This topic contains a solution. Click here to go to the answer

Author Question: For the two resistors shown in the figure below, rank the currents at points a through f from ... (Read 93 times)

jlmhmf

  • Hero Member
  • *****
  • Posts: 552
For the two resistors shown in the figure below, rank the currents at points a through f from largest to smallest.
 
Question 2

eH4cBO463drmMnZMZSI9C5cp2yjLXLZ+HVWQvt0PbrpA4BTuKBpRRTaszXNaxLOkZJ/I19OgqOHYOkOAHJgdatcupEHisWynEKAHny2F5sP5EHKIno17cfrw5NHqFu889ff4gFK9ZDVlVc1Kk1P/bdipm4+y8vwsMioUrUmTbsLSviUB2ZbUZKEl9kkRNQVBQPRMtp1iYwh8gHWXaCuQ/g6YefRBHCK/YjmMYhBbrABsPrfERTlyT+aBA92YR2AAAgAElEQVTnywq9/4FD23/Cum+3QPN50LTVhRjRr3Mwt7H1ufzdyP8BGC1lrvuhJqSiaRMibuq2kQVagJee+ieOF1EoRRKaZmeAxjkn/+9t9Ls6F0kOyhaslFj/tgasTOVsR0pyYOJE0/aduPK97jyjujKtQ+/B/Xf+AVKna3DvWMPPVAYL8bUEAeMVL3EsjQmhLtlnpD3h50jYuvlH3P6HP2PzES/6DB+LGdPfQrO0mKASxpXczpZfGGRJ4X64xNRstG6QCr9eDCWKXobGYzflb/ehKLkzcgd1hFeOQOuWbbB0zkvY62mA264dxP1OCs2RCzK1jNXhtFWckpHogYY8ZIzIHYvBb83Cmy88h0vatcCF2dGY+uqLKFSb4b8v/AUyPACLMPsmVtdjnclPnYzISBf2/LgWd912G5RIBbt2/oJVS77EKZ8fuXfejycevh8tM1INGcivJ7bAoABnFKjRmbj/4Uew5tpb8fgDD+CpP/8OSxbOxuofCzD19Wfx0oPDAfcePP6X27B330H858U3kKRKfHhO5/nJwwtQW5ESGcU08VHWGVxpbTBtwUd46eX/YcmC6fg5Iwc9R96IcSOG8AA/n6bAwZPWB2zs8NJ7lWtLHMM0Hc7kFPQaMAAu2YFiX08MG5yLdV9/jo8XvIkrFs1Cv4Ejcdvdd6JHh8CgQpXvYN8TyUFNdqZXcqDvqFvwydIUTJ22AFNefx05bS7C9GlPIS3ehd/f8ySKHFNx0qfi3y/+F10vbMwXqNRpEnnJ4lJh1E6DjYIK5eBJCtvjgZy6zig2reJNZ7rGSgIsKz4nvPfqzMsB2LJsGmsUJzHZobLLcu+vEJQl701lGdHcPGJRGQ3ZzKWrjPO0Ysb0yrVQYWE22mm0RY1RY/OzytubVhLJW1p5ar06M4OAQyMYVQRPVvPlSe8SnmJVOtuMIcr7Y/bqq3mjMLqMd8aoJ+E3Fo4sX/X+I2/B/fdNgCtChXbiIO6/+4/YtPeI4Zz1U0bw8NyMtsjXhwp4OSvGQa7AX0Stl2wkw/MURhZSACKbOborVrzYWxsIVO4rGjaoP1IjFbii43Dw1x8w98PPDFJSAnO4auP2ooywQUCQUtioOviK8rd94DKex5t/P5Oc4qJdSHSo8FH+KrhRtMsY8WRyeMXXBI+wuKIiBAQpVYRKmO9jumHhUMYF6uhSLiCWfxJuwoWiKQMOXD53C0C+24PjHjqVpu0AmtPoclDu7jMpLMzBFdU/JwKClM4JUfiecDS/CPluDbKqoPDkfnjIRSQbsTdETGZK7rVfrcJB3QPVVwQ9NgNXXNnFAI1m/YQvfKLm1URAkFI1gbPzZWZuqd0HjqBAA1yOCOzf8yPWr/+ZV5tSu0qBOYZb1q3CC5Nfg+SVcOoUcOtt92BIt3bQNK3kHDtjJepW+wjYKk6p9uEJnxJN74+sFWLVF1/hh82b8fIz/4WPDhQWoeBkHm4eNxYTbhuPzNQGYJoX329Yh3emz8LR/AJkN22Ba34/CU9O+j0ckpeyUYMFiCt8UBQ1rQ0EBCnVBopWL4NRig1KIi1D8hVg3ZovsHHLLvQaOgojE+IRFxcHv9+PI4cP4dctW7Bt8+aAJQTcNGEiul7eE126dETDtEBUN5zUywsMaVsdHCF/fSMgSKm+EQ/F+zEJiqZDV2TozgaY9OfHqycl08Ju8mj1gBJXnQ0BQUpnQydMjjGJ8vZQsJ5ujLSRjVMusxgPSq0ID8qJXjLGZqz/VtFpYp9AoKoICFKqKlJ2Po+GyPjKGUbOJCOr2+njZoyW5S4Tfcx/EyZ8H8UMGKld7QyTqFv9ICBIqX5wDum7EP0YFFT5YGxZQqLKlP3Nrz2dw0K6vkK40Eag8lYY2nIL6QQCAgGbIiBIyaaKFdUSCFgVAUFKVtWckFsgYFMEBCnZVLGiWgIBqyIgSMmqmhNyCwRsioAgJZsqVlRLIGBVBAQpWVVzQm6BgE0REKRkU8WKagkErIqAICWrak7ILRCwKQKClGyqWFEtgYBVERCkZFXNCbkFAjZFQJCSTRUrqiUQsCoCgpSsqjkht0DApggIUrKpYkW1BAJWRUCQklU1J+QWCNgUAUFKNlWsqJZAwKoICFKyquaE3AIBmyIgSMmmihXVEghYFQFBSlbVnJBbIGBTBAQp2VSxoloCAasiIEjJqpoTcgsEbIqAICWbKlZUSyBgVQQEKVlVc0JugYBNERCkZFPFimoJBKyKgCAlq2pOyC0QsCkCgpRsqlhRLYGAVREQpGRVzQm5BQI2RUC1ab1EtYJEoFj3w8c0SAyQZBlRsoOXwMAgQQqyNHG6QKD6CAhSqj52trryyXXvY86mT6BARfMGjTCr/x8QEemCHxocEM3EVsoO8cqI1hbiCqov8XafOIwtuzcDjki4ocMnMUQAcOgSIDNAWEv1pYqwv48gpbBvAgYATlkBolyAFIEIZwRYoMcmum+igdQ3AsLRXd+Ih+j9NEkCGAN0DbLOIEtG09CEOylENWZfsQQp2Ve3QdWMHNzQGSDr0Mu0CpnISmwCgXpEoEzzq8e7iluFNAJEQ8RRYhMInA8EBCmdD9RD/J7CrR3iCrK5eIKUbK5gUT2BgNUQEKRkNY0JeQUCNkdAkJLNFVyd6gmfUnVQE9fUFgKClGoLSRuVI3xKNlKmBasiSMmCShMiCwTsjIAgJTtrt5p1E923agInLqsVBAQp1QqM9ipEdN/spU+r1UaQktU0JuQVCNgcAUFKNlewqJ5AwGoICFKymsbqQV7hU6oHkMUtKkVAkFKl0ITvAeFTCl/dh0LNBSmFghYsLIMfOjRNr3ACL2OahWsmRD9fCIgkb+cLeRvdV2IMBcUeHCzKg0IpmSSGtOhYxKmRImGljfRcX1URpFRfSFvoPsH4lGRdgqzKWHdwC8bN/ieYU4bsk/DmiIkYcEFHC9VaiBoqCAhSChVNhJAcwfmUiMIAj7cYh7yHAE0G/AqKvb4QqpEQxUoICFKykrZCUFaJp6yU4JKdtMwAAAVQFUgO4a4MQXVZQiTRciyhpvoVMpjuW4lkPG2uYTWR1zvwreSw+CIQqCoCgpSqilQYnUfdN7EJBM4XAmFFSowx0J/Yzo2AsHTOjZE4o24QsDUpVURAgpjqpiGJUoNDoHw7pN+6rouXJmDv9ZilwPJAJjnRb/oj5ZvHgmtK4XF2tXxK4QFNrdWyfPsz26bZVmvtRhYsKCwsJVPhpn5k2dbVNqtZ7c/gQgKqfRtxYQUIlCerCk6x/S7bhQSUNYuJfMgqmjdvHj7//HOcOnUKqamp6N+/PwYMGMCVa55fnrhsr3lRwZBAYN++fZg7dy42bdoEv9+Pli1bYtSoUWjdunVJ+ww3orItKSmKgt27d+Ouu+7CsmXLuMJVVeWfr776KsaNG4fJkycjMTFR9OND4vG0vxDlX4CLFy/Gvffei19//RVOp5O3Q5/Ph1deeQWPPfYYbrvttrB0M9QKKYUSk5MsZCEVFBTg1ltvxfLly5GcnMxbPB2jhqFpGt544w0QcU2ZMoWfb/9Houo1FD6lqmMV7JnUBunvm2++wc0334z8/HzePs22SZ9k0U+YMAFJSUnIzc0N9haWP79GzpWIiIiQA4CUStucOXOwYsWKEoXTftPBTWSUkJCA6dOnY9WqVSFXh/MhEL2pEQiXqA2fUlRU1PmoRkjfk9qg2T6ffvppHD9+HPHx8fylSC9L2uiTsKMX65NPPoni4uKQqFN9PutBW0omeNSIyU9DDziZnKG0kUyzZ8/myqVGYMpc9judQ7+feeYZbNiwgVtPoVSH+pNFgoMB67EdsisSul/n0djVjuaSZUi6jFnvvouftAT4avTaqz8U6vpO1AapvVG7O3HiBNauXYu4uLjT2p3ZPunc6Oho7NixAw8++CCaNGnC3Q51LWP58s3nhp51ennXFzEFTUokOHV/HA4Hli5digULFpSvy3n7bSqVBIiJiYHL5SohpIqEonNWrlyJjz76qKLD4bUv92IovZoBefk1qzc9eA4H/vf6/4CfD9asLJteTe2ULHXycZrWe9m2S9/Nv5dffvm8EFJ56OlZInnJACGZ63ILmpQILHqYifFJSPMNUJdCBls2yVhYWFii8Iqup3NotIPeSCkpKWclr4qut80+xqD4GY5GRcGjaSVduJrUj9pEakoKXKkMfqcq5sEFwKQ2Rxs91OTzNK112m9aJWVxp/ZJ/lCyVOqaCMrel76TPGboDH2nP5KHnn1zf/lraut30KSUk5MDGjUwQawM0NoSMNhySC5SIoUB0AgG9dlpMxsEfTcB9nq9oDdR165dOeBmnYK9p5XPlyBBkSQ8snkx5m5bSUDx6hj/VqNmug5N9+Gxxx9Hn9SW8FeYk7Ia5drgErMNEsFMmjSJW+nkzC5POPTb7XajadOmmDp1KieC8ufUBxymvGWfCyKk7OzsOr190KREZlzbtm3rVKjaKHzixIk8FID6wqYlVBbkkydP4rrrrsNNN91UG7ezfBnJh74CtmgAWb81qQ132DI0a94crRqGfjupSVVrcu2jjz7KR+Bo9I2sddrogSfyoS4SvTD/9Kc/oUuXLjW5jSWvtZUbkhidlEp/sbGx/C3Tt29f7lgk52JeXh4f8aCGMHbsWLzwwgtcaXR+2beBJTVZQ6HJNDc3spJqRExAyIwamXUKtc9u3brhtdde48G8x44d42EA9KKkETny1z7//PMYP358WLbLoC2lUFNuWXlMS4hIhpzxzZo1w8KFC/lIHI0UEilRRDdFcw8fPrzkzUTnU/9ebAYCREjV7r4JEKuEAL0Ex4wZg06dOmHGjBn48ccfeZuliG7a37GjkUqY2iZZUGbbrlLhFj/JVqRk6oIIhpROfxTzQUFq9Fd+o+Ok7Lp23JW/r/gtECAEiHDIb0Rduco2ap/hREiEg+1IyVSg+VmZsmm/eY75ebZzxTGBQG0iQG2uKu0uHF+YtvIp1WajCeeyasOnFM74ibrXDAFBSjXDz5ZXC5+SLdVqmUoJUrKMqoSgAoHwQECQUnjoWdRSIGAZBAQpWUZV9Seo8CnVH9biTmciIEjpTEzCfk91fEo6X+zNXPCN1Tz60sZaMAJTGQ9QNf6t2wmuVoNSkJLVNBZi8uq6EWbJmA+SpkNmfsgyPXaiaZVVFdMBXTMoyECMZh1SkKrxq+y54f7ddnFK4a7Q2qg/PSbG2/zcpUkB7tH8DMzjA5MUwKvDrWvnvjiczpDIGmI4deQIPlu6FIfdOnzek/jltz3o0ecajB58aTihcda6ClI6KzzheTCY7huTyAIA2qY3wezr/84TxhGjXZLRBExnkGRhCfBWxGjCrTGVacfOnXhn3gys37SdMn+hy5XXh2dDq6TWgpQqAcZSuxlZJcp5mbAmweiSZMYkYkyLy06DjabxiM1AgCPh1ZGQmo7/++ujSIkuwA33TUbrrv0xoHcHAVMZBETHvwwYVvv65Zcf47VZH1BvifKBBtHpqr2aypSPSZEq9CBVZRpF7UkS2iUxGdBlBj4gADe+/vQLLnD3flcgJVI8hmW1J9Aoi4bFvn88bwrue/BlFOlkJXlrTfpgfEq1dlObF6QwCX7Vzx3bx3/bgM/WbwJiG2PwgH42r3nw1ROkFDxmIXNFdHQMEuMToXG3Da0sUzv+m2B8SiEDRogLQj1ZBy0XD+CbLz7FL/s9aNO+M3pc3CrEJa9/8WxNSuTt0JgGvYxvI+/UcWzbuh2FRp+nDOIWHC3SZWiyBgfnIlursoyerPmV2qKkOwB4sXTZpyCbqfdVQ5AUAezb9Su279rFO+BUO0bxA2G82dzRLYH0Sz6P3du/w7P/eB6rN29Gy+btIEsu5I66AksWfAhvbAM88djf0DApxlJNQWIMPkqBwaUW9k0oK4+nKlFV5B34Cau+2ojoxMbo1TULDz06Afu3F2Lr1o1IzWmNZ194ES0bpoRyVepcNpuTEqAqCj56bzruuP33OOhJxpQ3X8bYoQOxbO4rmHjnHdh9MB/t+o5DXKyRJ7nOEa/lG9ROh+10oahMMW52OiY1/WW+OjasXY1fdh1DastGmPbv13HR5VfhpdfG4tulM3HlqNtwTI/F0llTEENGVZhuNrT5yVCm/wwPy4fz38J142/EAW8a5i9djptzR8AVEYEevbpApiERRyRuuvF2xBl9IEs1A77wiKTACH+pPXoysasNMExd1EZZVi7DIHkNn3z4IYolFXu2/4ycrv3x9z//DrHR0bjiyqtwVZtUrFm2BBu2hfd6efYiJUYpRv3QNR3UK9+xbhEm3HEXTngc+OOj/8LQy9uA8Zge4NAvvyH/RD7iL+iCYQM7h2Z7Z5TM3/QvnGm7MMUBhflQmvK/omoYBH0+bB+6M1kINaVLYxjdgj6/suqQgOK8Xfj66w3wa360752Lx/94Y4lNWnjiGA67vVD9R3Dg+LGyV4bdd9t13yQmQZIVSN4C/O3hf2LnUTfa9sjF/90+nCvXx3Q4JQWrVn2JY14dI/v2QfMUV+DhDy2O3v3Tejxw3z04rKTBxTyAJPPHnNZmc8jkJ9sGX34hRvfvB1lVIRFvBbiLzjxeqOF3f7gPt44eGFTDrq3uG9HRL+vW4qdde6FGRkJitGpMFUWhuuoafI4o9OzZHWkxkVW8MDRPI0w3r1uL9b/uR0RUKu697/+Q5FCga37Iiop9u3di16F8yM5MJERZy7dZ24jbipT4lAdJhiIB65fNx4JP10J2JOO2CXcgJVoBNIr1V6F79mPJslWAEoNBgTgRnQ7V9JVey9qRVAei4xMQixhEyxHQiHADi0VSHSMjZKDAhZj4BDhpsQSqhLkxHZrih8sRPNFSKbUFxXtz/4XH/zUbUfFJgC5VGWOaQ+fzFsOVnIVPVixDWkyWWTPLfn62YgmOuXVcPGAQxvS72HiDBKaefPrZcpxw60hp2RzNGzWwbB1rQ3B7kRJHRAJYAabOmIETXg3NO16KUYN7GaubQINTUvHjmpVY/d0WJDXpiu5dL+FXyebM0tpAtZbKyG7VEW/MXVJpac8+ejOeW+TGjDmzEFXpWcaqLiaZVXpaHR246e6n0G/sA3wJK27n0YTdKm6MuuJqJBpnphrLiQcIuYqXh8hpBsXr7v1Y9flqnj1hyJixoCBupvkhKQ4w92F8+PGnoHfK5b17IyfF2lZhTYG3FSmRTcBkCYX7NuOr9d/z+WC9rh6KrGgFmk8HU2TIKMaMaTNw1MvQp3sfNEtxojD/MPbtL0LzljmGhVCbpkKNNHR2e0X3+qFTHBa5nSo1iMi6qpEQNbo4o3ET0F84bmWb0f7N3+LbjXsQnd0BQ3sbq976GOCkYMrVn+C7b7bCGZONG8fn1pqValXMK23KVq0QPX8H9+3DyWOH4UzIxJArA2H8sgxVlvHbmg/x9sKVgBKNK7v35GtMTfvPPzD51Q9KG0OVHR/nFyVq9OREMsQ1ftWGRIRh7ZVWGxJZuQzjjfDT99/jsNuPthdfivY5SdAYg6w4AFaMKS+/gAMaw7Bxd2JIt9YU8mvlCtdYdtuREkdE80L3A7EJmWjWNIPv4gvg+o7j0UeexfECDY7EVLTu2A7a8V8xbc6XGH3DiBqDaZcCyr7h7VKn+q6HMebJePAu3Xv3bwdBsxMv7HAht45owokqASveeQXTF6xDo3YD8MTjE6HSlF1yjobxZqvum6nHlEbNERftwLGCAjhL9OvGYw9OAtIvRIumB7HHF4WLmqbgH3+6Ds17XYMrO+aYl4eex7tUstO+0axzlUncF1F7runTbiF+VBMBs9mZ/JLeIJmX5Iw2RtYoLG7rxo9x6533Ie2CPnh/5mtomR4NTWeQeUK4at7YBpfZzlKiAbb4rI546C9/hXbyF/z5gb9gydIluP36sfhRz8KLL/0VsQ4fTh7ei9tHD8Knv0TimSf+AOkc0T6hqGuKuaIUq0ackhnPFIqShqNMREul/rzeY8ajV5c2mPXyU5j7/kd4/cV/YujQW9Cs97VY9NkcXHxhNg/5pRFgKYjBADsiaytLibodNPmW4mPGTXgYTdu2w/zFy/DRx8tx6YBbcP344aDo/Rf+/RxmLfgcUQmNcPuEu5EZEwka6QnBAbiztjndq8LnOwrjxUp+CONBOOtFlRzkk5bJY67r0CmeqJLzxO7qIRCT1gLzFy/G7LemY+XKZUiIi8I/pkzDsEFX8e6cxnRQbioeahrm/WeJ2Sg9INkKTPNB8jPoTgfU8sNOzAOfpsGhnj7PzaeR01GHQtkbLbRt+/k7/HbUj56XdUKEqkOWqj9h6vfLpuB/X88FVBWtMlrh2/FPI9oRCR0aZIvhEooqZJS2RD6zY6LBB6bJUGSDknhfnJtLoViL+pHJVqTEIQuMnDE+e56W+iF7mCZrBKY88LQQRuNgEgNFgOv0yY+f2WjqRw01vYvhVuVv2WoWtb/gOE6686nvgEg1AjnxaZA5qYf5a7uaeJ55mTHphtCkeK2Szfxa/gVackL4fbEfKYWfDkWNBQK2QsCqpoGtlCAqIxAQCJQiIEipFAvxTSAgEAgBBAQphYAShAgCAYFAKQKClEqxEN8EAgKBEEBAkFIIKEGIIBAQCJQiIEipFIvw/cYDvKj6lLozMBuX8mjQ/+aQdfiiI2pezwgIUqpnwEPydhQSznw8SZyPBKTAcFmCrmuBbOchKbUQyqYICFKyqWKDqZYmUWgpg84kKDLDTz98h51HjkKSGWRwmgqmOHGuQKBGCAhSqhF8drlYAXQHJFmClL8Ht48ejSdenA5JUnkKW9GDs4uerVEPW03ItQbkoSclTU/RZD9UScW3qz7Bxl9+w+HFS7DnwYnIjjl98goRFPmZZGjYtvk7TJ/zHhxyJOJTMuGMACT3MRzIL4bH7cXAYdfiis7tAk4qCT+t+RwzP1yKmMQEpMSlodh9CHv3F6DFpV1x89WDSpPshR5EQqJ6RECQUj2CHaq3kqDxFWAAP+bNmoNCh4KdP6/H4qVf4s5RPSsUm8gpITkFbVu1wnvTp2Dex19BV6k5RWLMjTdieN9uyE4zcggZBTAkZjXGha0bYvprL+KjL34BHFG45dY7MLhpIyPVpZmEqMI7ip1hgwBlCRBbeCOgs2KmM8YObf+KNYsHi4h1MUeEk/UdPZF56UC5TdcZ0+mfwFawZz27uFkKk50O1rjDYHbAbR5hjBfMf5aeP+eJCQxwsX/NXlJyot9Xerxkp/gSlggIn1LYvH4qr6gEB8+SsHDWO4hq0g5NU5LgjJSxZuVyrPrxQODC0hABWl+OVkcha4myOEWnN0ZOowzA74PP7cbJvDzeZfMzcpIb1/FoA37BScx47yMMumMSJo7pzwugVT1kmXcMKxdSHAkbBAQphY2qz1ZRCd78nZgxZyX++sJUDOnZFsVuwJP3C2bM+TBwoYf7khiFDwRaDfW2eAYqNRlZyQkgXvHmH0Ge28PjCmRGKxX7uBOKgfI9AasWvY1Nx+Lw1N8eNHxICiApaiDXkOi/nU1L4XJMkFK4aPoc9Vy3+AOcdDTFoF5dMHhIP8T6gUhXJL6Y/y72nCgGEIGSLPhlyjJzBDZpegGPb3L7inD4cCE/g9GIni7BJ3uhU4pX7Riee+oVjL3nUbRPpVzVIoVvGSjF1wACgpREUwDgxVvT5qNX7jWgnJyX9hmJi1ulQfJJ2LFjDeYv/dxYWI5HeZ9uzVCiPNqyGzeErsgo9hZg9+7jfB+FGFCOPYp2Iotq2dwp2OZtiUl3DAPlF6f9YhMIlEdAtIryiITJb6IEXfdyv9DBzZ9j7Y4CjB/fn9c+IqkRrh7eF77iIjh0P2bPfh9F5EeiKG9+RSlIlLmTtgZpGXAB8BcWYN/eXXyfJPn5GmYKHNCL92Lyc7Nwy333I9Ul8wU0hZ1UiqP4VoqAIKVSLMLoGy1g6YMGWn0MeHfaDDTq2AuXZKfw/YADQ3NHIT05Fi6HExs/+xgr1+8AFMojbVhGpWAZpJSZmYMG0Q5A8+PIwd/4YYmimXTKfQ7Mm/IfnExsiTuu7cG7bZJMifLFJhA4EwHRLs7EJCz2UJ5oWY4ETu3B/OXrcM0tNxiO58AM3OyLe+Oq7m1Q6GXw5R3AzFlzOC5KuSVfTJJKzcxCSmoS7woePHw8sMarBIfqQvGhLfj3yx/jrkf+ihgKEtdoVE41YpPCAm1RyWAQEKQUDFo2OZeWSTDXblm5eD7yojMxrE9HY2klpoCG6IEoXJt7NVTZjWgXsHzJx9h2uCAwW7cMEIzWOwHiUtORmJTIQwB27T2IIuIdviCDhFee/ydSOvfH9d07AJoOSE4+104K+KPKlCa+CgSEBR2ObYBIhOn0PvLgrRnzcNWom5FAa0gTj9C4faCT1mPAGFzcKgc+5sDx7V9j3uIvSuEKhBUFFosBXAlIT4rmI3B5e3fiRCGxkoJDP6/AG4tW44+P/dEIH6ClhCQpsFJKaXHim0DAREBYSiYSYfSpQIdDkbHn+0+wbtdJ3DR6BK+9LBFhyDw7AIUjOZMa45pBfeH3FCNSKsa8ObORT4xmboxyCzDIvMsXgaY5DXmXrLDwOI4WUqyShr8/PBmdr74T3ZqlQmN+Tlq0mpAxo84gQrM48SkQIAQEKYVhOzD9QO9On4Emlw5Gu6zTF+ekcXyNulkARuSORMMkFbIag+/XLsOKtVv5fj7oxjlFDkQbSWjU5AJaNg6nigtQUODBttXzsHxrIf5030QalxNhSWHY1qpTZUFK1UHNsteYI2cKvCe2Y9GyzRhzw81n1kZSoDkC8UcX9Ub/Hh1Q7PFDcx/BnJnvBM4nG4nW+pR4HibamdIgi0IsAXcBftv0Ax5/5hXcMPEhtEhS4SMjSRhGZ2It9pyBgCClMyCx6Q7qajFvibXy6cIP4E/rgJt6tzqzwhLgNDxAgByF62+8AzFOIMIZgeVLFmHjnnzD66TTNBJKUmlYVU3SM4EpSBwAAAK6SURBVJEYG4kopuHvf7kXe5yNcc+NA3n5qmz6q868ndgjECiLgEhdUhYNO3/nk2hleGUinEIsem8RDux3Y+Ldd6NIA2SdHNNnbqqqoDD/GBAbg0jdhxM7N2HOgmW4aMIoMFmHojPoEsUcyUhvko3k5Ej8fMSLooP78e9ZHyDGIRl5vimBnMiYdCbAYs8ZCAhSOgMSe+7wSxJUpoIG2fb+sBrLv9qEPflu/GfLOkCnZkBhAJVsDhmxsXFQGYNLlTB/5gxMuHkEMqJpoQEZemBoPyY9HanRsfhxxx5c/8gLGNLpAgpKgkZWEqXaJVISXbhKQBa7TQQEKZlIhMEnxSdRf33+nEX49WgB4pJi4IuJhctHxHEWtpBohI0AcsARGYttG77EijUbcUO/jtynRKN2tDljUhDjdyO+UXf8+Z5bAdBEXlWMtIVB26rNKkqURao2CxRlhSgCPK2RzqeR7NyzE0X5PqgKvZMMh/XZpKZul3kWhV0W+3XEpWehUUoiKLwAlAEgsE17/mGwC/rjphHdoes+yLLDPCQ+BQJVQkCQUpVgsv5J9O5hjEhJg6I4a6VCjPmN3hgtMMA3er8ZFhfz6dAVHxSZj8fVyv1EIeGBgNmawqO2YV1LGiGTuOXCdBaI3A4eED7OxnRIPHBSBihCu6QYcmqTSeYDUxxgJWRVcoL4IhA4JwLCUjonRHY5weils0CqkerGDFEpxDvkgjL7/aWkxOevgHxXFL9E+087ZhcoRT3qFAFBSnUKryhcICAQCBYBETwZLGLifIGAQKBOERCkVKfwisIFAgKBYBEQpBQsYuJ8gYBAoE4REKRUp/CKwgUCAoFgERCkFCxi4nyBgECgThEQpFSn8IrCBQICgWAREKQULGLifIGAQKBOERCkVKfwisIFAgKBYBEQpBQsYuJ8gYBAoE4R+H+SJke3J3VOlAAAAABJRU5ErkJggg== />
  1. Ia = Ib > Ie = If > Ic = Id
  2. Ia = Ib > Ic = Id > Ie = If
  3. Ie = If > Ic = Id > Ia = Ib"



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

gcook

  • Sr. Member
  • ****
  • Posts: 343
Answer to Question 1



Answer to Question 2

2




jlmhmf

  • Member
  • Posts: 552
Reply 2 on: Jul 28, 2018
YES! Correct, THANKS for helping me on my review


skipfourms123

  • Member
  • Posts: 343
Reply 3 on: Yesterday
Excellent

 

Did you know?

Barbituric acid, the base material of barbiturates, was first synthesized in 1863 by Adolph von Bayer. His company later went on to synthesize aspirin for the first time, and Bayer aspirin is still a popular brand today.

Did you know?

Though “Krazy Glue” or “Super Glue” has the ability to seal small wounds, it is not recommended for this purpose since it contains many substances that should not enter the body through the skin, and may be harmful.

Did you know?

If you could remove all of your skin, it would weigh up to 5 pounds.

Did you know?

Vital signs (blood pressure, temperature, pulse rate, respiration rate) should be taken before any drug administration. Patients should be informed not to use tobacco or caffeine at least 30 minutes before their appointment.

Did you know?

Signs of depression include feeling sad most of the time for 2 weeks or longer; loss of interest in things normally enjoyed; lack of energy; sleep and appetite disturbances; weight changes; feelings of hopelessness, helplessness, or worthlessness; an inability to make decisions; and thoughts of death and suicide.

For a complete list of videos, visit our video library