This topic contains a solution. Click here to go to the answer

Author Question: In this experiment you used R-carvone. Would the outcome of the reaction be different if you used ... (Read 35 times)

lindiwe

  • Hero Member
  • *****
  • Posts: 577
In this experiment you used R-carvone. Would the outcome of the reaction be different if you used S-carvone? Explain your answer.

Question 2

Identify the product from the reaction shown below. The 1 H NMR data for the product is: (CDCl3)  0.65 (s, 3H), 1.28 (s, 3H), 1.632.55 (m, 6H), 4.42 (d, 1H), 4.82 (m, 1H), 5.00 (m, 1H) (Chapter 8). Note that hydroxyl hydrogens are sometimes not visible in 1 H NMR spectra (Section 8.1.4.b).

Question 3

jkNS84IBB8BMxoDVylg7Nj61VaGX29wF9u3b5+gL5OLRo2BK87Busb0T8OGDZTvjnAZKfqqMdBjgVUZCxctVFtzG2lW4DIaXk+DpcFijYF+NCLznKcSInPcWOoQIeAPMdBEw9pyrDE3ejjD496SJUuCtp8BEwNtFHw74mWp2aVgqSN8Y2ClyRhp6Y/xDNX+E4EQA63HcPgEEgoyanQP1qhZQ2BzMqsDEwOrEQ19fTyVEGoVDbcXUQj4MpVg1DH5oiG5VTMNGTqYpMFcoiylSpWi6dNnUOVKlROlBRIRjVMJgeDhS1lMCZV4qjjJl7OjWKpUqQhjmSImBcWXjacX5bTQSy/VouLFi/uk6ndU6OXE36kEo2ql91Lq178fyT00HMmPPPIIxcbGUtasWalggYL0aPLkjjRvJ+nTp6PFi5bQo48+apiVpxIMYYmoSCYGETVcLGyoEQiUGGjyyq2gadKkiST3LyBpPa+iMXecKVMmiouLo4IFC1LKlKm07F6PyZM/SnNmz1UPd6PMTAyMUDEft279OurYsQPJFSWGhUAUkBabJZZq1a5FNarXpBo1aqgXrWEBHyOtJAZa09JNuiIIcltuRXpADBo1akRFivhm85ImTRrq2KGjW0LExEBDPHKPTAwid+xY8hAgYBUx0ES9evUq9R/Qn44d+5rkLpaUPn16ql2rNpWJj9eymDrCeKzd6+0ILyijEAxiIL0MGjWV5OPw9Y2XpXQqpAheyZLPULFixWjY0GF+YxMMYgCDWDnFRGfPniHUjzBVGsP26N7DbzmNCjIxMEIlsuKYGETWeLG0IUbAamKAr0zpjY/OnDmtiAG607VLV5oxY6alPWNiYCmcpipLLtXx0gbBkffPh/87d0SaPLGaGGik4Natn0juxArbMiUJEwOTA5LEsjExSGIDzt31DQEriYFGCn6UtgYnT50k6d9fCRMpxMA35CI7N5ZGli5TiqSHQbcdiYmJIZAB6SZbquOLUN269Si+TDxVqVKFsmfP7racmQQriYFGCu7LKYTBQ4bIZYR1HSIwMXBAwSd6BEJv78gtMgKRg0AgqxL0vcSyt3r164mKFZ8Vp06ddLIS79mzhz6rJee8KiEwGOvVr6s2aNJb80uSKODNEhs3FS9RTAwdOkRt7f3zzz8H1phBaStWJaBa7O0hbSBElSqV1TbsBw8ddLr3At1kzEB0wasSjFCJrDherhhZ48XShhgBK4iBnhRgUyBpW+D0cGZiEOJB9dLcIukDAIQARABLFnEO75V9+/UV2JhJGu95qSHwZCuIgSspgFRMDAIfm6RQAxODpDDK3Ee/EQiUGLiSAgjCxMDv4QhJQezACDIwYEB/sWnTRvHjjz+GpF19I4ESAyNSgPqZGOhR5nN3CLCNgX5ehc8ZARcEArEx0GwK7ty+Tbt27aaMGTOq2qVnRJJ+/x0tsY2BAwpbnMiHpduleKESMBAbA71Nwc6du9TKF03uQx8fomrVqmqXvCrBgQSf6BFgYqBHg88ZARcE/CUG7kgBqmdi4AIyXyZCwF9i4IkUoBEmBomg5ggDBJgYGIDCUYyAhoA/xMATKUC9TAw0dPnoDgF/iIE3UoC2mBi4Q5zj9QgwMdCjweeMgAsCvhIDb6QA1TMxcAGZLxMh4CsxMEMK0AgTg0RQc4QBAkwMDEDhKEZAQ8AXYmCGFKBeJgYaunx0h4AvxMAsKUBbTAzcIc7xTgi4s0rkeEaAERDC7KoE+XB2+CnAkkRPgVcleEKH04CAtipBOljyCsjatWsFVlLcu3fPa95QrEqQG1CJjRvf8SoLZ7AvArxc0b5jw5LZAAE4szlx4oRXSQ4fOSxefOlF4Y0UoKJQEIPq1auJ0aNHe5WbM9gTAbkTp0iXPq14Xr7wv/rqK69CmiEQqCSYxOCnn34Sb731pkidJpVYsXKFV5k5g30RYGJg37FhyWyAwOM5HhM5c+UQq1atEmYfvt7EDiYxuHHjhmjX/nWl6Rg3bqw3UTjdxghACzV5ymSRJTaz6NipgwBZCDQEgxjIKTQhdw0VsVmziLavtxHff/99oGJy+TAjwMQgzAPAzdsbAbkpjli6dKkAQahUqaI4cvRIwAIHgxjgJTJp8iSRMVMGUb9BfXH+/PmA5eQK7IHAzZs3RfsO7RRBAFHAWPsbrCQGf//9t9i+fZvyCglX39CacYgOBJgYRMc4ci+CjMDdu3fFwIEDRJq0qdUXOb7M/Q1WEgM8nLdseU8UKlxQPPV0CbFv315/xeJyNkfg6BdHFTktXKSQGnOMva/BKmJw8uRJUfPFmuKJ3LnE6tWrLdOm+dofzh8cBJgYBAdXrjVKEbh06ZLABkXYTMffrzeriAEezjVq1hBx2bKKefPnCblbY5Sizt3SEMB0Fl7EeCFj7M3Yv2hlcQyUGNy6dUt06fKWyJAxvRg2bGhI9o3Qy8/noUGAiUFocOZWogwBbKZT8pmnRZGihZU61Zevt0CJwe3bt0XXrl1E2nRpRK9ePUUwdveLsuGKuu5gIyfs7ohNnvCixgvbTPCXGMCOYMbMGcqOoHmL5uLKlStmmuM8EYoAE4MIHTgWO/wI4At9wdsLRLbsceKlWi+J06dPmxLKX2Lw8OFDMXvObJE1LlbUrVdXnD171lR7nCl6Ebh8+bJo2qypemFjC2XcI56Cr8QAhHfHju3iyWJFRekypcSBgwc8Vc9pUYIAE4MoGUjuRvgQwBc7vtyxvMzMF7w/xAC2A1gfjt+ePbvD11lu2ZYIaBqsYsWfFLt373Iroy/E4NSpU2oJbvbHsolFixcJGOJySBoIMDFIGuPMvQwBAviCr1O3jsCDdOGihW4fpL4QgwsXLogGDRsoO4K58+Z6/SIMQTe5CZsiAA0WbE2gUcJ9aKRRMkMMMC2hTVX16dNb/PLLLzbtMYsVLASYGAQLWa43ySKwa9dOgS83d6pXM8QAjpL69++n5pB79uwh7ty5k2Tx5I77hgBsULp162pog+KJGGAaAtMR8EeAqapz58751jDnjhoEmBhEzVByR+yEgP4h26JlC3Ht2jWHeJ6IAdS1CQkJym9C7Tq1xZkzZxzl+IQR8AUBrFioXqO6soGBLQw0CkbEAHYEO3fuUGTW21SEL+1z3shFgIlB5I4dSx4BCGjLu+B4aOTIEeLBgwduXSLLDW5EfNkyoniJYh7niSOg2yyiTRDAS/+99zaLgoUKqFU0M+XKguQxjzp+gwcPEiCg8K5oxnjRJt1iMYKMAO+u6LSlFF8wAsFBQPocoN59etOlSxepX9/+1KNnd0dDbdu0pQf/ekD79++n4cNHUOc3OlNMTIwjnU8YgUARkN4SSS43pAkTxlP27NlJarDoseyP0e07t+n1tq/TqFGjKS4uLtBmuHyUIMDEIEoGkrthfwQkyadt27ZSv/79iATR1WtXKVu2bHT//n0COQApiI2NtX9HWMKIRUDuY0CDhwwiuSMjlS1bjhbMX0AlS5aM2P6w4MFBgIlBcHDlWhkBtwhIZzEk/RGQVONS6dKladnS5VSsWDG3+TmBEbAagaNHj1J8fDw98sgjVlfN9UUBAkwMomAQuQuRiYDcppayZs3KD+fIHD6WmhGIWgSYGETt0HLHGAFGgBFgBBgB3xFgYuA7ZlyCEWAEGAFGgBGIWgSYGETt0HLHGAFGgBFgBBgB3xFgYuA7ZlyCEWAEGAFGgBGIWgSYGETt0HLHGAFGgBFgBBgB3xFgYuA7ZlyCEWAEGAFGgBGIWgSYGETt0HLHGAFGgBFgBBgB3xFgYuA7ZlyCEWAEGAFGgBGIWgSYGETt0HLHGAFGgBFgBBgB3xFgYuA7ZlyCEWAEGAFGgBGIWgSYGETt0HLHGAFGgBFgBBgB3xFgYuA7ZlyCEWAEGAFGgBGIWgSYGETt0HLHGAFGgBFgBBgB3xFgYuA7ZlyCEWAEGAFGgBGIWgSYGETt0HLHGAFGgBFgBBgB3xFgYuA7ZlyCEWAEGAFGgBGIWgSYGETt0HLHGAFGgBFgBBgB3xH4f1doza9Yr8JJAAAAAElFTkSuQmCC />"

Question 4

Write rational arrow-pushing mechanisms leading to three additional products that might have been formed in the reaction of -pinene oxide with aqueous sulfuric acid that are different from the product you isolated and the decomposition product you identified.

Question 5

Write an arrow-pushing mechanism for the reaction shown in Equation E16.3.

Question 6

Write arrow-pushing mechanisms for the reactions shown in Equations E16.1 and E16.2.

Question 7

8vej/fFVImVYEYFW7dtlT59emvzjIEDB0nJkiWz1Hv8+HHDE8eTMm/eYzLz3ply3XUdspxP1g+rV6+WosWKhp01T9Z1WA8JkAAJJJMABXMyaXqkrkwSzFOnTpGJkybK2WefLX1695FRo0ZLiRIlPDJSmdXMP//8U3LlzmmsfnwnBQsWzKzOW/QWwrdChQry8Ud7Lc6GPxROMKPEqVOn5DFDED9lCONs2bIZJhplJV++vLJv3z6BR47OnTrLkCFDpXDhwuEvkOCZHj27S+XKVWS08bvIRAJuIfDKK/+WX3/9TTp27OiWJrEdLiNAweyyAUlHczJJMO/cuVNq16mlsebIkUMgyjBzNnHCRLnooovSgZvXsEng999/lzx5c8tXR46mVLDZbI7j2SpWqiCYcT/5409y5pln2m5PJMEcXMmxY8cE9s0///yT4YaujJQqVSr4dMq+UzCnDC0rToDAuHF3y/Hvj8ujjzyWQC0s6mcCFMx+Ht0wffO7YP6///s/YwbtKXn88QWy+53dgo1RwemMM84QMQ5dceWVMnDgQOl+Y/e4XG4F18nviROgYM7KsHuPG2XFihWybdt2ueLyK7KeDPppzJjR+kE/ftwEbWZhVzAHVXHa17feelM++PBDGT5s+GnnEj1AwZwoQZZPBQEK5lRQ9VedFMz+Gk9bvfGzYP7ss89k4KCBcuDApzJ0yDC5Y+Ttmgn815511llaPENA//LLLwFWK1esTJm9ZuAi/BKVAAVzVkSI7texU0fp1auXPL5gYdaT//vp22+/FcxEYwb68KEvJE+ePJIMwYyZ53r160r//gNkzOgxlteO9yAFc7zkWC6VBCiYU0nXH3VTMPtjHGPqhV8F80cffSTNmjeVTh07yfTpMyR79uzSoGF9HRr4/PPP13axRQzbzHz58hkbAAsa//IbIYYLSN68eWPix8ypIUDBnJUrovjVqVNbr5LMmTNXBhjiFXbHZoLNcXsjsMkWI1z2uLvHyXhjYytSMgQz6kFglBo1r5Lly5ZL69ZtcCgpiYI5KRhZSZIJUDAnGagPq6Ng9uGgRuuSHwUzIprBb+xNvW6SCYZ9crCwiMaD591BgIL59HHAiknjJo20LTPMMlq3aSPnnXeefHbggKxYuUIww4zAJiuWr9AbW1FDsgQz6oIf6KHDhsiG9Rv1BkQcSzRRMCdKkOVTQYCCORVU/VUnBbO/xtNWb/wmmGGz3LBhA2NpuqJkgqs8W4PswUwUzNaDBndvEydOkGefe1bw3UwIQnLLLf20nTHMjcyUTMGMOiFwj351VN588y3R9v/mheL8pGCOExyLpZQABXNK8fqicgpmXwxjbJ3wm2BevHix4Tpugux5731twxkbDeZ2CwEK5sgjARMNeM34+eeftU/xCy64wHIlpWu3LlLo/EICM45kJET9g530ksVLpEWLaxKukoI5YYSsIAUEKJhTANVnVVIw+2xA7XTHT4IZs8uVq1wio+4cLb17947Y/Z27dsqiRQuNUMPrjE2BB3TeSpUqScMGDWWY4Q0AQSKYnCNAwewc+2hXnn3fbFm+fJns3LHLUqRHKx98noI5mAa/u4UABbNbRsK97aBgdu/YpKxlbhDMWDZG+uvP/wvbzw0bN0iTJo2lgSFo3zKWg60Swny3bdtGDh08LDlz5rTKIn/99ZcMHTpEFhhu5rB0XbduPbnIEMp//PmH4bJrm97cBC8a8+ctMEICd9F1mO1DGGGIBKbUE6BgTj3jeK/wxx9/SLnyZeWJRU9Is2bN461Gl6NgTggfC6eIAAVzisD6qFoKZh8Npt2u+EkwY+br448/imi73H9AP2NmeZEW3o8veNwI0lA6gAou5p555hm5ufdNetPU1i3bpFq1anrjFDJRMAdQpfxLLIIZ44Z/2NzJDZ4pHxp9ganTpuoXzJdfejmhC1IwJ4SPhVNEgII5RWB9VC0Fs48G025X/CSY4ae2dq1aMnz4CMvub922VerXryflypWTd3a/G3YWGsEfIL4RBRB+mTnDbIkzpQejCWZseHvkkYflecM/8ffffx/YgIaNaA0bNtQ+g2vWqJnSNmZy5T/88IOUKn2h7Nv7iRQvXjxuFBTMcaNjwRQSoGBOIVy/VG3M0jBlGIF7Jt+jjBlVR3t91tlnKvyLlNZvWK/zNGnaJGy2Vq1bKSOqX9jz6CeuM2/+vLB5cMJwz6XWrHlFf+Jns31XXnUFfmRKA4HffvtNc8dYhKb5C+YrwyRATZs+TR05ciTLaZRbvXqVuqrGlap3n5uVEZQmy3n+kDwCbdq2Uffdf19CFRoRDNX0GdMTqoOFSSDZBO6+e6waMLB/sqtlfT4iwBlmv7z5xNAPP80wIyIZgpLABtkqla9QTg4fPizv7/lALr74Yqsslsc4w2yJJaUHw80w33PPJNm0ebMsfmqxwDNEuPT3338L8q55dY288fqbRlCa/OGy8nicBLAK8+qrr8rbb70dZw3/uKmrXLmKjB41Ou46WJAEkk2AM8zJJuq/+iiY/TemUXvkJsG8ZPHTYdu7b99egd1kpE1/YQv/74QpfCNtLrSqwyxHG2YrOqk5ZiWYn3zySVny9BJ5dc2rOnKjnSvPmj1Ldu3apYN52MnPPPYJfPzxx3L5FdXl5I8/yTnnnGO/YFBOmmQEweBX1xCgYHbNULi2IRTMrh2a1DUsFYIZEcdKlCwucw3fr3369A1EHQvXC1OQhjsffNwUzOvWrTWi+P0T/jf4vNX3G7t3l35GUAfzOhTMVpTcdSxUMMNm+epaNWXzpi1SpEiR0xqLsbUaV8w0G6Y6MmTwYGnVqvVp5XggfgLwBZ0vf149JpdeemlcFVEwx4WNhVJMgII5xYB9UD0Fsw8GMdYupEIwG3ajkr9APt0UiJu7x94tvYww1eFMJUwhu379hrDN37NnjwwZMjgww/zNN9/I2rVrw+YPPnH55ZcLfCxfdHElQXjhT/btl7JlywZnifjdbB9nmCNiSurJUMGM1QWksXeNtbxOOMGMzNu2b5Mxo0cb98s6y7I8GD+BGjWvkjtuHymdOnWKqxIK5riwsVCKCVAwpxiwD6qnYPbBIMbahWQKZsOeX3bs3CHbt2+XKVMmy4kTJ3Rzzs1xruTMlVOmT58hPbr30P6Pg9tpClKrGUIznx0/zGbecJ/GJjBZsmSJdjvXo0ePcNn08Q7Xd5Ciho3shAkTpXiJYvoYBXNEZEk9GSqYIcxWLF8pCAFtlSIJZuSvWq2K4b/7bcvZaav6eMweAXimqVmzpiGa77BXICQXBXMIEP7oCgIUzK4YBlc3goLZ1cOTmsYlQzAjwt6/HvyXLFgwX2COUanSRfLuu+9o37jBrc6ePbsULFjQENNT5cZuNwaEc7oE89tvvyXXtLxG+1PetnW7nHnmmcHNC3x//fXXxPAAIMWKFZNP9x+QXLn/CYJCwRxAlPIvwYIZGznLlC0thw99Efa60QRzn769pVPHTkkJ5xy2ERl4Aqs+OXLkkJkzZ8XVewrmuLCxUIoJUDCnGLAPqqdg9sEgxtqFRAXzf/7ztgwdNlRfduxdd0vjxo0DM7K5cuUS2JAiIaAEbB4RJcxM5oxyugQzrgt71jfffEO6G3bNcx6cK3ny5DGboz8xQ96+/bVy7NgxmffYfB1i22wfBXMWVCn9IVgwFyhQ4B9zmgOfB65pjkngQJgv5j02atSdcsUVV8ZtOhCm+ow/DGHx3bHv9O9KPDAomOOhxjKpJkDBnGrC3q+fgtn7YxhzD+IVzDC/mDBhvNz/wP0ydeo0GTRwUGBz32PzHpNcOXMF2nL++ecF7Jfz5cuv8+XOnTsQZc8UP6a4CRQM+pIMkwxUhyAXLVtdY8yAv6uX59u2bStVq1aTX3/9VXbu3CkvvfSiYMZ85B0jZdq06boFZvsomIMGJMVfgwUzViXgEhAhz8MljFGk+6fvLX2kc6fOCYdyDnf9TD1u+KuV498fl8cenRcXAgrmuLCxUIoJUDCnGLAfqveRT2l2xSaBeAOXGJuwlOEJQ23ZusXmlcJnMwODhM+hlJ3AJZHKB58zZrnVjHtnqCpVKytDaAUCk5yTI7syIgGqF154Pjh74DwDl2TBktIfQgOXGBs21cmTJ8NeM1rgm5o1a6hDhw6FLc8T8RG47bZb1Z13joyvsFGKgUviRudIQWOVUK1atUohaM35hc7Tfxvx2f669uqtt97M0ibz77oX/24ycEmWoeQPFgQ4w+yHt54Y+xDPDPOKFSukX/9bZNPGzcbsbNUYr3h69q7duuiDy55ZfvrJ/x3Zu3ev3DN5khFw5BIZP2582HyxnjBEmHz11Ve6WOnSpS3DZZvtK12qtN64GOs1mD92AsEzzIULF5bBg2+TGkao63CbNSPNMMOjSpOmjeWjDz+OvSEsEZFAz1499J6FcN5LIhY2TnKGORoh95xHOPSu3boKzPCKFi0qTZo0kQL5C8jBQ4fkjTdelz///FNG3TlK71FBq/E7ieTFlTnOMOuh4/8iEKBgjgDHr6diFcwQl9UuraptFm+44Qa/YmG/HCYQKpjff/99MUKby84du+SMM844rXWRBPOYMaOliOHxZNjQYaeVy9QDBw8e1CZIJ386KdmM/8qUKS1XX11LsO8gltS6TWtp166d9O/XP5ZigbwUzAEUrv5iTLAJxhr7P+4ceaf2HoRN3GY6cOCAsaG6hY6k+tyzz0nbtu0omE04/PQlAQpmXw5r5E7FKpjhRip//nyyYP7jkSvmWRJIgECoYEZV/Qf0k+LFisv48acHrAknmHft3iU9e/aQd3a/q705JNAkXxR91QgVPm3aNDn1yympW6euFDJm75WxMffTA5/Kpk2bpGXLlobf9HFSvHhxW/2Fbfnzz70Q90oTBbMtzI5n+ve/X5brOlwn119/gyxfZr0SiJnnFte0kJrGStCmTZspmB0fNTYgpQQszDR4yMcEDA8Wqk2b1uqSyhcr2PVGS8aslMqZ61x15MiRaFl5ngQSIhBqw4zKTp06pWrVulrNvm+2rbqNjZ3q4ksuUrt377aV38+Z/vrrL2WYUal69eoqwxOMZVfxN8DYsKvKlS+rVq9eZZkn+KCxgVadmzOHrb8dweWCv9OGOZiGe7937tJZ2ytv37E9bCPxPDFmoJVhuqHz0IY5LCqe8AEBzjCn9HXEXZXDJnjE7SNk48aNxszbOdpjxP333R/RT+348ePks88/k6VPP+OuzrA1viNgNcOMTv7888/S7cZu2tPKDCMQTsWKFU/rO/I88ugj8uSTT8jixUvkqiuvOi1PJh2Aa0cwu8CIunn//Q9YmrQE8/jyyy+NmcLmMmXyFOnQ4frgU1m+L126VB41OGM2MZ4EN5OlSl8oxYoWM4Id7dCuJ+Oph2VST+DCUiUFNswnfvgx4A0p2lVpwxyNEM97moAPRD+7EIWAEX1PjRgxXM8M3dKvrzI2RClDnGivEXnz5VHtrm2n9u/fb1kLvEoYG/4sz/EgCSSLwBdffKEM0x89o4UZyK+//jpL1ZjJeuaZZ9Sll1VTV19dUw0bNlTdd/99asrUKXq3ftlyZbTnhh9//DFLuUz9AR5hut3Y1bL74byLYAwqVqqgDh8+bFkOBzFGo0ePCns+0olNmzepq2pcqfA3B6tWmPk2zGciFeE5BwngPoGnmliSV2eYDRejygiUpEpeWFI/G2PpM/NmDgFEZmPyKQHDt7BasGCBuqBokbAPJ2NDn+p1U0/9AMOD8KeffgrQMGbttIBBHiYSSAUBPKgMm3qVJ29uZYQmV8bOe9WyVUuVv0A+bYZhZTZkrJSoZcuWqQf+9YAyok2qrdu2KpgfMP1D4Pjx4wovEOFc8oUTzCj9xBNPqJtu7vVPRf/7P16wH3r4If23AWL3vffey3I+2g/G7LV2JVe4SCFlrAIow/e5du04cdJEVfC8Agov8Ua00GjV8HyaCRizxarSRRVjuqrXBDNexJ977lltkgRXeTA3Qp9ffvklw8z/75j6zsz+J0DB7NMx3rhpo4IvzJIXllDGMmrUX36IDszcFS9RTD311FMKvjeNXdAq+zln6+8+xcRuOUQAD6Nnn12thV3ValWy+HPFOTywMNsJe+Q1a15xqJXevOy9M+9VhilV2MZHEsx4ya5QsbzCqpSZUBfK3DlqpJ4hNo9H+4RNOny3FyiYXxkuAhWEPBLGF+MK22msJBghzNV55xdURkCkhGyjo7WH52MjgDGCgDRcx9ku6CXBbHjhUU2bNdX33tyH5qrvvvtOTxyNnzBe37N4ccfLORMJmAQomE0SPvnEbM6N3bvpX3w4Yscssd0EkYwZpmLFi+qNVkufWarfvO2WZz4SsEMAD6omTZsEHlTPPvusMnbkn1YUZkMQf/ny59VBEz755JPT8vDA6QSat2iusPkxXIokmFEGM75G9EtdHH8TDFtWLZhhRnH77SPUZ599Fq5qfRyC+Pnnn1OGNw09zhjv0DRx4gTVuEnjwGFsSqxTp7bejPzaa68GjvOLcwR697lZj7sRcTViIwzXj+qaltfo+yKcYEawG5j24d5wOmHjKl7g8DIwaNBAdezYsUCTYJ6IVSusquD3AHlwzwe/QAYy80vGEaBg9smQY2kb9pzm0nakh9rTTz+tmjVvFvahiqVcRPLCHwsjSIE6evSoTyixG04SsHpQQRTjIVuo8Plhm4b7D2YCuB9xX4YzNQhbQYadgDmGlSmLiSGaYIapi+mVxHAbpnLlzqnHyBRD+Axn5/zhhx/qvy1oA1YQwgmkjz76SNcZbKsOcY6/TVgVg3D59NNPzSbz0wECiOKHsUZEv3AJq5A5zj1HT7KYv8soExrpD6aB+B1v1KhhzCY94a4d63GYbcEkyGyH1UvlkiVLVO3atQJV79y1U9WtW0ebNaIPWIFhylwCFMweH3s8kEwbrNCl7XBdMzf8YanU8HMb1n4QM3oIh4oZvpmzZnIzRDigPB6RQKQH1YLHF+iHsp2NZNu2b9MrH0WLXaAWLVpEU6Ew1A0vFFnOBAvdSN/NQtgwCJtlpK5du2QJJY9ZZswOhwphuBUbOnSIXsrGizte4KOly6pfqh5+5OHTsmFVbOzYu7Qde+i+itMy80DKCGCMjcAl+vdz5Mg7FExsghNeaGC2gXvKvF/M+ytUMKMcTHIw0wyBHTqzG1xvKr6vW7dW4X4rXaaUWrly5Wn3r3lNbBrGPf7555+bh3RemDXiRQ79grkjU2YSoGD28LgH22DNmTsnJlszdNvc8IeNN/A4EG5WCjak+MPIzRAevlkcanqkBxVmirHRBpuLYD5kJ2EWEjb2sLWHzT1s75myEsBDPdKqEERNpISxAGPM/mJWH/kxRufkyK6Wr1iepShm3GCLXOSCwtoUDJ427KZp06ephg0bhM2O2UsjcEaWfRVhM/NESgjArrdmzRr6HsCLqhF0Rg0fPky1bddWC0vcGzBZMFMkwWzm2bNnjzbHgd06bIdTuWH30KFDqlPnTip3nlxqkrHJ9JdffjGbEfYT9xxMwUITXuTwuwFBDbNHmD8yZRYBCmYPjre5tI039YEDB+jNCol0w9zwBxdC4XYHQ0xjmRbeC7gZIhHamVHWzoMKs4d4kEGI2RXMJj2IbZTHwwteXujJxSSj9CY6K5twM0c0wYxVJdgUTzG8l8AcA6IZy9ibt2w2q9Cf6zesV5dfUT3uWTcIYrQlWlAkBMaAe0sslUcKopGlcfwhaQSw6Q8TMvXr19MrCBgzvOjiPjFt3c2LdenaWeFftBUjzF4jUA5cucFVJEx/kpkgjCcYm/dw/yIAC/4e2U1wX3nFlZeHzQ5zR3j0gfmj3dWUsJXxhKcIUDB7aLiCl7YxM2NlgxVvd4I3/GEDB2wMrZK5qx0PUcws0O+tFaXMPWb3QWXuSMfDNx7BbBKG/3DYu8LdGUwJYG6U6QkmWvBlHS5FEsz4/UbUP/w9gMkW8tYwZhixCcpMsF+GKIK7ygULErPrxCrBg3MeNKsO+wnRhnwQathkFmkGPWwlPOE6AjDduWfyPfrF+YaON6iDBw8m1EYI8eXLlyuYJVW//DKFFa5YE1yrQmhH85ABG2+YQeL3Bb9zoWZKsV6X+d1PgILZ/WOkW4hffPwBgA1WKncbY+Zu1Kg79R8w2CRiNtsqmbva8dB8/PHHuRnCClIGHYv1QdWrV8/Acn8igtlEDM8KCPcOV3SY9crkhxfEZbVLq4bdXBVJMGPFCu7d8DuNfA0a1A8sY+NlaNI9k7SQRiCkZHgOwLUQwMRuwosW2ggzMu6rsEvN/fnMlzAIVcwMnzp1KuZGv/POO9rEB6shjz72aEKmHhDvuNejJXP2HeYlcFFn5REmWh087x0CFMwuHytzaRt/SLDZxo4NVjK6hA1/sFPDHx9szLGyMzN3tZcoWVz7Z0UkL6bMI4CVDqx42H1QYec5xBiEMmxj4es7VpMMK8owG4IAw8woVkk+/vhjq2wZcQwv2BDNwTPD0Tr+yiv/1psqIQKwiQt7FvA7jpePVav+WT5PNlfYgeIeiMX2Gf0w7zm0EeYnmfyCFG1cvXR+3fp12swHM8SYKbYzrniJGjCwv95MOGTI4LCTPLFwwMbAylUusXV91Gu+yMFMEi7rwk00xdIG5nUfAQpm942JbhFmeuO1wUpml159dY3e8IeHL2wJrZK5qx32pFgK5mYIK0r+Owb/pZjtg3lOLA8qLLvCRy/8fcOGEeIZXhGSlYJ9qGKDUjJmQpPVtnTW8+STT2rPAHZeHODODb/jocJVb9Bq3CilM/d42cKLTqwJYgqrbVh1a9W6VdQl9FjrZ35nCJgbSfECjnsDM8dWyTTTMWd3P/jgA6tscR3DDDdslGONamm+yKHtcGFnNdEUV4NYyBUEKJhdMQynNwK/cBAic2zY951eOrlHMHMHLxqYuYNPznD+UbGJp2GjBnpjYHJbwNrcRCB0GTLWBxVmLREUoFatq/XS6w03XK8gzJKddu3epZf74cFh/oL5GWk2hFDj2MwLM6vQfQkYR5xHEBls5A22C8YS+aBbB2nTh1TbhkNYBPu+jfU+wKobVt/w92mEsa8i2LdzrHUxv3sIYJYWL+Lm5vbgACOYvDHthxEkx85MdKw9g51+PC/ywS9y8dpRx9pW5k8PAQrm9HCO+SpY+sRDDKYY+MUNFygg5ooTKICZu7639NGeCfAAxix4aMKMNJaymPxJ4IUXX9AzL5jVi+dBBZGG5VPYGqfDswUeXqYPVfhR3RLi6cGfo5S1V1gBgokFbIXBALbeNWpepWdm8bfl7bffylrA+Am+1/E3KB1jhL8rMMvBykMiCeXhUg/3FpN/COCF3AxhfcfIO7SpIGZ/EXY91Dd0MnuNwDtYCYtXjJsvcniGdzRsonft2pXM5rEuBwhQMDsA3c4lr21/rbYdhgN1bEDQfiSNTQh2AgLYqT+RPGb0I/jlxLJvcIJgxps/kz8JPL30aT3jU7hIIb2xJpbIV3jpa3FNC72rPFIkylSQg2iErf2KED/CqbiWm+vE7D5edINnk63ai1lpeAFIV0I471mzZyV8OYQ1hssvJn8RgGiFJwrse6hStUpazP4geOF9J1FXhtiHVL9BPVWkSGF/DUoG9oaC2aWDbgpms3nwUwl/lbD5xAaceN96zfoS/cT1YfdYp07tLHZaFMyJknV3eUS5Mj214FMvORobdSIl2APCpAezltcb5heI+OVEwu8PNrYxRSeAQEXpFMwLFy7UATKityxyDghm3GNM/iSAVQ94cElXQoCS4MAs8V73hReePy1ceLx1sZxzBCiYnWMf8cqhghmZsYEAS6vwRdq4SeOU2H1GbJSNkxTMNiB5OAsEM17akIKXHIODA8DsAhs/IU4RChf2+BCr4YLipAsHBbN90ukWzLBXha0q9kEkkiiYE6Hn/rLpFswQujBjwspMIomCORF67ilLweyescjSEivBbGbADN2txoYcPGDw6dSMndme4E8K5mAa/vseLJjN3mHJEYIZZkOYdTbDKMNOFvbKWNJ0ekUEbaVgNkcs+me6BTNahAA02GCYSKJgToSe+8umWzDDRhrRbRHVMpFEwZwIPfeUpWB2z1hkaUkkwWxm1C6fjJlmzDhj5tkNLmwomM3R8eenlWA2ewrfv7Bfh60wzHXcIJLNtuGTgjmYRuTvTghmbM6MFJI4cov/OUvBbIeSd/OkWzCDVM9ePfRKWSLUKJgToeeeshTM7hmLLC2xI5hRAKJk9epVqmy5MloQwNbZyUTB7CT91F87kmDG1fHShihbMMNo1KhhUsO3J9o7Cmb7BJ0QzGZIYgRNijdRMMdLzhvlnBDMCIyDiLaJTEhRMHvj/orWSgrmaIQcOm9XMJvNg/eMeybfo5fF4VUD3jWcSBTMTlBP3zWjCWazJaYPVfgSR3CTYB+qZp50f/pRMMOHMfxNx+KtxA53JwQz2tWpcyftLsxOG63yUDBbUfHPMScE8++//679kYcL3GWHLgWzHUruz0PB7NIxilUwm92A666u3bpo/83jx4/TgSHMc+n4pGBOB+V/roFgHAgf++OPP6btonYFs9mgYB+qc+bOUdgQ6FTym2CG9xFEScQ/uL9qb7iihCnMwQT9GWN8nBLM8H17WfVL475FKJjjRueJgk4IZoC5ufdNOgZBvJAomOMl565yFMzuGo9Aa+IVzGYFGzZu0PaAF5YqqZ555pm02ZNSMJsjkNpPmOKYYgm+SatdWk3hBQmuwFLpqztWwQwKaCuEEMyGYOOcTndlwaPgN8GMvi1eslhv/jXvBQR0wHfs7O/X/xa1ePHiuHzWOiWYce/C/aCdcN7BY2t+z1TBDG6JmAyY/Nz+6ZRgxnMNIbgR9TaeRMEcDzX3laFgdt+Y6BYlKphRCZZpMQuJ0MD169dTu3fvTnlvKZhTjjhwgR2G9wl4pDDFEswf8A/eU+B2cO5Dc8OGMQ9UEuOXeASzeQk81KdMnaIjBSK4RLqDl/hRMONlpKoRyMG8B4I/cW/kzZtHn6t0UUV1991j1dq1/9HuAM0xCffplGBGe3r07K4mGUGa4kmZKpjhoQZjf63haWTJkiVxvSTFwzvdZZwSzBDK2FwPe+Z4EgVzPNTcV4aC2X1joluUDMFsdu2HH35Qw4cP02IKs07ffvuteSrpnxTMSUcascLrOrTX4xoslMzvmG2EaILXihu736hDRMO2OJGUiGA2r/vFF18Y7emmQ6xDxCEKXzqSHwUzuGGTpSmYzLG3+kSI3py5ztX3S4OG9dVcw0QGM7lWM5NOCmaIknijhWaqYF60aGHgpQn3AkKNw1/6rYYfdPhDd5Pr0UR+150SzGjzLf366pe5eNpPwRwPNfeVyYYmCZPrCLS/rr00b95cBg0clLS2GQ9HGXH7CNm4cYNUKF9BOlx/fVx1N23aVGrXqm1Z9rXXXpU7R90p7+/5wPI8DyaXgDFjKK1atxJjNSFqxbly5RJjllfKG2OPe6txo0bSsGEjyZs3b9SyZoZNmzdJz5495PPPDpqH4v5EXcaLnBgvcDJj+r3StWtXyZYtW9z1RSto2MbKtKnTpFWr1lmyGi8VWX7OxB/++jPr/XNJ5Ytl7py50qRJ07TjMGzyxfBKIGNGj5EJEybGdP0H5zxo/H3bKKtXrY6pnB8yN2/RTNauXZulK2eccYbkyJFD/96XKVNGrruug7Rq2VJqGX+/s2fPniWvF35o2aql3HD9DdKnT5+0N9fY9CcdO3WUo199LTlz5ozp+i+++IIYq2uyc8eumMoxs7sIUDC7azwCrUmFYEblO3fukHr160munLkE14gnderYSVq0uMayqNcEM8WSSKhYshzY/x1MpmBGlUYELXniiSfk7nFjpWKFitKzV0+pW6depCaEPZcnTx4pXrx42POZLpjxMgKRZCwvS5UqVaRZ02ZSv359qVOnrhQoUCALNycEM+ZunnvuWRk5cqR8eeRLOeuss6RDhw5y74yZUqJEiSztC/dDJgvmLVu3SLNmTcXYWBsOjx5/cMa9UKNGDWnXtp20bNlKKlWqlNKX1bANivGEk4LZWAkTw12mfulY9syymFpOwRwTLvdmxgwzk/sIJNMkw+zdzl079caFNm1b612/5vFkfnrNJMNq6dqPx2DXjKVamGjAC8G06dMUNobG6mEjGSYZVvfbiRMnVIsWzfWyMkwH0NZY/0ULeuFHkwzsU7jo4kqB5fjQe9fcBFi+fDk1cuQdCn7a4e84Wkq3Scb777+vmjRtou1EYT5WrnxZHSYbtu7wADJ9xnQF917RUiImGaHsMuFnmOgE9zMaX6fPO2GSYcY6KFO2jP77ifvx+huujymMO00ynL5zknN92jAnh2PSa0m2YMaGP2xaMGZgtL9muMlJRfKaYE4Fg3TViT/kzZo3y/LAMx9+wQK5+uWXqdFjRusNK26wYbbigyhv8I6A9qfKxt6Pghm/z+aY4xMCGfarFStWUAMG9Nf2q7G+FGF80iWYg/11Dxo0UPvrHjp0iLr99hGB2+SNN15Xxoy3qlipQtRNVxTM/7gZDL4nwn3HCykEM16isVkYzxy3p3QL5nfffVc1btxIe/iZOGmC/v06evSoGjFiuH6RGzXqTnXy5Mmo2CiYoyLyRAYKZpcOUzIF8zvvvKPF8gP/ekD3FgFOKJhdOvAxNGv16tUBsQTXcpiZxcOxarWqavyE8WrNmlcUNnwmM6VihnnZsmVaLONlC+2nYLY3YnhQm2IIGzv79O2j/XJjtj7RlGrBjJnxx+Y9pgoXKaQaNmwQiAiJl8BSpS/Uqx/BfYCXgtn3zdb3SZu2bdT+/fuDTwe+JyKYA5V49MtTi58K/A0w74vgT9ODTu48uVXLlteoOcbLFlYdDbMoz/Q4XYL5u+++UwMG9tf3G56X8PAzePBtOrCOCQsbZtGeosUuUAsWLIgYPIiC2aTm7U8KZpeOX7IE83vvvafDFN93/32BnlIwB1B49guEhfkwhEeBQbcOUi+//FLSBXIooGQL5hUrVuiZGkTR+u233yiYQ4FH+Rmzr1999VWUXLGfTqVgDvYRj8A7uJfNtGPnDh2GGILaKmF2r9dNPfXM6Bhj1STUw0qmCma8JCF8s/k3AZ9YZTK9ojRq3FA98MD9auu2rZZeUaxYu/FYqgUzXswwsVTwvAKqS9fOCoHAkHCPIqYBXu6DE46/9NKLevXj8iuqq3Xr1gafDnynYA6g8PQXCmaXDl8yBPOePXv0DM6s2bOy9JKCOQsOz/6AKHqYCUlnSqZgXrVqlRbLr7/+mu4CBXM6RzLytVIhmOFOsNuNXSNGIR079i7tvity65TavGWzuqrGlTpAC2ZJzZSpghnjBZGMWWSsNsGe/957ZyisLjoZXdMcl2R9plIwY4ULpj/Y4xEqfPEiB7bhzC9gXz/D4A2zMiv7ZgrmZN0BztZDwews/7BXT1QwYxMNApbglzg0UTCHEuHPdgkkSzAj8h82zxheVQKXpmAOoHD8SzIFM8Z16rSpUQPWYLYO14XfYDsJs9CIYnowKBR4pgpmBATqe0tfHZgmdNbdDkuv5EmFYN63b5+CmQ/2+Dzy6COWM/DwF4880RJWe3r26qFn9jHzbCYKZpOEtz8pmF06fokI5g8//FAvz8ETglWiYLaiwmN2CCRDMBuuw7RYho11cKJgDqbh7PdkCGYIYAiF8hXKqSpVKyuY3URKH330kZ6hw30Qb8pUwRwvL6+VS6ZghhkLNpdi78dtRoCXSMFdcP8uXLjQNi7MSAdHMqVgto3O1RkpmF06PPEKZjx0sAkBMw7hEgVzODI8Ho1AooIZDw7MLFuFmKVgjkY/fecTFcx79+5VLa5poQoUzK8gYu2YBWAWunOXzgl1koI5IXyuL5wMwYyVifkL5usV2EaNGirs84mUMAMNTyKJmL9RMEci7J1zFMwuHat4BDN27RYrXlS7jYvULQrmSHR4LhKBRAQzlighlrE50SpRMFtRceZYooJ55qyZ2stALB5PYJMME4tEEgVzIvTcXzZRwQxxjM15pcuUUitXrsyy4TRc7++dea9q3KRxuNO2jlMw28Lk+kwUzC4dolgFM2Z0IJYnTpwQtUcUzFERMUMYAvEKZswoQywbEa/C1KzoJSMsmfSfSFQwx9riQ4cOaa8O8fiMDr4WBXMwDf99T1QwP/XUU2rSpInq1KlTtuHUrl1LzZk7x3Z+q4wUzFZUvHeMgtmlYxaLYP7kk08U/LCOHz/O1hszBbNLB90DzYpHMMNWGWL5+eefi9hDzjBHxJPWk+kWzBC6EEOJJgrmRAm6u3yigjnW3mETH7yPwMNLIomCORF67ilLweyescjSknbXtlMPPfxQlmNWP8A2EI7+sYsXm2zspFQL5ipVq9hpBvN4kECsghleMCCW4RUjWqJgjkYofefTLZgRvASBTBJNFMyJEnR3+XQL5kcfe1RdfXXNhKFQMCeM0BUVUDC7YhhOb8RFF1fSdlZw8h8tIey1XbGMulIlmD///HPVsFED7T4qWpt53psEYhHMa9f+R4tl+Fu2kyiY7VBKT55KF1WM6tUiWS355ptvdDjvZARg+ZcRdOK6Du2T1TTW4zIC6RbM2Lhq5Zo1ViwUzLESc2d+CmZ3jos6duyYnjWGyxs4+090SSi4m8kWzLAHgzkI2oroSNhVzORPAquNmWJ4PrATcht2y3hQ2E2pFMzYfAa/5IuXLLbbnIzOh0hnV9eqqbCRONUJYYXr1Kmd8GUQpAMTDQg+weRPAk2aNlHz5s1LS+fgdg5BYGDymGjC383Lql+WaDUs7zABCmaHByDa5eHLEZGD8uTNrSZPmaxj2kcrE+18sgQzZrURKhQmIdh5vH7D+miX5nmPE/j0009V5SqX6AiSWEIPF8I4nm6mQjDDZMkMdVv98urqwIED8TQt48rgJXjSPZNU/gL51PDhwxTEQ6pS6zatFbxqxJvg7mvAwP46nDHqwX3E5E8CZcqWVmXLllH/+c/bKe/g0qVLVbVLqyZ8HUQyRbuxz4jJ2wQomD0yfm+//Zb+5S1broxavXpVTCYYoV1MhmCGGUj9+vW0cJo3f15ShVNoe/mzuwjgRWnFihVJf1FKtmDGgwrivkLF8to7RyxmS+4i7lxrDh8+rFeNLihaRPuuTeYLEnoFrxg5zj0nrlk8vAw9OOdBHaHt5t43qaNHjzoHildOC4FffvlFmxTmzpNL3dDxBgUzwFSlTp07qQkTxsddPSYXsHkfezimz5ielMmuuBvDgkkhQMGcFIzpqeSvv/5Scx+aq847v6DC0hTCX8eTEhHMWNru1/8WdW7OHGrYsKG2lubjaSPLuJ8AZiHxQDFNcSCuEknJEszBDyrYH/7++++JNItlDQLr1q/Tq0hXXnWFgh17shL8LletFvsmYUQNRLlata5W27ZvS1ZzWI9HCOBvTdduXfTfHpgDxuImzk4Xf/31Vy103333XTvZs+T56aef1OjRo3R4bITJPnLkSJbz/MG7BCiYPTh2sG8eNGignpmJFtLTqnvxCObgpe3mLZorhN9mIgEQOHjwoOrYqaPCrA+W8TELFE9KVDCHPqiSsYksnn74tQxml2GGA1vwZO2rwCwePPzYTTCpua7Ddap4iWIKPnX/+9//2i3KfD4kADNAmAPCLBDmgclaRcL+i3Lly8ZUH+5F3JO4N2vWrKG2bN3iQ+KZ3SUKZg+PP6IWIbRnocLnq4cfeVhhBtpOilUwm0vb5SuU05u4kvVHyU5bmcc7BOAV49LLqml7PXjGiPU+iVcw80GV3nvk+++/V0OHDtGbPxPZV4FZPOzN2LlrZ9QO/Pzzz2rs2Lu0TTVm7/ByxEQCIIAXOZgFFi5SSJsJwlww0dT3lj7qjjtut13N9h3bFQKcFC12gVq0aBFf5GyT81ZGCmZvjddprYUoQYhPhPq8rPqlCqIlWrIrmIOXtqdNn8bNNNHA8rx+aXvk0Uf0S1zjxo3Unj17bFOJRzDzQWUbb9IzfvDBB6pZ82Z6Jg5+tmN9QUKodMwMRiqHc08//bQqeWEJBd/0+/fvT3o/WKE/CMBzD8wEYS4Is8FYwrIHE8DEE1ZRNm3eFHzY8jvs5mE/j2uOHHmHtsm3zMiDviBAweyLYVR6GRzL4VgWx/I4lsnDpWiCGbM3Y8aMpg1WOIA8HpXA8ePH1eDBt+kHya23DtJuEqMVikUw80EVjWZ6zkPQIoIjVp9i3VcBoTFkyOCwDcXMc926dbSbOATAYSIBOwRgLgizQbhGhIccmBPGkmDmAbOKSOY+2BcBjyz58udV8PJCV6qxEPZuXgpm746dZcvNXe3YiIUNWVabIcIJZvyBWLx4sXZ/U6PmVWrzls2W1+BBErBLABtTIaTOL3Se3rAayWzIjmDmg8ou+fTmw9hNnTZVm2ngRQlmG5ESRAxMyeD9JzQhkAmWxLG5OR7BE1off848AniRe/HFF7SHHHjKgVmh3TRixHC9R8gqP+qFfTMC+yAa5po1r1hl4zGfEqBg9unAmrvaseS5fPnyLMueVoJ5x84dtMHy6b3gdLfwkMGSPVwiwq+plUhCGyMJ5uAHFYJT8EHl9KhaX//LL79U3XvcqO1JYZoT7gUJ9wBeooJn//744w81+77ZWignsqRu3TIezUQC+JsCl25w7QYXbzAzjJTwdwab/eCFJTTt3btXtWrdStvR4z7F/cqUWQQomH083uaudmyGaNiwgUIkLKRgwfz111+r3n1upg2Wj+8Dt3QNm7ywSQxmQwjGE+pDNZxg5oPKLSNovx2w/7yqxpV6X8W6dWtPKwjvPjfd3CtwHC9AmLGrV6+u2rV7V+A4v5BAMgjAtRtcvOXMda42Nwy3aRRu5LCyEfwiB1/h2AAIO+U+fXsrPDOZMpMABXMGjLu5qx2/8IiIhV3mvXr1VLNmz9Jvy7TByoCbwEVdDPahOm7c3QGzoVDBzAeViwYtjqbghX3hwoXacwDcxx06dEjXAtMvbOKD7TPCDrdp20ZdWKqkgk9mzPAxkUCqCMDVG1y+IeoezA9D7ZQnTpyget3UU18e58z7F6HbsQrLlNkEKJgzaPzNXe14y8YsH5a2X3nl3xlEgF11E4ENGzeoK668PCCWMAN91tln6hkcPqjcNFKJtcV88UGYbeyrwIwz/v4g5DaOpSLwRGItZmk/E4AQhus3uICDKzh42jFT9csv065TsX8H+3ggrOGlJVRYm/n5mVkEsqG7wpQxBDDcw4YPFWOZW/798iuSPXv2jOk7O+o+AsaDSBY9sUiMmWapUL6CGFHbpGrVqmIE55Hp02ZIt27d5IwzznBfw9mimAkYngTk9jtulw0b1gvGvXXrNjLz3plSpkyZmOtiARJIlMDJkydl6tQp8tDDD0nXrl2l3y39pWmzJtK2bVt58cUXZfiw4TJ69BjJnTt3opdieZ8QoGD2yUCyGyTgZQInTpzQotkIQCCDBw+RSRMnSZ48ebzcJbbdggBe2I09E1KieAmZPHmKRQ4eIoH0EjDMgvSLnLERVQyTIP0iN2vmLClXrlx6G8KruZ4ABbPrh4gNJIHMIYAHFmeUM2e82VMScAsBrHJJtmwy+Z7JbmkS2+EyAhTMLhsQNocESIAESIAESIAESMBdBCiY3TUebA0JkAAJkAAJkAAJkIDLCFAwu2xA2BwSIAESIAESIAESIAF3EaBgdtd4sDUkQAIkQAIkQAIkQAIuI0DB7LIBYXNIgARIgARIgARIgATcRYCC2V3jwdaQAAmQAAmQAAmQAAm4jAAFs8sGhM0hARIgARIgARIgARJwFwEKZneNB1tDAiRAAiRAAiRAAiTgMgIUzC4bEDaHBEiABEiABEiABEjAXQQomN01HmwNCZAACZAACZAACZCAywhQMLtsQNgcEiABEiABEiABEiABdxGgYHbXeLA1JEACJEACJEACJEACLiNAweyyAWFzSIAESIAESIAESIAE3EWAgtld48HWkAAJkAAJkAAJkAAJuIwABbPLBoTNIQESIAESIAESIAEScBcBCmZ3jQdbQwIkQAIkQAIkQAIk4DIC/w+dKRTPOwbcTQAAAABJRU5ErkJggg== />"

Question 8

Draw the two enantiomers of -pinene (Figure E16.1) and assign the stereocenter(s) for each isomer as R or S.

Question 9

Are the ligands (DHQ)2PHAL and (DHQD)2PHAL enantiomers? Explain.



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

jaymee143

  • Sr. Member
  • ****
  • Posts: 341
Answer to Question 1

No, the outcome would be the same because the R- and S-carvone are enantiomers and will react in an identical fashion with the achiral Pd/C reagent.

Answer to Question 2


Answer to Question 3



Answer to Question 4



Answer to Question 5





lindiwe

  • Member
  • Posts: 577
Reply 2 on: Aug 23, 2018
YES! Correct, THANKS for helping me on my review


chereeb

  • Member
  • Posts: 326
Reply 3 on: Yesterday
Great answer, keep it coming :)

 

Did you know?

Cutaneous mucormycosis is a rare fungal infection that has been fatal in at least 29% of cases, and in as many as 83% of cases, depending on the patient's health prior to infection. It has occurred often after natural disasters such as tornados, and early treatment is essential.

Did you know?

A recent study has found that following a diet rich in berries may slow down the aging process of the brain. This diet apparently helps to keep dopamine levels much higher than are seen in normal individuals who do not eat berries as a regular part of their diet as they enter their later years.

Did you know?

There are immediate benefits of chiropractic adjustments that are visible via magnetic resonance imaging (MRI). It shows that spinal manipulation therapy is effective in decreasing pain and increasing the gaps between the vertebrae, reducing pressure that leads to pain.

Did you know?

All patients with hyperparathyroidism will develop osteoporosis. The parathyroid glands maintain blood calcium within the normal range. All patients with this disease will continue to lose calcium from their bones every day, and there is no way to prevent the development of osteoporosis as a result.

Did you know?

Though methadone is often used to treat dependency on other opioids, the drug itself can be abused. Crushing or snorting methadone can achieve the opiate "rush" desired by addicts. Improper use such as these can lead to a dangerous dependency on methadone. This drug now accounts for nearly one-third of opioid-related deaths.

For a complete list of videos, visit our video library