This topic contains a solution. Click here to go to the answer

Author Question: For the two resistors shown in the figure below, rank the currents at points a through f from ... (Read 94 times)

jlmhmf

  • Hero Member
  • *****
  • Posts: 552
For the two resistors shown in the figure below, rank the currents at points a through f from largest to smallest.
 
Question 2

eH4cBO463drmMnZMZSI9C5cp2yjLXLZ+HVWQvt0PbrpA4BTuKBpRRTaszXNaxLOkZJ/I19OgqOHYOkOAHJgdatcupEHisWynEKAHny2F5sP5EHKIno17cfrw5NHqFu889ff4gFK9ZDVlVc1Kk1P/bdipm4+y8vwsMioUrUmTbsLSviUB2ZbUZKEl9kkRNQVBQPRMtp1iYwh8gHWXaCuQ/g6YefRBHCK/YjmMYhBbrABsPrfERTlyT+aBA92YR2AAAgAElEQVTnywq9/4FD23/Cum+3QPN50LTVhRjRr3Mwt7H1ufzdyP8BGC1lrvuhJqSiaRMibuq2kQVagJee+ieOF1EoRRKaZmeAxjkn/+9t9Ls6F0kOyhaslFj/tgasTOVsR0pyYOJE0/aduPK97jyjujKtQ+/B/Xf+AVKna3DvWMPPVAYL8bUEAeMVL3EsjQmhLtlnpD3h50jYuvlH3P6HP2PzES/6DB+LGdPfQrO0mKASxpXczpZfGGRJ4X64xNRstG6QCr9eDCWKXobGYzflb/ehKLkzcgd1hFeOQOuWbbB0zkvY62mA264dxP1OCs2RCzK1jNXhtFWckpHogYY8ZIzIHYvBb83Cmy88h0vatcCF2dGY+uqLKFSb4b8v/AUyPACLMPsmVtdjnclPnYzISBf2/LgWd912G5RIBbt2/oJVS77EKZ8fuXfejycevh8tM1INGcivJ7bAoABnFKjRmbj/4Uew5tpb8fgDD+CpP/8OSxbOxuofCzD19Wfx0oPDAfcePP6X27B330H858U3kKRKfHhO5/nJwwtQW5ESGcU08VHWGVxpbTBtwUd46eX/YcmC6fg5Iwc9R96IcSOG8AA/n6bAwZPWB2zs8NJ7lWtLHMM0Hc7kFPQaMAAu2YFiX08MG5yLdV9/jo8XvIkrFs1Cv4Ejcdvdd6JHh8CgQpXvYN8TyUFNdqZXcqDvqFvwydIUTJ22AFNefx05bS7C9GlPIS3ehd/f8ySKHFNx0qfi3y/+F10vbMwXqNRpEnnJ4lJh1E6DjYIK5eBJCtvjgZy6zig2reJNZ7rGSgIsKz4nvPfqzMsB2LJsGmsUJzHZobLLcu+vEJQl701lGdHcPGJRGQ3ZzKWrjPO0Ysb0yrVQYWE22mm0RY1RY/OzytubVhLJW1p5ar06M4OAQyMYVQRPVvPlSe8SnmJVOtuMIcr7Y/bqq3mjMLqMd8aoJ+E3Fo4sX/X+I2/B/fdNgCtChXbiIO6/+4/YtPeI4Zz1U0bw8NyMtsjXhwp4OSvGQa7AX0Stl2wkw/MURhZSACKbOborVrzYWxsIVO4rGjaoP1IjFbii43Dw1x8w98PPDFJSAnO4auP2ooywQUCQUtioOviK8rd94DKex5t/P5Oc4qJdSHSo8FH+KrhRtMsY8WRyeMXXBI+wuKIiBAQpVYRKmO9jumHhUMYF6uhSLiCWfxJuwoWiKQMOXD53C0C+24PjHjqVpu0AmtPoclDu7jMpLMzBFdU/JwKClM4JUfiecDS/CPluDbKqoPDkfnjIRSQbsTdETGZK7rVfrcJB3QPVVwQ9NgNXXNnFAI1m/YQvfKLm1URAkFI1gbPzZWZuqd0HjqBAA1yOCOzf8yPWr/+ZV5tSu0qBOYZb1q3CC5Nfg+SVcOoUcOtt92BIt3bQNK3kHDtjJepW+wjYKk6p9uEJnxJN74+sFWLVF1/hh82b8fIz/4WPDhQWoeBkHm4eNxYTbhuPzNQGYJoX329Yh3emz8LR/AJkN22Ba34/CU9O+j0ckpeyUYMFiCt8UBQ1rQ0EBCnVBopWL4NRig1KIi1D8hVg3ZovsHHLLvQaOgojE+IRFxcHv9+PI4cP4dctW7Bt8+aAJQTcNGEiul7eE126dETDtEBUN5zUywsMaVsdHCF/fSMgSKm+EQ/F+zEJiqZDV2TozgaY9OfHqycl08Ju8mj1gBJXnQ0BQUpnQydMjjGJ8vZQsJ5ujLSRjVMusxgPSq0ID8qJXjLGZqz/VtFpYp9AoKoICFKqKlJ2Po+GyPjKGUbOJCOr2+njZoyW5S4Tfcx/EyZ8H8UMGKld7QyTqFv9ICBIqX5wDum7EP0YFFT5YGxZQqLKlP3Nrz2dw0K6vkK40Eag8lYY2nIL6QQCAgGbIiBIyaaKFdUSCFgVAUFKVtWckFsgYFMEBCnZVLGiWgIBqyIgSMmqmhNyCwRsioAgJZsqVlRLIGBVBAQpWVVzQm6BgE0REKRkU8WKagkErIqAICWrak7ILRCwKQKClGyqWFEtgYBVERCkZFXNCbkFAjZFQJCSTRUrqiUQsCoCgpSsqjkht0DApggIUrKpYkW1BAJWRUCQklU1J+QWCNgUAUFKNlWsqJZAwKoICFKyquaE3AIBmyIgSMmmihXVEghYFQFBSlbVnJBbIGBTBAQp2VSxoloCAasiIEjJqpoTcgsEbIqAICWbKlZUSyBgVQQEKVlVc0JugYBNERCkZFPFimoJBKyKgCAlq2pOyC0QsCkCgpRsqlhRLYGAVREQpGRVzQm5BQI2RUC1ab1EtYJEoFj3w8c0SAyQZBlRsoOXwMAgQQqyNHG6QKD6CAhSqj52trryyXXvY86mT6BARfMGjTCr/x8QEemCHxocEM3EVsoO8cqI1hbiCqov8XafOIwtuzcDjki4ocMnMUQAcOgSIDNAWEv1pYqwv48gpbBvAgYATlkBolyAFIEIZwRYoMcmum+igdQ3AsLRXd+Ih+j9NEkCGAN0DbLOIEtG09CEOylENWZfsQQp2Ve3QdWMHNzQGSDr0Mu0CpnISmwCgXpEoEzzq8e7iluFNAJEQ8RRYhMInA8EBCmdD9RD/J7CrR3iCrK5eIKUbK5gUT2BgNUQEKRkNY0JeQUCNkdAkJLNFVyd6gmfUnVQE9fUFgKClGoLSRuVI3xKNlKmBasiSMmCShMiCwTsjIAgJTtrt5p1E923agInLqsVBAQp1QqM9ipEdN/spU+r1UaQktU0JuQVCNgcAUFKNlewqJ5AwGoICFKymsbqQV7hU6oHkMUtKkVAkFKl0ITvAeFTCl/dh0LNBSmFghYsLIMfOjRNr3ACL2OahWsmRD9fCIgkb+cLeRvdV2IMBcUeHCzKg0IpmSSGtOhYxKmRImGljfRcX1URpFRfSFvoPsH4lGRdgqzKWHdwC8bN/ieYU4bsk/DmiIkYcEFHC9VaiBoqCAhSChVNhJAcwfmUiMIAj7cYh7yHAE0G/AqKvb4QqpEQxUoICFKykrZCUFaJp6yU4JKdtMwAAAVQFUgO4a4MQXVZQiTRciyhpvoVMpjuW4lkPG2uYTWR1zvwreSw+CIQqCoCgpSqilQYnUfdN7EJBM4XAmFFSowx0J/Yzo2AsHTOjZE4o24QsDUpVURAgpjqpiGJUoNDoHw7pN+6rouXJmDv9ZilwPJAJjnRb/oj5ZvHgmtK4XF2tXxK4QFNrdWyfPsz26bZVmvtRhYsKCwsJVPhpn5k2dbVNqtZ7c/gQgKqfRtxYQUIlCerCk6x/S7bhQSUNYuJfMgqmjdvHj7//HOcOnUKqamp6N+/PwYMGMCVa55fnrhsr3lRwZBAYN++fZg7dy42bdoEv9+Pli1bYtSoUWjdunVJ+ww3orItKSmKgt27d+Ouu+7CsmXLuMJVVeWfr776KsaNG4fJkycjMTFR9OND4vG0vxDlX4CLFy/Gvffei19//RVOp5O3Q5/Ph1deeQWPPfYYbrvttrB0M9QKKYUSk5MsZCEVFBTg1ltvxfLly5GcnMxbPB2jhqFpGt544w0QcU2ZMoWfb/9Houo1FD6lqmMV7JnUBunvm2++wc0334z8/HzePs22SZ9k0U+YMAFJSUnIzc0N9haWP79GzpWIiIiQA4CUStucOXOwYsWKEoXTftPBTWSUkJCA6dOnY9WqVSFXh/MhEL2pEQiXqA2fUlRU1PmoRkjfk9qg2T6ffvppHD9+HPHx8fylSC9L2uiTsKMX65NPPoni4uKQqFN9PutBW0omeNSIyU9DDziZnKG0kUyzZ8/myqVGYMpc9judQ7+feeYZbNiwgVtPoVSH+pNFgoMB67EdsisSul/n0djVjuaSZUi6jFnvvouftAT4avTaqz8U6vpO1AapvVG7O3HiBNauXYu4uLjT2p3ZPunc6Oho7NixAw8++CCaNGnC3Q51LWP58s3nhp51ennXFzEFTUokOHV/HA4Hli5digULFpSvy3n7bSqVBIiJiYHL5SohpIqEonNWrlyJjz76qKLD4bUv92IovZoBefk1qzc9eA4H/vf6/4CfD9asLJteTe2ULHXycZrWe9m2S9/Nv5dffvm8EFJ56OlZInnJACGZ63ILmpQILHqYifFJSPMNUJdCBls2yVhYWFii8Iqup3NotIPeSCkpKWclr4qut80+xqD4GY5GRcGjaSVduJrUj9pEakoKXKkMfqcq5sEFwKQ2Rxs91OTzNK112m9aJWVxp/ZJ/lCyVOqaCMrel76TPGboDH2nP5KHnn1zf/lraut30KSUk5MDGjUwQawM0NoSMNhySC5SIoUB0AgG9dlpMxsEfTcB9nq9oDdR165dOeBmnYK9p5XPlyBBkSQ8snkx5m5bSUDx6hj/VqNmug5N9+Gxxx9Hn9SW8FeYk7Ia5drgErMNEsFMmjSJW+nkzC5POPTb7XajadOmmDp1KieC8ufUBxymvGWfCyKk7OzsOr190KREZlzbtm3rVKjaKHzixIk8FID6wqYlVBbkkydP4rrrrsNNN91UG7ezfBnJh74CtmgAWb81qQ132DI0a94crRqGfjupSVVrcu2jjz7KR+Bo9I2sddrogSfyoS4SvTD/9Kc/oUuXLjW5jSWvtZUbkhidlEp/sbGx/C3Tt29f7lgk52JeXh4f8aCGMHbsWLzwwgtcaXR+2beBJTVZQ6HJNDc3spJqRExAyIwamXUKtc9u3brhtdde48G8x44d42EA9KKkETny1z7//PMYP358WLbLoC2lUFNuWXlMS4hIhpzxzZo1w8KFC/lIHI0UEilRRDdFcw8fPrzkzUTnU/9ebAYCREjV7r4JEKuEAL0Ex4wZg06dOmHGjBn48ccfeZuliG7a37GjkUqY2iZZUGbbrlLhFj/JVqRk6oIIhpROfxTzQUFq9Fd+o+Ok7Lp23JW/r/gtECAEiHDIb0Rduco2ap/hREiEg+1IyVSg+VmZsmm/eY75ebZzxTGBQG0iQG2uKu0uHF+YtvIp1WajCeeyasOnFM74ibrXDAFBSjXDz5ZXC5+SLdVqmUoJUrKMqoSgAoHwQECQUnjoWdRSIGAZBAQpWUZV9Seo8CnVH9biTmciIEjpTEzCfk91fEo6X+zNXPCN1Tz60sZaMAJTGQ9QNf6t2wmuVoNSkJLVNBZi8uq6EWbJmA+SpkNmfsgyPXaiaZVVFdMBXTMoyECMZh1SkKrxq+y54f7ddnFK4a7Q2qg/PSbG2/zcpUkB7tH8DMzjA5MUwKvDrWvnvjiczpDIGmI4deQIPlu6FIfdOnzek/jltz3o0ecajB58aTihcda6ClI6KzzheTCY7huTyAIA2qY3wezr/84TxhGjXZLRBExnkGRhCfBWxGjCrTGVacfOnXhn3gys37SdMn+hy5XXh2dDq6TWgpQqAcZSuxlZJcp5mbAmweiSZMYkYkyLy06DjabxiM1AgCPh1ZGQmo7/++ujSIkuwA33TUbrrv0xoHcHAVMZBETHvwwYVvv65Zcf47VZH1BvifKBBtHpqr2aypSPSZEq9CBVZRpF7UkS2iUxGdBlBj4gADe+/vQLLnD3flcgJVI8hmW1J9Aoi4bFvn88bwrue/BlFOlkJXlrTfpgfEq1dlObF6QwCX7Vzx3bx3/bgM/WbwJiG2PwgH42r3nw1ROkFDxmIXNFdHQMEuMToXG3Da0sUzv+m2B8SiEDRogLQj1ZBy0XD+CbLz7FL/s9aNO+M3pc3CrEJa9/8WxNSuTt0JgGvYxvI+/UcWzbuh2FRp+nDOIWHC3SZWiyBgfnIlursoyerPmV2qKkOwB4sXTZpyCbqfdVQ5AUAezb9Su279rFO+BUO0bxA2G82dzRLYH0Sz6P3du/w7P/eB6rN29Gy+btIEsu5I66AksWfAhvbAM88djf0DApxlJNQWIMPkqBwaUW9k0oK4+nKlFV5B34Cau+2ojoxMbo1TULDz06Afu3F2Lr1o1IzWmNZ194ES0bpoRyVepcNpuTEqAqCj56bzruuP33OOhJxpQ3X8bYoQOxbO4rmHjnHdh9MB/t+o5DXKyRJ7nOEa/lG9ROh+10oahMMW52OiY1/WW+OjasXY1fdh1DastGmPbv13HR5VfhpdfG4tulM3HlqNtwTI/F0llTEENGVZhuNrT5yVCm/wwPy4fz38J142/EAW8a5i9djptzR8AVEYEevbpApiERRyRuuvF2xBl9IEs1A77wiKTACH+pPXoysasNMExd1EZZVi7DIHkNn3z4IYolFXu2/4ycrv3x9z//DrHR0bjiyqtwVZtUrFm2BBu2hfd6efYiJUYpRv3QNR3UK9+xbhEm3HEXTngc+OOj/8LQy9uA8Zge4NAvvyH/RD7iL+iCYQM7h2Z7Z5TM3/QvnGm7MMUBhflQmvK/omoYBH0+bB+6M1kINaVLYxjdgj6/suqQgOK8Xfj66w3wa360752Lx/94Y4lNWnjiGA67vVD9R3Dg+LGyV4bdd9t13yQmQZIVSN4C/O3hf2LnUTfa9sjF/90+nCvXx3Q4JQWrVn2JY14dI/v2QfMUV+DhDy2O3v3Tejxw3z04rKTBxTyAJPPHnNZmc8jkJ9sGX34hRvfvB1lVIRFvBbiLzjxeqOF3f7gPt44eGFTDrq3uG9HRL+vW4qdde6FGRkJitGpMFUWhuuoafI4o9OzZHWkxkVW8MDRPI0w3r1uL9b/uR0RUKu697/+Q5FCga37Iiop9u3di16F8yM5MJERZy7dZ24jbipT4lAdJhiIB65fNx4JP10J2JOO2CXcgJVoBNIr1V6F79mPJslWAEoNBgTgRnQ7V9JVey9qRVAei4xMQixhEyxHQiHADi0VSHSMjZKDAhZj4BDhpsQSqhLkxHZrih8sRPNFSKbUFxXtz/4XH/zUbUfFJgC5VGWOaQ+fzFsOVnIVPVixDWkyWWTPLfn62YgmOuXVcPGAQxvS72HiDBKaefPrZcpxw60hp2RzNGzWwbB1rQ3B7kRJHRAJYAabOmIETXg3NO16KUYN7GaubQINTUvHjmpVY/d0WJDXpiu5dL+FXyebM0tpAtZbKyG7VEW/MXVJpac8+ejOeW+TGjDmzEFXpWcaqLiaZVXpaHR246e6n0G/sA3wJK27n0YTdKm6MuuJqJBpnphrLiQcIuYqXh8hpBsXr7v1Y9flqnj1hyJixoCBupvkhKQ4w92F8+PGnoHfK5b17IyfF2lZhTYG3FSmRTcBkCYX7NuOr9d/z+WC9rh6KrGgFmk8HU2TIKMaMaTNw1MvQp3sfNEtxojD/MPbtL0LzljmGhVCbpkKNNHR2e0X3+qFTHBa5nSo1iMi6qpEQNbo4o3ET0F84bmWb0f7N3+LbjXsQnd0BQ3sbq976GOCkYMrVn+C7b7bCGZONG8fn1pqValXMK23KVq0QPX8H9+3DyWOH4UzIxJArA2H8sgxVlvHbmg/x9sKVgBKNK7v35GtMTfvPPzD51Q9KG0OVHR/nFyVq9OREMsQ1ftWGRIRh7ZVWGxJZuQzjjfDT99/jsNuPthdfivY5SdAYg6w4AFaMKS+/gAMaw7Bxd2JIt9YU8mvlCtdYdtuREkdE80L3A7EJmWjWNIPv4gvg+o7j0UeexfECDY7EVLTu2A7a8V8xbc6XGH3DiBqDaZcCyr7h7VKn+q6HMebJePAu3Xv3bwdBsxMv7HAht45owokqASveeQXTF6xDo3YD8MTjE6HSlF1yjobxZqvum6nHlEbNERftwLGCAjhL9OvGYw9OAtIvRIumB7HHF4WLmqbgH3+6Ds17XYMrO+aYl4eex7tUstO+0axzlUncF1F7runTbiF+VBMBs9mZ/JLeIJmX5Iw2RtYoLG7rxo9x6533Ie2CPnh/5mtomR4NTWeQeUK4at7YBpfZzlKiAbb4rI546C9/hXbyF/z5gb9gydIluP36sfhRz8KLL/0VsQ4fTh7ei9tHD8Knv0TimSf+AOkc0T6hqGuKuaIUq0ackhnPFIqShqNMREul/rzeY8ajV5c2mPXyU5j7/kd4/cV/YujQW9Cs97VY9NkcXHxhNg/5pRFgKYjBADsiaytLibodNPmW4mPGTXgYTdu2w/zFy/DRx8tx6YBbcP344aDo/Rf+/RxmLfgcUQmNcPuEu5EZEwka6QnBAbiztjndq8LnOwrjxUp+CONBOOtFlRzkk5bJY67r0CmeqJLzxO7qIRCT1gLzFy/G7LemY+XKZUiIi8I/pkzDsEFX8e6cxnRQbioeahrm/WeJ2Sg9INkKTPNB8jPoTgfU8sNOzAOfpsGhnj7PzaeR01GHQtkbLbRt+/k7/HbUj56XdUKEqkOWqj9h6vfLpuB/X88FVBWtMlrh2/FPI9oRCR0aZIvhEooqZJS2RD6zY6LBB6bJUGSDknhfnJtLoViL+pHJVqTEIQuMnDE+e56W+iF7mCZrBKY88LQQRuNgEgNFgOv0yY+f2WjqRw01vYvhVuVv2WoWtb/gOE6686nvgEg1AjnxaZA5qYf5a7uaeJ55mTHphtCkeK2Szfxa/gVackL4fbEfKYWfDkWNBQK2QsCqpoGtlCAqIxAQCJQiIEipFAvxTSAgEAgBBAQphYAShAgCAYFAKQKClEqxEN8EAgKBEEBAkFIIKEGIIBAQCJQiIEipFIvw/cYDvKj6lLozMBuX8mjQ/+aQdfiiI2pezwgIUqpnwEPydhQSznw8SZyPBKTAcFmCrmuBbOchKbUQyqYICFKyqWKDqZYmUWgpg84kKDLDTz98h51HjkKSGWRwmgqmOHGuQKBGCAhSqhF8drlYAXQHJFmClL8Ht48ejSdenA5JUnkKW9GDs4uerVEPW03ItQbkoSclTU/RZD9UScW3qz7Bxl9+w+HFS7DnwYnIjjl98goRFPmZZGjYtvk7TJ/zHhxyJOJTMuGMACT3MRzIL4bH7cXAYdfiis7tAk4qCT+t+RwzP1yKmMQEpMSlodh9CHv3F6DFpV1x89WDSpPshR5EQqJ6RECQUj2CHaq3kqDxFWAAP+bNmoNCh4KdP6/H4qVf4s5RPSsUm8gpITkFbVu1wnvTp2Dex19BV6k5RWLMjTdieN9uyE4zcggZBTAkZjXGha0bYvprL+KjL34BHFG45dY7MLhpIyPVpZmEqMI7ip1hgwBlCRBbeCOgs2KmM8YObf+KNYsHi4h1MUeEk/UdPZF56UC5TdcZ0+mfwFawZz27uFkKk50O1rjDYHbAbR5hjBfMf5aeP+eJCQxwsX/NXlJyot9Xerxkp/gSlggIn1LYvH4qr6gEB8+SsHDWO4hq0g5NU5LgjJSxZuVyrPrxQODC0hABWl+OVkcha4myOEWnN0ZOowzA74PP7cbJvDzeZfMzcpIb1/FoA37BScx47yMMumMSJo7pzwugVT1kmXcMKxdSHAkbBAQphY2qz1ZRCd78nZgxZyX++sJUDOnZFsVuwJP3C2bM+TBwoYf7khiFDwRaDfW2eAYqNRlZyQkgXvHmH0Ge28PjCmRGKxX7uBOKgfI9AasWvY1Nx+Lw1N8eNHxICiApaiDXkOi/nU1L4XJMkFK4aPoc9Vy3+AOcdDTFoF5dMHhIP8T6gUhXJL6Y/y72nCgGEIGSLPhlyjJzBDZpegGPb3L7inD4cCE/g9GIni7BJ3uhU4pX7Riee+oVjL3nUbRPpVzVIoVvGSjF1wACgpREUwDgxVvT5qNX7jWgnJyX9hmJi1ulQfJJ2LFjDeYv/dxYWI5HeZ9uzVCiPNqyGzeErsgo9hZg9+7jfB+FGFCOPYp2Iotq2dwp2OZtiUl3DAPlF6f9YhMIlEdAtIryiITJb6IEXfdyv9DBzZ9j7Y4CjB/fn9c+IqkRrh7eF77iIjh0P2bPfh9F5EeiKG9+RSlIlLmTtgZpGXAB8BcWYN/eXXyfJPn5GmYKHNCL92Lyc7Nwy333I9Ul8wU0hZ1UiqP4VoqAIKVSLMLoGy1g6YMGWn0MeHfaDDTq2AuXZKfw/YADQ3NHIT05Fi6HExs/+xgr1+8AFMojbVhGpWAZpJSZmYMG0Q5A8+PIwd/4YYmimXTKfQ7Mm/IfnExsiTuu7cG7bZJMifLFJhA4EwHRLs7EJCz2UJ5oWY4ETu3B/OXrcM0tNxiO58AM3OyLe+Oq7m1Q6GXw5R3AzFlzOC5KuSVfTJJKzcxCSmoS7woePHw8sMarBIfqQvGhLfj3yx/jrkf+ihgKEtdoVE41YpPCAm1RyWAQEKQUDFo2OZeWSTDXblm5eD7yojMxrE9HY2klpoCG6IEoXJt7NVTZjWgXsHzJx9h2uCAwW7cMEIzWOwHiUtORmJTIQwB27T2IIuIdviCDhFee/ydSOvfH9d07AJoOSE4+104K+KPKlCa+CgSEBR2ObYBIhOn0PvLgrRnzcNWom5FAa0gTj9C4faCT1mPAGFzcKgc+5sDx7V9j3uIvSuEKhBUFFosBXAlIT4rmI3B5e3fiRCGxkoJDP6/AG4tW44+P/dEIH6ClhCQpsFJKaXHim0DAREBYSiYSYfSpQIdDkbHn+0+wbtdJ3DR6BK+9LBFhyDw7AIUjOZMa45pBfeH3FCNSKsa8ObORT4xmboxyCzDIvMsXgaY5DXmXrLDwOI4WUqyShr8/PBmdr74T3ZqlQmN+Tlq0mpAxo84gQrM48SkQIAQEKYVhOzD9QO9On4Emlw5Gu6zTF+ekcXyNulkARuSORMMkFbIag+/XLsOKtVv5fj7oxjlFDkQbSWjU5AJaNg6nigtQUODBttXzsHxrIf5030QalxNhSWHY1qpTZUFK1UHNsteYI2cKvCe2Y9GyzRhzw81n1kZSoDkC8UcX9Ub/Hh1Q7PFDcx/BnJnvBM4nG4nW+pR4HibamdIgi0IsAXcBftv0Ax5/5hXcMPEhtEhS4SMjSRhGZ2It9pyBgCClMyCx6Q7qajFvibXy6cIP4E/rgJt6tzqzwhLgNDxAgByF62+8AzFOIMIZgeVLFmHjnnzD66TTNBJKUmlYVU3SM4EpSBwAAAK6SURBVJEYG4kopuHvf7kXe5yNcc+NA3n5qmz6q868ndgjECiLgEhdUhYNO3/nk2hleGUinEIsem8RDux3Y+Ldd6NIA2SdHNNnbqqqoDD/GBAbg0jdhxM7N2HOgmW4aMIoMFmHojPoEsUcyUhvko3k5Ej8fMSLooP78e9ZHyDGIRl5vimBnMiYdCbAYs8ZCAhSOgMSe+7wSxJUpoIG2fb+sBrLv9qEPflu/GfLOkCnZkBhAJVsDhmxsXFQGYNLlTB/5gxMuHkEMqJpoQEZemBoPyY9HanRsfhxxx5c/8gLGNLpAgpKgkZWEqXaJVISXbhKQBa7TQQEKZlIhMEnxSdRf33+nEX49WgB4pJi4IuJhctHxHEWtpBohI0AcsARGYttG77EijUbcUO/jtynRKN2tDljUhDjdyO+UXf8+Z5bAdBEXlWMtIVB26rNKkqURao2CxRlhSgCPK2RzqeR7NyzE0X5PqgKvZMMh/XZpKZul3kWhV0W+3XEpWehUUoiKLwAlAEgsE17/mGwC/rjphHdoes+yLLDPCQ+BQJVQkCQUpVgsv5J9O5hjEhJg6I4a6VCjPmN3hgtMMA3er8ZFhfz6dAVHxSZj8fVyv1EIeGBgNmawqO2YV1LGiGTuOXCdBaI3A4eED7OxnRIPHBSBihCu6QYcmqTSeYDUxxgJWRVcoL4IhA4JwLCUjonRHY5weils0CqkerGDFEpxDvkgjL7/aWkxOevgHxXFL9E+087ZhcoRT3qFAFBSnUKryhcICAQCBYBETwZLGLifIGAQKBOERCkVKfwisIFAgKBYBEQpBQsYuJ8gYBAoE4REKRUp/CKwgUCAoFgERCkFCxi4nyBgECgThEQpFSn8IrCBQICgWAREKQULGLifIGAQKBOERCkVKfwisIFAgKBYBEQpBQsYuJ8gYBAoE4R+H+SJke3J3VOlAAAAABJRU5ErkJggg== />
  1. Ia = Ib > Ie = If > Ic = Id
  2. Ia = Ib > Ic = Id > Ie = If
  3. Ie = If > Ic = Id > Ia = Ib"



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

gcook

  • Sr. Member
  • ****
  • Posts: 343
Answer to Question 1



Answer to Question 2

2




jlmhmf

  • Member
  • Posts: 552
Reply 2 on: Jul 28, 2018
Gracias!


bitingbit

  • Member
  • Posts: 323
Reply 3 on: Yesterday
Wow, this really help

 

Did you know?

There used to be a metric calendar, as well as metric clocks. The metric calendar, or "French Republican Calendar" divided the year into 12 months, but each month was divided into three 10-day weeks. Each day had 10 decimal hours. Each hour had 100 decimal minutes. Due to lack of popularity, the metric clocks and calendars were ended in 1795, three years after they had been first marketed.

Did you know?

Cutaneous mucormycosis is a rare fungal infection that has been fatal in at least 29% of cases, and in as many as 83% of cases, depending on the patient's health prior to infection. It has occurred often after natural disasters such as tornados, and early treatment is essential.

Did you know?

Vampire bats have a natural anticoagulant in their saliva that permits continuous bleeding after they painlessly open a wound with their incisors. This capillary blood does not cause any significant blood loss to their victims.

Did you know?

The newest statin drug, rosuvastatin, has been called a superstatin because it appears to reduce LDL cholesterol to a greater degree than the other approved statin drugs.

Did you know?

The average older adult in the United States takes five prescription drugs per day. Half of these drugs contain a sedative. Alcohol should therefore be avoided by most senior citizens because of the dangerous interactions between alcohol and sedatives.

For a complete list of videos, visit our video library