXpEoEzzq8e7iluFNAJEQ8RRYhMInA8EBCmdD9RD/J7CrR3iCrK5eIKUbK5gUT2BgNUQEKRkNY0JeQUCNkdAkJLNFVyd6gmfUnVQE9fUFgKClGoLSRuVI3xKNlKmBasiSMmCShMiCwTsjIAgJTtrt5p1E923agInLqsVBAQp1QqM9ipEdN/spU+r1UaQktU0JuQVCNgcAUFKNlewqJ5AwGoICFKymsbqQV7hU6oHkMUtKkVAkFKl0ITvAeFTCl/dh0LNBSmFghYsLIMfOjRNr3ACL2OahWsmRD9fCIgkb+cLeRvdV2IMBcUeHCzKg0IpmSSGtOhYxKmRImGljfRcX1URpFRfSFvoPsH4lGRdgqzKWHdwC8bN/ieYU4bsk/DmiIkYcEFHC9VaiBoqCAhSChVNhJAcwfmUiMIAj7cYh7yHAE0G/AqKvb4QqpEQxUoICFKykrZCUFaJp6yU4JKdtMwAAAVQFUgO4a4MQXVZQiTRciyhpvoVMpjuW4lkPG2uYTWR1zvwreSw+CIQqCoCgpSqilQYnUfdN7EJBM4XAmFFSowx0J/Yzo2AsHTOjZE4o24QsDUpVURAgpjqpiGJUoNDoHw7pN+6rouXJmDv9ZilwPJAJjnRb/oj5ZvHgmtK4XF2tXxK4QFNrdWyfPsz26bZVmvtRhYsKCwsJVPhpn5k2dbVNqtZ7c/gQgKqfRtxYQUIlCerCk6x/S7bhQSUNYuJfMgqmjdvHj7//HOcOnUKqamp6N+/PwYMGMCVa55fnrhsr3lRwZBAYN++fZg7dy42bdoEv9+Pli1bYtSoUWjdunVJ+ww3orItKSmKgt27d+Ouu+7CsmXLuMJVVeWfr776KsaNG4fJkycjMTFR9OND4vG0vxDlX4CLFy/Gvffei19//RVOp5O3Q5/Ph1deeQWPPfYYbrvttrB0M9QKKYUSk5MsZCEVFBTg1ltvxfLly5GcnMxbPB2jhqFpGt544w0QcU2ZMoWfb/9Houo1FD6lqmMV7JnUBunvm2++wc0334z8/HzePs22SZ9k0U+YMAFJSUnIzc0N9haWP79GzpWIiIiQA4CUStucOXOwYsWKEoXTftPBTWSUkJCA6dOnY9WqVSFXh/MhEL2pEQiXqA2fUlRU1PmoRkjfk9qg2T6ffvppHD9+HPHx8fylSC9L2uiTsKMX65NPPoni4uKQqFN9PutBW0omeNSIyU9DDziZnKG0kUyzZ8/myqVGYMpc9judQ7+feeYZbNiwgVtPoVSH+pNFgoMB67EdsisSul/n0djVjuaSZUi6jFnvvouftAT4avTaqz8U6vpO1AapvVG7O3HiBNauXYu4uLjT2p3ZPunc6Oho7NixAw8++CCaNGnC3Q51LWP58s3nhp51ennXFzEFTUokOHV/HA4Hli5digULFpSvy3n7bSqVBIiJiYHL5SohpIqEonNWrlyJjz76qKLD4bUv92IovZoBefk1qzc9eA4H/vf6/4CfD9asLJteTe2ULHXycZrWe9m2S9/Nv5dffvm8EFJ56OlZInnJACGZ63ILmpQILHqYifFJSPMNUJdCBls2yVhYWFii8Iqup3NotIPeSCkpKWclr4qut80+xqD4GY5GRcGjaSVduJrUj9pEakoKXKkMfqcq5sEFwKQ2Rxs91OTzNK112m9aJWVxp/ZJ/lCyVOqaCMrel76TPGboDH2nP5KHnn1zf/lraut30KSUk5MDGjUwQawM0NoSMNhySC5SIoUB0AgG9dlpMxsEfTcB9nq9oDdR165dOeBmnYK9p5XPlyBBkSQ8snkx5m5bSUDx6hj/VqNmug5N9+Gxxx9Hn9SW8FeYk7Ia5drgErMNEsFMmjSJW+nkzC5POPTb7XajadOmmDp1KieC8ufUBxymvGWfCyKk7OzsOr190KREZlzbtm3rVKjaKHzixIk8FID6wqYlVBbkkydP4rrrrsNNN91UG7ezfBnJh74CtmgAWb81qQ132DI0a94crRqGfjupSVVrcu2jjz7KR+Bo9I2sddrogSfyoS4SvTD/9Kc/oUuXLjW5jSWvtZUbkhidlEp/sbGx/C3Tt29f7lgk52JeXh4f8aCGMHbsWLzwwgtcaXR+2beBJTVZQ6HJNDc3spJqRExAyIwamXUKtc9u3brhtdde48G8x44d42EA9KKkETny1z7//PMYP358WLbLoC2lUFNuWXlMS4hIhpzxzZo1w8KFC/lIHI0UEilRRDdFcw8fPrzkzUTnU/9ebAYCREjV7r4JEKuEAL0Ex4wZg06dOmHGjBn48ccfeZuliG7a37GjkUqY2iZZUGbbrlLhFj/JVqRk6oIIhpROfxTzQUFq9Fd+o+Ok7Lp23JW/r/gtECAEiHDIb0Rduco2ap/hREiEg+1IyVSg+VmZsmm/eY75ebZzxTGBQG0iQG2uKu0uHF+YtvIp1WajCeeyasOnFM74ibrXDAFBSjXDz5ZXC5+SLdVqmUoJUrKMqoSgAoHwQECQUnjoWdRSIGAZBAQpWUZV9Seo8CnVH9biTmciIEjpTEzCfk91fEo6X+zNXPCN1Tz60sZaMAJTGQ9QNf6t2wmuVoNSkJLVNBZi8uq6EWbJmA+SpkNmfsgyPXaiaZVVFdMBXTMoyECMZh1SkKrxq+y54f7ddnFK4a7Q2qg/PSbG2/zcpUkB7tH8DMzjA5MUwKvDrWvnvjiczpDIGmI4deQIPlu6FIfdOnzek/jltz3o0ecajB58aTihcda6ClI6KzzheTCY7huTyAIA2qY3wezr/84TxhGjXZLRBExnkGRhCfBWxGjCrTGVacfOnXhn3gys37SdMn+hy5XXh2dDq6TWgpQqAcZSuxlZJcp5mbAmweiSZMYkYkyLy06DjabxiM1AgCPh1ZGQmo7/++ujSIkuwA33TUbrrv0xoHcHAVMZBETHvwwYVvv65Zcf47VZH1BvifKBBtHpqr2aypSPSZEq9CBVZRpF7UkS2iUxGdBlBj4gADe+/vQLLnD3flcgJVI8hmW1J9Aoi4bFvn88bwrue/BlFOlkJXlrTfpgfEq1dlObF6QwCX7Vzx3bx3/bgM/WbwJiG2PwgH42r3nw1ROkFDxmIXNFdHQMEuMToXG3Da0sUzv+m2B8SiEDRogLQj1ZBy0XD+CbLz7FL/s9aNO+M3pc3CrEJa9/8WxNSuTt0JgGvYxvI+/UcWzbuh2FRp+nDOIWHC3SZWiyBgfnIlursoyerPmV2qKkOwB4sXTZpyCbqfdVQ5AUAezb9Su279rFO+BUO0bxA2G82dzRLYH0Sz6P3du/w7P/eB6rN29Gy+btIEsu5I66AksWfAhvbAM88djf0DApxlJNQWIMPkqBwaUW9k0oK4+nKlFV5B34Cau+2ojoxMbo1TULDz06Afu3F2Lr1o1IzWmNZ194ES0bpoRyVepcNpuTEqAqCj56bzruuP33OOhJxpQ3X8bYoQOxbO4rmHjnHdh9MB/t+o5DXKyRJ7nOEa/lG9ROh+10oahMMW52OiY1/WW+OjasXY1fdh1DastGmPbv13HR5VfhpdfG4tulM3HlqNtwTI/F0llTEENGVZhuNrT5yVCm/wwPy4fz38J142/EAW8a5i9djptzR8AVEYEevbpApiERRyRuuvF2xBl9IEs1A77wiKTACH+pPXoysasNMExd1EZZVi7DIHkNn3z4IYolFXu2/4ycrv3x9z//DrHR0bjiyqtwVZtUrFm2BBu2hfd6efYiJUYpRv3QNR3UK9+xbhEm3HEXTngc+OOj/8LQy9uA8Zge4NAvvyH/RD7iL+iCYQM7h2Z7Z5TM3/QvnGm7MMUBhflQmvK/omoYBH0+bB+6M1kINaVLYxjdgj6/suqQgOK8Xfj66w3wa360752Lx/94Y4lNWnjiGA67vVD9R3Dg+LGyV4bdd9t13yQmQZIVSN4C/O3hf2LnUTfa9sjF/90+nCvXx3Q4JQWrVn2JY14dI/v2QfMUV+DhDy2O3v3Tejxw3z04rKTBxTyAJPPHnNZmc8jkJ9sGX34hRvfvB1lVIRFvBbiLzjxeqOF3f7gPt44eGFTDrq3uG9HRL+vW4qdde6FGRkJitGpMFUWhuuoafI4o9OzZHWkxkVW8MDRPI0w3r1uL9b/uR0RUKu697/+Q5FCga37Iiop9u3di16F8yM5MJERZy7dZ24jbipT4lAdJhiIB65fNx4JP10J2JOO2CXcgJVoBNIr1V6F79mPJslWAEoNBgTgRnQ7V9JVey9qRVAei4xMQixhEyxHQiHADi0VSHSMjZKDAhZj4BDhpsQSqhLkxHZrih8sRPNFSKbUFxXtz/4XH/zUbUfFJgC5VGWOaQ+fzFsOVnIVPVixDWkyWWTPLfn62YgmOuXVcPGAQxvS72HiDBKaefPrZcpxw60hp2RzNGzWwbB1rQ3B7kRJHRAJYAabOmIETXg3NO16KUYN7GaubQINTUvHjmpVY/d0WJDXpiu5dL+FXyebM0tpAtZbKyG7VEW/MXVJpac8+ejOeW+TGjDmzEFXpWcaqLiaZVXpaHR246e6n0G/sA3wJK27n0YTdKm6MuuJqJBpnphrLiQcIuYqXh8hpBsXr7v1Y9flqnj1hyJixoCBupvkhKQ4w92F8+PGnoHfK5b17IyfF2lZhTYG3FSmRTcBkCYX7NuOr9d/z+WC9rh6KrGgFmk8HU2TIKMaMaTNw1MvQp3sfNEtxojD/MPbtL0LzljmGhVCbpkKNNHR2e0X3+qFTHBa5nSo1iMi6qpEQNbo4o3ET0F84bmWb0f7N3+LbjXsQnd0BQ3sbq976GOCkYMrVn+C7b7bCGZONG8fn1pqValXMK23KVq0QPX8H9+3DyWOH4UzIxJArA2H8sgxVlvHbmg/x9sKVgBKNK7v35GtMTfvPPzD51Q9KG0OVHR/nFyVq9OREMsQ1ftWGRIRh7ZVWGxJZuQzjjfDT99/jsNuPthdfivY5SdAYg6w4AFaMKS+/gAMaw7Bxd2JIt9YU8mvlCtdYdtuREkdE80L3A7EJmWjWNIPv4gvg+o7j0UeexfECDY7EVLTu2A7a8V8xbc6XGH3DiBqDaZcCyr7h7VKn+q6HMebJePAu3Xv3bwdBsxMv7HAht45owokqASveeQXTF6xDo3YD8MTjE6HSlF1yjobxZqvum6nHlEbNERftwLGCAjhL9OvGYw9OAtIvRIumB7HHF4WLmqbgH3+6Ds17XYMrO+aYl4eex7tUstO+0axzlUncF1F7runTbiF+VBMBs9mZ/JLeIJmX5Iw2RtYoLG7rxo9x6533Ie2CPnh/5mtomR4NTWeQeUK4at7YBpfZzlKiAbb4rI546C9/hXbyF/z5gb9gydIluP36sfhRz8KLL/0VsQ4fTh7ei9tHD8Knv0TimSf+AOkc0T6hqGuKuaIUq0ackhnPFIqShqNMREul/rzeY8ajV5c2mPXyU5j7/kd4/cV/YujQW9Cs97VY9NkcXHxhNg/5pRFgKYjBADsiaytLibodNPmW4mPGTXgYTdu2w/zFy/DRx8tx6YBbcP344aDo/Rf+/RxmLfgcUQmNcPuEu5EZEwka6QnBAbiztjndq8LnOwrjxUp+CONBOOtFlRzkk5bJY67r0CmeqJLzxO7qIRCT1gLzFy/G7LemY+XKZUiIi8I/pkzDsEFX8e6cxnRQbioeahrm/WeJ2Sg9INkKTPNB8jPoTgfU8sNOzAOfpsGhnj7PzaeR01GHQtkbLbRt+/k7/HbUj56XdUKEqkOWqj9h6vfLpuB/X88FVBWtMlrh2/FPI9oRCR0aZIvhEooqZJS2RD6zY6LBB6bJUGSDknhfnJtLoViL+pHJVqTEIQuMnDE+e56W+iF7mCZrBKY88LQQRuNgEgNFgOv0yY+f2WjqRw01vYvhVuVv2WoWtb/gOE6686nvgEg1AjnxaZA5qYf5a7uaeJ55mTHphtCkeK2Szfxa/gVackL4fbEfKYWfDkWNBQK2QsCqpoGtlCAqIxAQCJQiIEipFAvxTSAgEAgBBAQphYAShAgCAYFAKQKClEqxEN8EAgKBEEBAkFIIKEGIIBAQCJQiIEipFIvw/cYDvKj6lLozMBuX8mjQ/+aQdfiiI2pezwgIUqpnwEPydhQSznw8SZyPBKTAcFmCrmuBbOchKbUQyqYICFKyqWKDqZYmUWgpg84kKDLDTz98h51HjkKSGWRwmgqmOHGuQKBGCAhSqhF8drlYAXQHJFmClL8Ht48ejSdenA5JUnkKW9GDs4uerVEPW03ItQbkoSclTU/RZD9UScW3qz7Bxl9+w+HFS7DnwYnIjjl98goRFPmZZGjYtvk7TJ/zHhxyJOJTMuGMACT3MRzIL4bH7cXAYdfiis7tAk4qCT+t+RwzP1yKmMQEpMSlodh9CHv3F6DFpV1x89WDSpPshR5EQqJ6RECQUj2CHaq3kqDxFWAAP+bNmoNCh4KdP6/H4qVf4s5RPSsUm8gpITkFbVu1wnvTp2Dex19BV6k5RWLMjTdieN9uyE4zcggZBTAkZjXGha0bYvprL+KjL34BHFG45dY7MLhpIyPVpZmEqMI7ip1hgwBlCRBbeCOgs2KmM8YObf+KNYsHi4h1MUeEk/UdPZF56UC5TdcZ0+mfwFawZz27uFkKk50O1rjDYHbAbR5hjBfMf5aeP+eJCQxwsX/NXlJyot9Xerxkp/gSlggIn1LYvH4qr6gEB8+SsHDWO4hq0g5NU5LgjJSxZuVyrPrxQODC0hABWl+OVkcha4myOEWnN0ZOowzA74PP7cbJvDzeZfMzcpIb1/FoA37BScx47yMMumMSJo7pzwugVT1kmXcMKxdSHAkbBAQphY2qz1ZRCd78nZgxZyX++sJUDOnZFsVuwJP3C2bM+TBwoYf7khiFDwRaDfW2eAYqNRlZyQkgXvHmH0Ge28PjCmRGKxX7uBOKgfI9AasWvY1Nx+Lw1N8eNHxICiApaiDXkOi/nU1L4XJMkFK4aPoc9Vy3+AOcdDTFoF5dMHhIP8T6gUhXJL6Y/y72nCgGEIGSLPhlyjJzBDZpegGPb3L7inD4cCE/g9GIni7BJ3uhU4pX7Riee+oVjL3nUbRPpVzVIoVvGSjF1wACgpREUwDgxVvT5qNX7jWgnJyX9hmJi1ulQfJJ2LFjDeYv/dxYWI5HeZ9uzVCiPNqyGzeErsgo9hZg9+7jfB+FGFCOPYp2Iotq2dwp2OZtiUl3DAPlF6f9YhMIlEdAtIryiITJb6IEXfdyv9DBzZ9j7Y4CjB/fn9c+IqkRrh7eF77iIjh0P2bPfh9F5EeiKG9+RSlIlLmTtgZpGXAB8BcWYN/eXXyfJPn5GmYKHNCL92Lyc7Nwy333I9Ul8wU0hZ1UiqP4VoqAIKVSLMLoGy1g6YMGWn0MeHfaDDTq2AuXZKfw/YADQ3NHIT05Fi6HExs/+xgr1+8AFMojbVhGpWAZpJSZmYMG0Q5A8+PIwd/4YYmimXTKfQ7Mm/IfnExsiTuu7cG7bZJMifLFJhA4EwHRLs7EJCz2UJ5oWY4ETu3B/OXrcM0tNxiO58AM3OyLe+Oq7m1Q6GXw5R3AzFlzOC5KuSVfTJJKzcxCSmoS7woePHw8sMarBIfqQvGhLfj3yx/jrkf+ihgKEtdoVE41YpPCAm1RyWAQEKQUDFo2OZeWSTDXblm5eD7yojMxrE9HY2klpoCG6IEoXJt7NVTZjWgXsHzJx9h2uCAwW7cMEIzWOwHiUtORmJTIQwB27T2IIuIdviCDhFee/ydSOvfH9d07AJoOSE4+104K+KPKlCa+CgSEBR2ObYBIhOn0PvLgrRnzcNWom5FAa0gTj9C4faCT1mPAGFzcKgc+5sDx7V9j3uIvSuEKhBUFFosBXAlIT4rmI3B5e3fiRCGxkoJDP6/AG4tW44+P/dEIH6ClhCQpsFJKaXHim0DAREBYSiYSYfSpQIdDkbHn+0+wbtdJ3DR6BK+9LBFhyDw7AIUjOZMa45pBfeH3FCNSKsa8ObORT4xmboxyCzDIvMsXgaY5DXmXrLDwOI4WUqyShr8/PBmdr74T3ZqlQmN+Tlq0mpAxo84gQrM48SkQIAQEKYVhOzD9QO9On4Emlw5Gu6zTF+ekcXyNulkARuSORMMkFbIag+/XLsOKtVv5fj7oxjlFDkQbSWjU5AJaNg6nigtQUODBttXzsHxrIf5030QalxNhSWHY1qpTZUFK1UHNsteYI2cKvCe2Y9GyzRhzw81n1kZSoDkC8UcX9Ub/Hh1Q7PFDcx/BnJnvBM4nG4nW+pR4HibamdIgi0IsAXcBftv0Ax5/5hXcMPEhtEhS4SMjSRhGZ2It9pyBgCClMyCx6Q7qajFvibXy6cIP4E/rgJt6tzqzwhLgNDxAgByF62+8AzFOIMIZgeVLFmHjnnzD66TTNBJKUmlYVU3SM4EpSBwAAAK6SURBVJEYG4kopuHvf7kXe5yNcc+NA3n5qmz6q868ndgjECiLgEhdUhYNO3/nk2hleGUinEIsem8RDux3Y+Ldd6NIA2SdHNNnbqqqoDD/GBAbg0jdhxM7N2HOgmW4aMIoMFmHojPoEsUcyUhvko3k5Ej8fMSLooP78e9ZHyDGIRl5vimBnMiYdCbAYs8ZCAhSOgMSe+7wSxJUpoIG2fb+sBrLv9qEPflu/GfLOkCnZkBhAJVsDhmxsXFQGYNLlTB/5gxMuHkEMqJpoQEZemBoPyY9HanRsfhxxx5c/8gLGNLpAgpKgkZWEqXaJVISXbhKQBa7TQQEKZlIhMEnxSdRf33+nEX49WgB4pJi4IuJhctHxHEWtpBohI0AcsARGYttG77EijUbcUO/jtynRKN2tDljUhDjdyO+UXf8+Z5bAdBEXlWMtIVB26rNKkqURao2CxRlhSgCPK2RzqeR7NyzE0X5PqgKvZMMh/XZpKZul3kWhV0W+3XEpWehUUoiKLwAlAEgsE17/mGwC/rjphHdoes+yLLDPCQ+BQJVQkCQUpVgsv5J9O5hjEhJg6I4a6VCjPmN3hgtMMA3er8ZFhfz6dAVHxSZj8fVyv1EIeGBgNmawqO2YV1LGiGTuOXCdBaI3A4eED7OxnRIPHBSBihCu6QYcmqTSeYDUxxgJWRVcoL4IhA4JwLCUjonRHY5weils0CqkerGDFEpxDvkgjL7/aWkxOevgHxXFL9E+087ZhcoRT3qFAFBSnUKryhcICAQCBYBETwZLGLifIGAQKBOERCkVKfwisIFAgKBYBEQpBQsYuJ8gYBAoE4REKRUp/CKwgUCAoFgERCkFCxi4nyBgECgThEQpFSn8IrCBQICgWAREKQULGLifIGAQKBOERCkVKfwisIFAgKBYBEQpBQsYuJ8gYBAoE4R+H+SJke3J3VOlAAAAABJRU5ErkJggg== />
  1. Ia = Ib > Ie = If > Ic = Id
  2. Ia = Ib > Ic = Id > Ie = If
  3. Ie = If > Ic = Id > Ia = Ib"



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

gcook

  • Sr. Member
  • ****
  • Posts: 343
Answer to Question 1



Answer to Question 2

2




jlmhmf

  • Member
  • Posts: 552
Reply 2 on: Jul 28, 2018
Wow, this really help


adammoses97

  • Member
  • Posts: 337
Reply 3 on: Yesterday
:D TYSM

 

Did you know?

The FDA recognizes 118 routes of administration.

Did you know?

Carbamazepine can interfere with the results of home pregnancy tests. If you are taking carbamazepine, do not try to test for pregnancy at home.

Did you know?

Hippocrates noted that blood separates into four differently colored liquids when removed from the body and examined: a pure red liquid mixed with white liquid material with a yellow-colored froth at the top and a black substance that settles underneath; he named these the four humors (for blood, phlegm, yellow bile, and black bile).

Did you know?

If you could remove all of your skin, it would weigh up to 5 pounds.

Did you know?

Cocaine was isolated in 1860 and first used as a local anesthetic in 1884. Its first clinical use was by Sigmund Freud to wean a patient from morphine addiction. The fictional character Sherlock Holmes was supposed to be addicted to cocaine by injection.

For a complete list of videos, visit our video library