This topic contains a solution. Click here to go to the answer

Author Question: In this experiment you used R-carvone. Would the outcome of the reaction be different if you used ... (Read 70 times)

lindiwe

  • Hero Member
  • *****
  • Posts: 577
In this experiment you used R-carvone. Would the outcome of the reaction be different if you used S-carvone? Explain your answer.

Question 2

Identify the product from the reaction shown below. The 1 H NMR data for the product is: (CDCl3)  0.65 (s, 3H), 1.28 (s, 3H), 1.632.55 (m, 6H), 4.42 (d, 1H), 4.82 (m, 1H), 5.00 (m, 1H) (Chapter 8). Note that hydroxyl hydrogens are sometimes not visible in 1 H NMR spectra (Section 8.1.4.b).

Question 3

jkNS84IBB8BMxoDVylg7Nj61VaGX29wF9u3b5+gL5OLRo2BK87Busb0T8OGDZTvjnAZKfqqMdBjgVUZCxctVFtzG2lW4DIaXk+DpcFijYF+NCLznKcSInPcWOoQIeAPMdBEw9pyrDE3ejjD496SJUuCtp8BEwNtFHw74mWp2aVgqSN8Y2ClyRhp6Y/xDNX+E4EQA63HcPgEEgoyanQP1qhZQ2BzMqsDEwOrEQ19fTyVEGoVDbcXUQj4MpVg1DH5oiG5VTMNGTqYpMFcoiylSpWi6dNnUOVKlROlBRIRjVMJgeDhS1lMCZV4qjjJl7OjWKpUqQhjmSImBcWXjacX5bTQSy/VouLFi/uk6ndU6OXE36kEo2ql91Lq178fyT00HMmPPPIIxcbGUtasWalggYL0aPLkjjRvJ+nTp6PFi5bQo48+apiVpxIMYYmoSCYGETVcLGyoEQiUGGjyyq2gadKkiST3LyBpPa+iMXecKVMmiouLo4IFC1LKlKm07F6PyZM/SnNmz1UPd6PMTAyMUDEft279OurYsQPJFSWGhUAUkBabJZZq1a5FNarXpBo1aqgXrWEBHyOtJAZa09JNuiIIcltuRXpADBo1akRFivhm85ImTRrq2KGjW0LExEBDPHKPTAwid+xY8hAgYBUx0ES9evUq9R/Qn44d+5rkLpaUPn16ql2rNpWJj9eymDrCeKzd6+0ILyijEAxiIL0MGjWV5OPw9Y2XpXQqpAheyZLPULFixWjY0GF+YxMMYgCDWDnFRGfPniHUjzBVGsP26N7DbzmNCjIxMEIlsuKYGETWeLG0IUbAamKAr0zpjY/OnDmtiAG607VLV5oxY6alPWNiYCmcpipLLtXx0gbBkffPh/87d0SaPLGaGGik4Natn0juxArbMiUJEwOTA5LEsjExSGIDzt31DQEriYFGCn6UtgYnT50k6d9fCRMpxMA35CI7N5ZGli5TiqSHQbcdiYmJIZAB6SZbquOLUN269Si+TDxVqVKFsmfP7racmQQriYFGCu7LKYTBQ4bIZYR1HSIwMXBAwSd6BEJv78gtMgKRg0AgqxL0vcSyt3r164mKFZ8Vp06ddLIS79mzhz6rJee8KiEwGOvVr6s2aNJb80uSKODNEhs3FS9RTAwdOkRt7f3zzz8H1phBaStWJaBa7O0hbSBElSqV1TbsBw8ddLr3At1kzEB0wasSjFCJrDherhhZ48XShhgBK4iBnhRgUyBpW+D0cGZiEOJB9dLcIukDAIQARABLFnEO75V9+/UV2JhJGu95qSHwZCuIgSspgFRMDAIfm6RQAxODpDDK3Ee/EQiUGLiSAgjCxMDv4QhJQezACDIwYEB/sWnTRvHjjz+GpF19I4ESAyNSgPqZGOhR5nN3CLCNgX5ehc8ZARcEArEx0GwK7ty+Tbt27aaMGTOq2qVnRJJ+/x0tsY2BAwpbnMiHpduleKESMBAbA71Nwc6du9TKF03uQx8fomrVqmqXvCrBgQSf6BFgYqBHg88ZARcE/CUG7kgBqmdi4AIyXyZCwF9i4IkUoBEmBomg5ggDBJgYGIDCUYyAhoA/xMATKUC9TAw0dPnoDgF/iIE3UoC2mBi4Q5zj9QgwMdCjweeMgAsCvhIDb6QA1TMxcAGZLxMh4CsxMEMK0AgTg0RQc4QBAkwMDEDhKEZAQ8AXYmCGFKBeJgYaunx0h4AvxMAsKUBbTAzcIc7xTgi4s0rkeEaAERDC7KoE+XB2+CnAkkRPgVcleEKH04CAtipBOljyCsjatWsFVlLcu3fPa95QrEqQG1CJjRvf8SoLZ7AvArxc0b5jw5LZAAE4szlx4oRXSQ4fOSxefOlF4Y0UoKJQEIPq1auJ0aNHe5WbM9gTAbkTp0iXPq14Xr7wv/rqK69CmiEQqCSYxOCnn34Sb731pkidJpVYsXKFV5k5g30RYGJg37FhyWyAwOM5HhM5c+UQq1atEmYfvt7EDiYxuHHjhmjX/nWl6Rg3bqw3UTjdxghACzV5ymSRJTaz6NipgwBZCDQEgxjIKTQhdw0VsVmziLavtxHff/99oGJy+TAjwMQgzAPAzdsbAbkpjli6dKkAQahUqaI4cvRIwAIHgxjgJTJp8iSRMVMGUb9BfXH+/PmA5eQK7IHAzZs3RfsO7RRBAFHAWPsbrCQGf//9t9i+fZvyCglX39CacYgOBJgYRMc4ci+CjMDdu3fFwIEDRJq0qdUXOb7M/Q1WEgM8nLdseU8UKlxQPPV0CbFv315/xeJyNkfg6BdHFTktXKSQGnOMva/BKmJw8uRJUfPFmuKJ3LnE6tWrLdOm+dofzh8cBJgYBAdXrjVKEbh06ZLABkXYTMffrzeriAEezjVq1hBx2bKKefPnCblbY5Sizt3SEMB0Fl7EeCFj7M3Yv2hlcQyUGNy6dUt06fKWyJAxvRg2bGhI9o3Qy8/noUGAiUFocOZWogwBbKZT8pmnRZGihZU61Zevt0CJwe3bt0XXrl1E2nRpRK9ePUUwdveLsuGKuu5gIyfs7ohNnvCixgvbTPCXGMCOYMbMGcqOoHmL5uLKlStmmuM8EYoAE4MIHTgWO/wI4At9wdsLRLbsceKlWi+J06dPmxLKX2Lw8OFDMXvObJE1LlbUrVdXnD171lR7nCl6Ebh8+bJo2qypemFjC2XcI56Cr8QAhHfHju3iyWJFRekypcSBgwc8Vc9pUYIAE4MoGUjuRvgQwBc7vtyxvMzMF7w/xAC2A1gfjt+ePbvD11lu2ZYIaBqsYsWfFLt373Iroy/E4NSpU2oJbvbHsolFixcJGOJySBoIMDFIGuPMvQwBAviCr1O3jsCDdOGihW4fpL4QgwsXLogGDRsoO4K58+Z6/SIMQTe5CZsiAA0WbE2gUcJ9aKRRMkMMMC2hTVX16dNb/PLLLzbtMYsVLASYGAQLWa43ySKwa9dOgS83d6pXM8QAjpL69++n5pB79uwh7ty5k2Tx5I77hgBsULp162pog+KJGGAaAtMR8EeAqapz58751jDnjhoEmBhEzVByR+yEgP4h26JlC3Ht2jWHeJ6IAdS1CQkJym9C7Tq1xZkzZxzl+IQR8AUBrFioXqO6soGBLQw0CkbEAHYEO3fuUGTW21SEL+1z3shFgIlB5I4dSx4BCGjLu+B4aOTIEeLBgwduXSLLDW5EfNkyoniJYh7niSOg2yyiTRDAS/+99zaLgoUKqFU0M+XKguQxjzp+gwcPEiCg8K5oxnjRJt1iMYKMAO+u6LSlFF8wAsFBQPocoN59etOlSxepX9/+1KNnd0dDbdu0pQf/ekD79++n4cNHUOc3OlNMTIwjnU8YgUARkN4SSS43pAkTxlP27NlJarDoseyP0e07t+n1tq/TqFGjKS4uLtBmuHyUIMDEIEoGkrthfwQkyadt27ZSv/79iATR1WtXKVu2bHT//n0COQApiI2NtX9HWMKIRUDuY0CDhwwiuSMjlS1bjhbMX0AlS5aM2P6w4MFBgIlBcHDlWhkBtwhIZzEk/RGQVONS6dKladnS5VSsWDG3+TmBEbAagaNHj1J8fDw98sgjVlfN9UUBAkwMomAQuQuRiYDcppayZs3KD+fIHD6WmhGIWgSYGETt0HLHGAFGgBFgBBgB3xFgYuA7ZlyCEWAEGAFGgBGIWgSYGETt0HLHGAFGgBFgBBgB3xFgYuA7ZlyCEWAEGAFGgBGIWgSYGETt0HLHGAFGgBFgBBgB3xFgYuA7ZlyCEWAEGAFGgBGIWgSYGETt0HLHGAFGgBFgBBgB3xFgYuA7ZlyCEWAEGAFGgBGIWgSYGETt0HLHGAFGgBFgBBgB3xFgYuA7ZlyCEWAEGAFGgBGIWgSYGETt0HLHGAFGgBFgBBgB3xFgYuA7ZlyCEWAEGAFGgBGIWgSYGETt0HLHGAFGgBFgBBgB3xFgYuA7ZlyCEWAEGAFGgBGIWgSYGETt0HLHGAFGgBFgBBgB3xFgYuA7ZlyCEWAEGAFGgBGIWgSYGETt0HLHGAFGgBFgBBgB3xH4f1doza9Yr8JJAAAAAElFTkSuQmCC />"

Question 4

Write rational arrow-pushing mechanisms leading to three additional products that might have been formed in the reaction of -pinene oxide with aqueous sulfuric acid that are different from the product you isolated and the decomposition product you identified.

Question 5

Write an arrow-pushing mechanism for the reaction shown in Equation E16.3.

Question 6

Write arrow-pushing mechanisms for the reactions shown in Equations E16.1 and E16.2.

Question 7

8vej/fFVImVYEYFW7dtlT59emvzjIEDB0nJkiWz1Hv8+HHDE8eTMm/eYzLz3ply3XUdspxP1g+rV6+WosWKhp01T9Z1WA8JkAAJJJMABXMyaXqkrkwSzFOnTpGJkybK2WefLX1695FRo0ZLiRIlPDJSmdXMP//8U3LlzmmsfnwnBQsWzKzOW/QWwrdChQry8Ud7Lc6GPxROMKPEqVOn5DFDED9lCONs2bIZJhplJV++vLJv3z6BR47OnTrLkCFDpXDhwuEvkOCZHj27S+XKVWS08bvIRAJuIfDKK/+WX3/9TTp27OiWJrEdLiNAweyyAUlHczJJMO/cuVNq16mlsebIkUMgyjBzNnHCRLnooovSgZvXsEng999/lzx5c8tXR46mVLDZbI7j2SpWqiCYcT/5409y5pln2m5PJMEcXMmxY8cE9s0///yT4YaujJQqVSr4dMq+UzCnDC0rToDAuHF3y/Hvj8ujjzyWQC0s6mcCFMx+Ht0wffO7YP6///s/YwbtKXn88QWy+53dgo1RwemMM84QMQ5dceWVMnDgQOl+Y/e4XG4F18nviROgYM7KsHuPG2XFihWybdt2ueLyK7KeDPppzJjR+kE/ftwEbWZhVzAHVXHa17feelM++PBDGT5s+GnnEj1AwZwoQZZPBQEK5lRQ9VedFMz+Gk9bvfGzYP7ss89k4KCBcuDApzJ0yDC5Y+Ttmgn815511llaPENA//LLLwFWK1esTJm9ZuAi/BKVAAVzVkSI7texU0fp1auXPL5gYdaT//vp22+/FcxEYwb68KEvJE+ePJIMwYyZ53r160r//gNkzOgxlteO9yAFc7zkWC6VBCiYU0nXH3VTMPtjHGPqhV8F80cffSTNmjeVTh07yfTpMyR79uzSoGF9HRr4/PPP13axRQzbzHz58hkbAAsa//IbIYYLSN68eWPix8ypIUDBnJUrovjVqVNbr5LMmTNXBhjiFXbHZoLNcXsjsMkWI1z2uLvHyXhjYytSMgQz6kFglBo1r5Lly5ZL69ZtcCgpiYI5KRhZSZIJUDAnGagPq6Ng9uGgRuuSHwUzIprBb+xNvW6SCYZ9crCwiMaD591BgIL59HHAiknjJo20LTPMMlq3aSPnnXeefHbggKxYuUIww4zAJiuWr9AbW1FDsgQz6oIf6KHDhsiG9Rv1BkQcSzRRMCdKkOVTQYCCORVU/VUnBbO/xtNWb/wmmGGz3LBhA2NpuqJkgqs8W4PswUwUzNaDBndvEydOkGefe1bw3UwIQnLLLf20nTHMjcyUTMGMOiFwj351VN588y3R9v/mheL8pGCOExyLpZQABXNK8fqicgpmXwxjbJ3wm2BevHix4Tpugux5731twxkbDeZ2CwEK5sgjARMNeM34+eeftU/xCy64wHIlpWu3LlLo/EICM45kJET9g530ksVLpEWLaxKukoI5YYSsIAUEKJhTANVnVVIw+2xA7XTHT4IZs8uVq1wio+4cLb17947Y/Z27dsqiRQuNUMPrjE2BB3TeSpUqScMGDWWY4Q0AQSKYnCNAwewc+2hXnn3fbFm+fJns3LHLUqRHKx98noI5mAa/u4UABbNbRsK97aBgdu/YpKxlbhDMWDZG+uvP/wvbzw0bN0iTJo2lgSFo3zKWg60Swny3bdtGDh08LDlz5rTKIn/99ZcMHTpEFhhu5rB0XbduPbnIEMp//PmH4bJrm97cBC8a8+ctMEICd9F1mO1DGGGIBKbUE6BgTj3jeK/wxx9/SLnyZeWJRU9Is2bN461Gl6NgTggfC6eIAAVzisD6qFoKZh8Npt2u+EkwY+br448/imi73H9AP2NmeZEW3o8veNwI0lA6gAou5p555hm5ufdNetPU1i3bpFq1anrjFDJRMAdQpfxLLIIZ44Z/2NzJDZ4pHxp9ganTpuoXzJdfejmhC1IwJ4SPhVNEgII5RWB9VC0Fs48G025X/CSY4ae2dq1aMnz4CMvub922VerXryflypWTd3a/G3YWGsEfIL4RBRB+mTnDbIkzpQejCWZseHvkkYflecM/8ffffx/YgIaNaA0bNtQ+g2vWqJnSNmZy5T/88IOUKn2h7Nv7iRQvXjxuFBTMcaNjwRQSoGBOIVy/VG3M0jBlGIF7Jt+jjBlVR3t91tlnKvyLlNZvWK/zNGnaJGy2Vq1bKSOqX9jz6CeuM2/+vLB5cMJwz6XWrHlFf+Jns31XXnUFfmRKA4HffvtNc8dYhKb5C+YrwyRATZs+TR05ciTLaZRbvXqVuqrGlap3n5uVEZQmy3n+kDwCbdq2Uffdf19CFRoRDNX0GdMTqoOFSSDZBO6+e6waMLB/sqtlfT4iwBlmv7z5xNAPP80wIyIZgpLABtkqla9QTg4fPizv7/lALr74Yqsslsc4w2yJJaUHw80w33PPJNm0ebMsfmqxwDNEuPT3338L8q55dY288fqbRlCa/OGy8nicBLAK8+qrr8rbb70dZw3/uKmrXLmKjB41Ou46WJAEkk2AM8zJJuq/+iiY/TemUXvkJsG8ZPHTYdu7b99egd1kpE1/YQv/74QpfCNtLrSqwyxHG2YrOqk5ZiWYn3zySVny9BJ5dc2rOnKjnSvPmj1Ldu3apYN52MnPPPYJfPzxx3L5FdXl5I8/yTnnnGO/YFBOmmQEweBX1xCgYHbNULi2IRTMrh2a1DUsFYIZEcdKlCwucw3fr3369A1EHQvXC1OQhjsffNwUzOvWrTWi+P0T/jf4vNX3G7t3l35GUAfzOhTMVpTcdSxUMMNm+epaNWXzpi1SpEiR0xqLsbUaV8w0G6Y6MmTwYGnVqvVp5XggfgLwBZ0vf149JpdeemlcFVEwx4WNhVJMgII5xYB9UD0Fsw8GMdYupEIwG3ajkr9APt0UiJu7x94tvYww1eFMJUwhu379hrDN37NnjwwZMjgww/zNN9/I2rVrw+YPPnH55ZcLfCxfdHElQXjhT/btl7JlywZnifjdbB9nmCNiSurJUMGM1QWksXeNtbxOOMGMzNu2b5Mxo0cb98s6y7I8GD+BGjWvkjtuHymdOnWKqxIK5riwsVCKCVAwpxiwD6qnYPbBIMbahWQKZsOeX3bs3CHbt2+XKVMmy4kTJ3Rzzs1xruTMlVOmT58hPbr30P6Pg9tpClKrGUIznx0/zGbecJ/GJjBZsmSJdjvXo0ePcNn08Q7Xd5Ciho3shAkTpXiJYvoYBXNEZEk9GSqYIcxWLF8pCAFtlSIJZuSvWq2K4b/7bcvZaav6eMweAXimqVmzpiGa77BXICQXBXMIEP7oCgIUzK4YBlc3goLZ1cOTmsYlQzAjwt6/HvyXLFgwX2COUanSRfLuu+9o37jBrc6ePbsULFjQENNT5cZuNwaEc7oE89tvvyXXtLxG+1PetnW7nHnmmcHNC3x//fXXxPAAIMWKFZNP9x+QXLn/CYJCwRxAlPIvwYIZGznLlC0thw99Efa60QRzn769pVPHTkkJ5xy2ERl4Aqs+OXLkkJkzZ8XVewrmuLCxUIoJUDCnGLAPqqdg9sEgxtqFRAXzf/7ztgwdNlRfduxdd0vjxo0DM7K5cuUS2JAiIaAEbB4RJcxM5oxyugQzrgt71jfffEO6G3bNcx6cK3ny5DGboz8xQ96+/bVy7NgxmffYfB1i22wfBXMWVCn9IVgwFyhQ4B9zmgOfB65pjkngQJgv5j02atSdcsUVV8ZtOhCm+ow/DGHx3bHv9O9KPDAomOOhxjKpJkDBnGrC3q+fgtn7YxhzD+IVzDC/mDBhvNz/wP0ydeo0GTRwUGBz32PzHpNcOXMF2nL++ecF7Jfz5cuv8+XOnTsQZc8UP6a4CRQM+pIMkwxUhyAXLVtdY8yAv6uX59u2bStVq1aTX3/9VXbu3CkvvfSiYMZ85B0jZdq06boFZvsomIMGJMVfgwUzViXgEhAhz8MljFGk+6fvLX2kc6fOCYdyDnf9TD1u+KuV498fl8cenRcXAgrmuLCxUIoJUDCnGLAfqveRT2l2xSaBeAOXGJuwlOEJQ23ZusXmlcJnMwODhM+hlJ3AJZHKB58zZrnVjHtnqCpVKytDaAUCk5yTI7syIgGqF154Pjh74DwDl2TBktIfQgOXGBs21cmTJ8NeM1rgm5o1a6hDhw6FLc8T8RG47bZb1Z13joyvsFGKgUviRudIQWOVUK1atUohaM35hc7Tfxvx2f669uqtt97M0ibz77oX/24ycEmWoeQPFgQ4w+yHt54Y+xDPDPOKFSukX/9bZNPGzcbsbNUYr3h69q7duuiDy55ZfvrJ/x3Zu3ev3DN5khFw5BIZP2582HyxnjBEmHz11Ve6WOnSpS3DZZvtK12qtN64GOs1mD92AsEzzIULF5bBg2+TGkao63CbNSPNMMOjSpOmjeWjDz+OvSEsEZFAz1499J6FcN5LIhY2TnKGORoh95xHOPSu3boKzPCKFi0qTZo0kQL5C8jBQ4fkjTdelz///FNG3TlK71FBq/E7ieTFlTnOMOuh4/8iEKBgjgDHr6diFcwQl9UuraptFm+44Qa/YmG/HCYQKpjff/99MUKby84du+SMM844rXWRBPOYMaOliOHxZNjQYaeVy9QDBw8e1CZIJ386KdmM/8qUKS1XX11LsO8gltS6TWtp166d9O/XP5ZigbwUzAEUrv5iTLAJxhr7P+4ceaf2HoRN3GY6cOCAsaG6hY6k+tyzz0nbtu0omE04/PQlAQpmXw5r5E7FKpjhRip//nyyYP7jkSvmWRJIgECoYEZV/Qf0k+LFisv48acHrAknmHft3iU9e/aQd3a/q705JNAkXxR91QgVPm3aNDn1yympW6euFDJm75WxMffTA5/Kpk2bpGXLlobf9HFSvHhxW/2Fbfnzz70Q90oTBbMtzI5n+ve/X5brOlwn119/gyxfZr0SiJnnFte0kJrGStCmTZspmB0fNTYgpQQszDR4yMcEDA8Wqk2b1uqSyhcr2PVGS8aslMqZ61x15MiRaFl5ngQSIhBqw4zKTp06pWrVulrNvm+2rbqNjZ3q4ksuUrt377aV38+Z/vrrL2WYUal69eoqwxOMZVfxN8DYsKvKlS+rVq9eZZkn+KCxgVadmzOHrb8dweWCv9OGOZiGe7937tJZ2ytv37E9bCPxPDFmoJVhuqHz0IY5LCqe8AEBzjCn9HXEXZXDJnjE7SNk48aNxszbOdpjxP333R/RT+348ePks88/k6VPP+OuzrA1viNgNcOMTv7888/S7cZu2tPKDCMQTsWKFU/rO/I88ugj8uSTT8jixUvkqiuvOi1PJh2Aa0cwu8CIunn//Q9YmrQE8/jyyy+NmcLmMmXyFOnQ4frgU1m+L126VB41OGM2MZ4EN5OlSl8oxYoWM4Id7dCuJ+Oph2VST+DCUiUFNswnfvgx4A0p2lVpwxyNEM97moAPRD+7EIWAEX1PjRgxXM8M3dKvrzI2RClDnGivEXnz5VHtrm2n9u/fb1kLvEoYG/4sz/EgCSSLwBdffKEM0x89o4UZyK+//jpL1ZjJeuaZZ9Sll1VTV19dUw0bNlTdd/99asrUKXq3ftlyZbTnhh9//DFLuUz9AR5hut3Y1bL74byLYAwqVqqgDh8+bFkOBzFGo0ePCns+0olNmzepq2pcqfA3B6tWmPk2zGciFeE5BwngPoGnmliSV2eYDRejygiUpEpeWFI/G2PpM/NmDgFEZmPyKQHDt7BasGCBuqBokbAPJ2NDn+p1U0/9AMOD8KeffgrQMGbttIBBHiYSSAUBPKgMm3qVJ29uZYQmV8bOe9WyVUuVv0A+bYZhZTZkrJSoZcuWqQf+9YAyok2qrdu2KpgfMP1D4Pjx4wovEOFc8oUTzCj9xBNPqJtu7vVPRf/7P16wH3r4If23AWL3vffey3I+2g/G7LV2JVe4SCFlrAIow/e5du04cdJEVfC8Agov8Ua00GjV8HyaCRizxarSRRVjuqrXBDNexJ977lltkgRXeTA3Qp9ffvklw8z/75j6zsz+J0DB7NMx3rhpo4IvzJIXllDGMmrUX36IDszcFS9RTD311FMKvjeNXdAq+zln6+8+xcRuOUQAD6Nnn12thV3ValWy+HPFOTywMNsJe+Q1a15xqJXevOy9M+9VhilV2MZHEsx4ya5QsbzCqpSZUBfK3DlqpJ4hNo9H+4RNOny3FyiYXxkuAhWEPBLGF+MK22msJBghzNV55xdURkCkhGyjo7WH52MjgDGCgDRcx9ku6CXBbHjhUU2bNdX33tyH5qrvvvtOTxyNnzBe37N4ccfLORMJmAQomE0SPvnEbM6N3bvpX3w4Yscssd0EkYwZpmLFi+qNVkufWarfvO2WZz4SsEMAD6omTZsEHlTPPvusMnbkn1YUZkMQf/ny59VBEz755JPT8vDA6QSat2iusPkxXIokmFEGM75G9EtdHH8TDFtWLZhhRnH77SPUZ599Fq5qfRyC+Pnnn1OGNw09zhjv0DRx4gTVuEnjwGFsSqxTp7bejPzaa68GjvOLcwR697lZj7sRcTViIwzXj+qaltfo+yKcYEawG5j24d5wOmHjKl7g8DIwaNBAdezYsUCTYJ6IVSusquD3AHlwzwe/QAYy80vGEaBg9smQY2kb9pzm0nakh9rTTz+tmjVvFvahiqVcRPLCHwsjSIE6evSoTyixG04SsHpQQRTjIVuo8Plhm4b7D2YCuB9xX4YzNQhbQYadgDmGlSmLiSGaYIapi+mVxHAbpnLlzqnHyBRD+Axn5/zhhx/qvy1oA1YQwgmkjz76SNcZbKsOcY6/TVgVg3D59NNPzSbz0wECiOKHsUZEv3AJq5A5zj1HT7KYv8soExrpD6aB+B1v1KhhzCY94a4d63GYbcEkyGyH1UvlkiVLVO3atQJV79y1U9WtW0ebNaIPWIFhylwCFMweH3s8kEwbrNCl7XBdMzf8YanU8HMb1n4QM3oIh4oZvpmzZnIzRDigPB6RQKQH1YLHF+iHsp2NZNu2b9MrH0WLXaAWLVpEU6Ew1A0vFFnOBAvdSN/NQtgwCJtlpK5du2QJJY9ZZswOhwphuBUbOnSIXsrGizte4KOly6pfqh5+5OHTsmFVbOzYu7Qde+i+itMy80DKCGCMjcAl+vdz5Mg7FExsghNeaGC2gXvKvF/M+ytUMKMcTHIw0wyBHTqzG1xvKr6vW7dW4X4rXaaUWrly5Wn3r3lNbBrGPf7555+bh3RemDXiRQ79grkjU2YSoGD28LgH22DNmTsnJlszdNvc8IeNN/A4EG5WCjak+MPIzRAevlkcanqkBxVmirHRBpuLYD5kJ2EWEjb2sLWHzT1s75myEsBDPdKqEERNpISxAGPM/mJWH/kxRufkyK6Wr1iepShm3GCLXOSCwtoUDJ427KZp06ephg0bhM2O2UsjcEaWfRVhM/NESgjArrdmzRr6HsCLqhF0Rg0fPky1bddWC0vcGzBZMFMkwWzm2bNnjzbHgd06bIdTuWH30KFDqlPnTip3nlxqkrHJ9JdffjGbEfYT9xxMwUITXuTwuwFBDbNHmD8yZRYBCmYPjre5tI039YEDB+jNCol0w9zwBxdC4XYHQ0xjmRbeC7gZIhHamVHWzoMKs4d4kEGI2RXMJj2IbZTHwwteXujJxSSj9CY6K5twM0c0wYxVJdgUTzG8l8AcA6IZy9ibt2w2q9Cf6zesV5dfUT3uWTcIYrQlWlAkBMaAe0sslUcKopGlcfwhaQSw6Q8TMvXr19MrCBgzvOjiPjFt3c2LdenaWeFftBUjzF4jUA5cucFVJEx/kpkgjCcYm/dw/yIAC/4e2U1wX3nFlZeHzQ5zR3j0gfmj3dWUsJXxhKcIUDB7aLiCl7YxM2NlgxVvd4I3/GEDB2wMrZK5qx0PUcws0O+tFaXMPWb3QWXuSMfDNx7BbBKG/3DYu8LdGUwJYG6U6QkmWvBlHS5FEsz4/UbUP/w9gMkW8tYwZhixCcpMsF+GKIK7ygULErPrxCrBg3MeNKsO+wnRhnwQathkFmkGPWwlPOE6AjDduWfyPfrF+YaON6iDBw8m1EYI8eXLlyuYJVW//DKFFa5YE1yrQmhH85ABG2+YQeL3Bb9zoWZKsV6X+d1PgILZ/WOkW4hffPwBgA1WKncbY+Zu1Kg79R8w2CRiNtsqmbva8dB8/PHHuRnCClIGHYv1QdWrV8/Acn8igtlEDM8KCPcOV3SY9crkhxfEZbVLq4bdXBVJMGPFCu7d8DuNfA0a1A8sY+NlaNI9k7SQRiCkZHgOwLUQwMRuwosW2ggzMu6rsEvN/fnMlzAIVcwMnzp1KuZGv/POO9rEB6shjz72aEKmHhDvuNejJXP2HeYlcFFn5REmWh087x0CFMwuHytzaRt/SLDZxo4NVjK6hA1/sFPDHx9szLGyMzN3tZcoWVz7Z0UkL6bMI4CVDqx42H1QYec5xBiEMmxj4es7VpMMK8owG4IAw8woVkk+/vhjq2wZcQwv2BDNwTPD0Tr+yiv/1psqIQKwiQt7FvA7jpePVav+WT5PNlfYgeIeiMX2Gf0w7zm0EeYnmfyCFG1cvXR+3fp12swHM8SYKbYzrniJGjCwv95MOGTI4LCTPLFwwMbAylUusXV91Gu+yMFMEi7rwk00xdIG5nUfAQpm942JbhFmeuO1wUpml159dY3e8IeHL2wJrZK5qx32pFgK5mYIK0r+Owb/pZjtg3lOLA8qLLvCRy/8fcOGEeIZXhGSlYJ9qGKDUjJmQpPVtnTW8+STT2rPAHZeHODODb/jocJVb9Bq3CilM/d42cKLTqwJYgqrbVh1a9W6VdQl9FjrZ35nCJgbSfECjnsDM8dWyTTTMWd3P/jgA6tscR3DDDdslGONamm+yKHtcGFnNdEUV4NYyBUEKJhdMQynNwK/cBAic2zY951eOrlHMHMHLxqYuYNPznD+UbGJp2GjBnpjYHJbwNrcRCB0GTLWBxVmLREUoFatq/XS6w03XK8gzJKddu3epZf74cFh/oL5GWk2hFDj2MwLM6vQfQkYR5xHEBls5A22C8YS+aBbB2nTh1TbhkNYBPu+jfU+wKobVt/w92mEsa8i2LdzrHUxv3sIYJYWL+Lm5vbgACOYvDHthxEkx85MdKw9g51+PC/ywS9y8dpRx9pW5k8PAQrm9HCO+SpY+sRDDKYY+MUNFygg5ooTKICZu7639NGeCfAAxix4aMKMNJaymPxJ4IUXX9AzL5jVi+dBBZGG5VPYGqfDswUeXqYPVfhR3RLi6cGfo5S1V1gBgokFbIXBALbeNWpepWdm8bfl7bffylrA+Am+1/E3KB1jhL8rMMvBykMiCeXhUg/3FpN/COCF3AxhfcfIO7SpIGZ/EXY91Dd0MnuNwDtYCYtXjJsvcniGdzRsonft2pXM5rEuBwhQMDsA3c4lr21/rbYdhgN1bEDQfiSNTQh2AgLYqT+RPGb0I/jlxLJvcIJgxps/kz8JPL30aT3jU7hIIb2xJpbIV3jpa3FNC72rPFIkylSQg2iErf2KED/CqbiWm+vE7D5edINnk63ai1lpeAFIV0I471mzZyV8OYQ1hssvJn8RgGiFJwrse6hStUpazP4geOF9J1FXhtiHVL9BPVWkSGF/DUoG9oaC2aWDbgpms3nwUwl/lbD5xAaceN96zfoS/cT1YfdYp07tLHZaFMyJknV3eUS5Mj214FMvORobdSIl2APCpAezltcb5heI+OVEwu8PNrYxRSeAQEXpFMwLFy7UATKityxyDghm3GNM/iSAVQ94cElXQoCS4MAs8V73hReePy1ceLx1sZxzBCiYnWMf8cqhghmZsYEAS6vwRdq4SeOU2H1GbJSNkxTMNiB5OAsEM17akIKXHIODA8DsAhs/IU4RChf2+BCr4YLipAsHBbN90ukWzLBXha0q9kEkkiiYE6Hn/rLpFswQujBjwspMIomCORF67ilLweyescjSEivBbGbADN2txoYcPGDw6dSMndme4E8K5mAa/vseLJjN3mHJEYIZZkOYdTbDKMNOFvbKWNJ0ekUEbaVgNkcs+me6BTNahAA02GCYSKJgToSe+8umWzDDRhrRbRHVMpFEwZwIPfeUpWB2z1hkaUkkwWxm1C6fjJlmzDhj5tkNLmwomM3R8eenlWA2ewrfv7Bfh60wzHXcIJLNtuGTgjmYRuTvTghmbM6MFJI4cov/OUvBbIeSd/OkWzCDVM9ePfRKWSLUKJgToeeeshTM7hmLLC2xI5hRAKJk9epVqmy5MloQwNbZyUTB7CT91F87kmDG1fHShihbMMNo1KhhUsO3J9o7Cmb7BJ0QzGZIYgRNijdRMMdLzhvlnBDMCIyDiLaJTEhRMHvj/orWSgrmaIQcOm9XMJvNg/eMeybfo5fF4VUD3jWcSBTMTlBP3zWjCWazJaYPVfgSR3CTYB+qZp50f/pRMMOHMfxNx+KtxA53JwQz2tWpcyftLsxOG63yUDBbUfHPMScE8++//679kYcL3GWHLgWzHUruz0PB7NIxilUwm92A666u3bpo/83jx4/TgSHMc+n4pGBOB+V/roFgHAgf++OPP6btonYFs9mgYB+qc+bOUdgQ6FTym2CG9xFEScQ/uL9qb7iihCnMwQT9GWN8nBLM8H17WfVL475FKJjjRueJgk4IZoC5ufdNOgZBvJAomOMl565yFMzuGo9Aa+IVzGYFGzZu0PaAF5YqqZ555pm02ZNSMJsjkNpPmOKYYgm+SatdWk3hBQmuwFLpqztWwQwKaCuEEMyGYOOcTndlwaPgN8GMvi1eslhv/jXvBQR0wHfs7O/X/xa1ePHiuHzWOiWYce/C/aCdcN7BY2t+z1TBDG6JmAyY/Nz+6ZRgxnMNIbgR9TaeRMEcDzX3laFgdt+Y6BYlKphRCZZpMQuJ0MD169dTu3fvTnlvKZhTjjhwgR2G9wl4pDDFEswf8A/eU+B2cO5Dc8OGMQ9UEuOXeASzeQk81KdMnaIjBSK4RLqDl/hRMONlpKoRyMG8B4I/cW/kzZtHn6t0UUV1991j1dq1/9HuAM0xCffplGBGe3r07K4mGUGa4kmZKpjhoQZjf63haWTJkiVxvSTFwzvdZZwSzBDK2FwPe+Z4EgVzPNTcV4aC2X1joluUDMFsdu2HH35Qw4cP02IKs07ffvuteSrpnxTMSUcascLrOrTX4xoslMzvmG2EaILXihu736hDRMO2OJGUiGA2r/vFF18Y7emmQ6xDxCEKXzqSHwUzuGGTpSmYzLG3+kSI3py5ztX3S4OG9dVcw0QGM7lWM5NOCmaIknijhWaqYF60aGHgpQn3AkKNw1/6rYYfdPhDd5Pr0UR+150SzGjzLf366pe5eNpPwRwPNfeVyYYmCZPrCLS/rr00b95cBg0clLS2GQ9HGXH7CNm4cYNUKF9BOlx/fVx1N23aVGrXqm1Z9rXXXpU7R90p7+/5wPI8DyaXgDFjKK1atxJjNSFqxbly5RJjllfKG2OPe6txo0bSsGEjyZs3b9SyZoZNmzdJz5495PPPDpqH4v5EXcaLnBgvcDJj+r3StWtXyZYtW9z1RSto2MbKtKnTpFWr1lmyGi8VWX7OxB/++jPr/XNJ5Ytl7py50qRJ07TjMGzyxfBKIGNGj5EJEybGdP0H5zxo/H3bKKtXrY6pnB8yN2/RTNauXZulK2eccYbkyJFD/96XKVNGrruug7Rq2VJqGX+/s2fPniWvF35o2aql3HD9DdKnT5+0N9fY9CcdO3WUo199LTlz5ozp+i+++IIYq2uyc8eumMoxs7sIUDC7azwCrUmFYEblO3fukHr160munLkE14gnderYSVq0uMayqNcEM8WSSKhYshzY/x1MpmBGlUYELXniiSfk7nFjpWKFitKzV0+pW6depCaEPZcnTx4pXrx42POZLpjxMgKRZCwvS5UqVaRZ02ZSv359qVOnrhQoUCALNycEM+ZunnvuWRk5cqR8eeRLOeuss6RDhw5y74yZUqJEiSztC/dDJgvmLVu3SLNmTcXYWBsOjx5/cMa9UKNGDWnXtp20bNlKKlWqlNKX1bANivGEk4LZWAkTw12mfulY9syymFpOwRwTLvdmxgwzk/sIJNMkw+zdzl079caFNm1b612/5vFkfnrNJMNq6dqPx2DXjKVamGjAC8G06dMUNobG6mEjGSYZVvfbiRMnVIsWzfWyMkwH0NZY/0ULeuFHkwzsU7jo4kqB5fjQe9fcBFi+fDk1cuQdCn7a4e84Wkq3Scb777+vmjRtou1EYT5WrnxZHSYbtu7wADJ9xnQF917RUiImGaHsMuFnmOgE9zMaX6fPO2GSYcY6KFO2jP77ifvx+huujymMO00ynL5zknN92jAnh2PSa0m2YMaGP2xaMGZgtL9muMlJRfKaYE4Fg3TViT/kzZo3y/LAMx9+wQK5+uWXqdFjRusNK26wYbbigyhv8I6A9qfKxt6Pghm/z+aY4xMCGfarFStWUAMG9Nf2q7G+FGF80iWYg/11Dxo0UPvrHjp0iLr99hGB2+SNN15Xxoy3qlipQtRNVxTM/7gZDL4nwn3HCykEM16isVkYzxy3p3QL5nfffVc1btxIe/iZOGmC/v06evSoGjFiuH6RGzXqTnXy5Mmo2CiYoyLyRAYKZpcOUzIF8zvvvKPF8gP/ekD3FgFOKJhdOvAxNGv16tUBsQTXcpiZxcOxarWqavyE8WrNmlcUNnwmM6VihnnZsmVaLONlC+2nYLY3YnhQm2IIGzv79O2j/XJjtj7RlGrBjJnxx+Y9pgoXKaQaNmwQiAiJl8BSpS/Uqx/BfYCXgtn3zdb3SZu2bdT+/fuDTwe+JyKYA5V49MtTi58K/A0w74vgT9ODTu48uVXLlteoOcbLFlYdDbMoz/Q4XYL5u+++UwMG9tf3G56X8PAzePBtOrCOCQsbZtGeosUuUAsWLIgYPIiC2aTm7U8KZpeOX7IE83vvvafDFN93/32BnlIwB1B49guEhfkwhEeBQbcOUi+//FLSBXIooGQL5hUrVuiZGkTR+u233yiYQ4FH+Rmzr1999VWUXLGfTqVgDvYRj8A7uJfNtGPnDh2GGILaKmF2r9dNPfXM6Bhj1STUw0qmCma8JCF8s/k3AZ9YZTK9ojRq3FA98MD9auu2rZZeUaxYu/FYqgUzXswwsVTwvAKqS9fOCoHAkHCPIqYBXu6DE46/9NKLevXj8iuqq3Xr1gafDnynYA6g8PQXCmaXDl8yBPOePXv0DM6s2bOy9JKCOQsOz/6AKHqYCUlnSqZgXrVqlRbLr7/+mu4CBXM6RzLytVIhmOFOsNuNXSNGIR079i7tvity65TavGWzuqrGlTpAC2ZJzZSpghnjBZGMWWSsNsGe/957ZyisLjoZXdMcl2R9plIwY4ULpj/Y4xEqfPEiB7bhzC9gXz/D4A2zMiv7ZgrmZN0BztZDwews/7BXT1QwYxMNApbglzg0UTCHEuHPdgkkSzAj8h82zxheVQKXpmAOoHD8SzIFM8Z16rSpUQPWYLYO14XfYDsJs9CIYnowKBR4pgpmBATqe0tfHZgmdNbdDkuv5EmFYN63b5+CmQ/2+Dzy6COWM/DwF4880RJWe3r26qFn9jHzbCYKZpOEtz8pmF06fokI5g8//FAvz8ETglWiYLaiwmN2CCRDMBuuw7RYho11cKJgDqbh7PdkCGYIYAiF8hXKqSpVKyuY3URKH330kZ6hw30Qb8pUwRwvL6+VS6ZghhkLNpdi78dtRoCXSMFdcP8uXLjQNi7MSAdHMqVgto3O1RkpmF06PPEKZjx0sAkBMw7hEgVzODI8Ho1AooIZDw7MLFuFmKVgjkY/fecTFcx79+5VLa5poQoUzK8gYu2YBWAWunOXzgl1koI5IXyuL5wMwYyVifkL5usV2EaNGirs84mUMAMNTyKJmL9RMEci7J1zFMwuHat4BDN27RYrXlS7jYvULQrmSHR4LhKBRAQzlighlrE50SpRMFtRceZYooJ55qyZ2stALB5PYJMME4tEEgVzIvTcXzZRwQxxjM15pcuUUitXrsyy4TRc7++dea9q3KRxuNO2jlMw28Lk+kwUzC4dolgFM2Z0IJYnTpwQtUcUzFERMUMYAvEKZswoQywbEa/C1KzoJSMsmfSfSFQwx9riQ4cOaa8O8fiMDr4WBXMwDf99T1QwP/XUU2rSpInq1KlTtuHUrl1LzZk7x3Z+q4wUzFZUvHeMgtmlYxaLYP7kk08U/LCOHz/O1hszBbNLB90DzYpHMMNWGWL5+eefi9hDzjBHxJPWk+kWzBC6EEOJJgrmRAm6u3yigjnW3mETH7yPwMNLIomCORF67ilLweyescjSknbXtlMPPfxQlmNWP8A2EI7+sYsXm2zspFQL5ipVq9hpBvN4kECsghleMCCW4RUjWqJgjkYofefTLZgRvASBTBJNFMyJEnR3+XQL5kcfe1RdfXXNhKFQMCeM0BUVUDC7YhhOb8RFF1fSdlZw8h8tIey1XbGMulIlmD///HPVsFED7T4qWpt53psEYhHMa9f+R4tl+Fu2kyiY7VBKT55KF1WM6tUiWS355ptvdDjvZARg+ZcRdOK6Du2T1TTW4zIC6RbM2Lhq5Zo1ViwUzLESc2d+CmZ3jos6duyYnjWGyxs4+090SSi4m8kWzLAHgzkI2oroSNhVzORPAquNmWJ4PrATcht2y3hQ2E2pFMzYfAa/5IuXLLbbnIzOh0hnV9eqqbCRONUJYYXr1Kmd8GUQpAMTDQg+weRPAk2aNlHz5s1LS+fgdg5BYGDymGjC383Lql+WaDUs7zABCmaHByDa5eHLEZGD8uTNrSZPmaxj2kcrE+18sgQzZrURKhQmIdh5vH7D+miX5nmPE/j0009V5SqX6AiSWEIPF8I4nm6mQjDDZMkMdVv98urqwIED8TQt48rgJXjSPZNU/gL51PDhwxTEQ6pS6zatFbxqxJvg7mvAwP46nDHqwX3E5E8CZcqWVmXLllH/+c/bKe/g0qVLVbVLqyZ8HUQyRbuxz4jJ2wQomD0yfm+//Zb+5S1broxavXpVTCYYoV1MhmCGGUj9+vW0cJo3f15ShVNoe/mzuwjgRWnFihVJf1FKtmDGgwrivkLF8to7RyxmS+4i7lxrDh8+rFeNLihaRPuuTeYLEnoFrxg5zj0nrlk8vAw9OOdBHaHt5t43qaNHjzoHildOC4FffvlFmxTmzpNL3dDxBgUzwFSlTp07qQkTxsddPSYXsHkfezimz5ielMmuuBvDgkkhQMGcFIzpqeSvv/5Scx+aq847v6DC0hTCX8eTEhHMWNru1/8WdW7OHGrYsKG2lubjaSPLuJ8AZiHxQDFNcSCuEknJEszBDyrYH/7++++JNItlDQLr1q/Tq0hXXnWFgh17shL8LletFvsmYUQNRLlata5W27ZvS1ZzWI9HCOBvTdduXfTfHpgDxuImzk4Xf/31Vy103333XTvZs+T56aef1OjRo3R4bITJPnLkSJbz/MG7BCiYPTh2sG8eNGignpmJFtLTqnvxCObgpe3mLZorhN9mIgEQOHjwoOrYqaPCrA+W8TELFE9KVDCHPqiSsYksnn74tQxml2GGA1vwZO2rwCwePPzYTTCpua7Ddap4iWIKPnX/+9//2i3KfD4kADNAmAPCLBDmgclaRcL+i3Lly8ZUH+5F3JO4N2vWrKG2bN3iQ+KZ3SUKZg+PP6IWIbRnocLnq4cfeVhhBtpOilUwm0vb5SuU05u4kvVHyU5bmcc7BOAV49LLqml7PXjGiPU+iVcw80GV3nvk+++/V0OHDtGbPxPZV4FZPOzN2LlrZ9QO/Pzzz2rs2Lu0TTVm7/ByxEQCIIAXOZgFFi5SSJsJwlww0dT3lj7qjjtut13N9h3bFQKcFC12gVq0aBFf5GyT81ZGCmZvjddprYUoQYhPhPq8rPqlCqIlWrIrmIOXtqdNn8bNNNHA8rx+aXvk0Uf0S1zjxo3Unj17bFOJRzDzQWUbb9IzfvDBB6pZ82Z6Jg5+tmN9QUKodMwMRiqHc08//bQqeWEJBd/0+/fvT3o/WKE/CMBzD8wEYS4Is8FYwrIHE8DEE1ZRNm3eFHzY8jvs5mE/j2uOHHmHtsm3zMiDviBAweyLYVR6GRzL4VgWx/I4lsnDpWiCGbM3Y8aMpg1WOIA8HpXA8ePH1eDBt+kHya23DtJuEqMVikUw80EVjWZ6zkPQIoIjVp9i3VcBoTFkyOCwDcXMc926dbSbOATAYSIBOwRgLgizQbhGhIccmBPGkmDmAbOKSOY+2BcBjyz58udV8PJCV6qxEPZuXgpm746dZcvNXe3YiIUNWVabIcIJZvyBWLx4sXZ/U6PmVWrzls2W1+BBErBLABtTIaTOL3Se3rAayWzIjmDmg8ou+fTmw9hNnTZVm2ngRQlmG5ESRAxMyeD9JzQhkAmWxLG5OR7BE1off848AniRe/HFF7SHHHjKgVmh3TRixHC9R8gqP+qFfTMC+yAa5po1r1hl4zGfEqBg9unAmrvaseS5fPnyLMueVoJ5x84dtMHy6b3gdLfwkMGSPVwiwq+plUhCGyMJ5uAHFYJT8EHl9KhaX//LL79U3XvcqO1JYZoT7gUJ9wBeooJn//744w81+77ZWignsqRu3TIezUQC+JsCl25w7QYXbzAzjJTwdwab/eCFJTTt3btXtWrdStvR4z7F/cqUWQQomH083uaudmyGaNiwgUIkLKRgwfz111+r3n1upg2Wj+8Dt3QNm7ywSQxmQwjGE+pDNZxg5oPKLSNovx2w/7yqxpV6X8W6dWtPKwjvPjfd3CtwHC9AmLGrV6+u2rV7V+A4v5BAMgjAtRtcvOXMda42Nwy3aRRu5LCyEfwiB1/h2AAIO+U+fXsrPDOZMpMABXMGjLu5qx2/8IiIhV3mvXr1VLNmz9Jvy7TByoCbwEVdDPahOm7c3QGzoVDBzAeViwYtjqbghX3hwoXacwDcxx06dEjXAtMvbOKD7TPCDrdp20ZdWKqkgk9mzPAxkUCqCMDVG1y+IeoezA9D7ZQnTpyget3UU18e58z7F6HbsQrLlNkEKJgzaPzNXe14y8YsH5a2X3nl3xlEgF11E4ENGzeoK668PCCWMAN91tln6hkcPqjcNFKJtcV88UGYbeyrwIwz/v4g5DaOpSLwRGItZmk/E4AQhus3uICDKzh42jFT9csv065TsX8H+3ggrOGlJVRYm/n5mVkEsqG7wpQxBDDcw4YPFWOZW/798iuSPXv2jOk7O+o+AsaDSBY9sUiMmWapUL6CGFHbpGrVqmIE55Hp02ZIt27d5IwzznBfw9mimAkYngTk9jtulw0b1gvGvXXrNjLz3plSpkyZmOtiARJIlMDJkydl6tQp8tDDD0nXrl2l3y39pWmzJtK2bVt58cUXZfiw4TJ69BjJnTt3opdieZ8QoGD2yUCyGyTgZQInTpzQotkIQCCDBw+RSRMnSZ48ebzcJbbdggBe2I09E1KieAmZPHmKRQ4eIoH0EjDMgvSLnLERVQyTIP0iN2vmLClXrlx6G8KruZ4ABbPrh4gNJIHMIYAHFmeUM2e82VMScAsBrHJJtmwy+Z7JbmkS2+EyAhTMLhsQNocESIAESIAESIAESMBdBCiY3TUebA0JkAAJkAAJkAAJkIDLCFAwu2xA2BwSIAESIAESIAESIAF3EaBgdtd4sDUkQAIkQAIkQAIkQAIuI0DB7LIBYXNIgARIgARIgARIgATcRYCC2V3jwdaQAAmQAAmQAAmQAAm4jAAFs8sGhM0hARIgARIgARIgARJwFwEKZneNB1tDAiRAAiRAAiRAAiTgMgIUzC4bEDaHBEiABEiABEiABEjAXQQomN01HmwNCZAACZAACZAACZCAywhQMLtsQNgcEiABEiABEiABEiABdxGgYHbXeLA1JEACJEACJEACJEACLiNAweyyAWFzSIAESIAESIAESIAE3EWAgtld48HWkAAJkAAJkAAJkAAJuIwABbPLBoTNIQESIAESIAESIAEScBcBCmZ3jQdbQwIkQAIkQAIkQAIk4DIC/w+dKRTPOwbcTQAAAABJRU5ErkJggg== />"

Question 8

Draw the two enantiomers of -pinene (Figure E16.1) and assign the stereocenter(s) for each isomer as R or S.

Question 9

Are the ligands (DHQ)2PHAL and (DHQD)2PHAL enantiomers? Explain.



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

jaymee143

  • Sr. Member
  • ****
  • Posts: 341
Answer to Question 1

No, the outcome would be the same because the R- and S-carvone are enantiomers and will react in an identical fashion with the achiral Pd/C reagent.

Answer to Question 2


Answer to Question 3



Answer to Question 4



Answer to Question 5





lindiwe

  • Member
  • Posts: 577
Reply 2 on: Aug 23, 2018
Wow, this really help


juliaf

  • Member
  • Posts: 344
Reply 3 on: Yesterday
Great answer, keep it coming :)

 

Did you know?

Looking at the sun may not only cause headache and distort your vision temporarily, but it can also cause permanent eye damage. Any exposure to sunlight adds to the cumulative effects of ultraviolet (UV) radiation on your eyes. UV exposure has been linked to eye disorders such as macular degeneration, solar retinitis, and corneal dystrophies.

Did you know?

Dogs have been used in studies to detect various cancers in human subjects. They have been trained to sniff breath samples from humans that were collected by having them breathe into special tubes. These people included 55 lung cancer patients, 31 breast cancer patients, and 83 cancer-free patients. The dogs detected 54 of the 55 lung cancer patients as having cancer, detected 28 of the 31 breast cancer patients, and gave only three false-positive results (detecting cancer in people who didn't have it).

Did you know?

The oldest recorded age was 122. Madame Jeanne Calment was born in France in 1875 and died in 1997. She was a vegetarian and loved olive oil, port wine, and chocolate.

Did you know?

Every 10 seconds, a person in the United States goes to the emergency room complaining of head pain. About 1.2 million visits are for acute migraine attacks.

Did you know?

In inpatient settings, adverse drug events account for an estimated one in three of all hospital adverse events. They affect approximately 2 million hospital stays every year, and prolong hospital stays by between one and five days.

For a complete list of videos, visit our video library