This topic contains a solution. Click here to go to the answer

Author Question: In this experiment you used R-carvone. Would the outcome of the reaction be different if you used ... (Read 62 times)

lindiwe

  • Hero Member
  • *****
  • Posts: 577
In this experiment you used R-carvone. Would the outcome of the reaction be different if you used S-carvone? Explain your answer.

Question 2

Identify the product from the reaction shown below. The 1 H NMR data for the product is: (CDCl3)  0.65 (s, 3H), 1.28 (s, 3H), 1.632.55 (m, 6H), 4.42 (d, 1H), 4.82 (m, 1H), 5.00 (m, 1H) (Chapter 8). Note that hydroxyl hydrogens are sometimes not visible in 1 H NMR spectra (Section 8.1.4.b).

Question 3

jkNS84IBB8BMxoDVylg7Nj61VaGX29wF9u3b5+gL5OLRo2BK87Busb0T8OGDZTvjnAZKfqqMdBjgVUZCxctVFtzG2lW4DIaXk+DpcFijYF+NCLznKcSInPcWOoQIeAPMdBEw9pyrDE3ejjD496SJUuCtp8BEwNtFHw74mWp2aVgqSN8Y2ClyRhp6Y/xDNX+E4EQA63HcPgEEgoyanQP1qhZQ2BzMqsDEwOrEQ19fTyVEGoVDbcXUQj4MpVg1DH5oiG5VTMNGTqYpMFcoiylSpWi6dNnUOVKlROlBRIRjVMJgeDhS1lMCZV4qjjJl7OjWKpUqQhjmSImBcWXjacX5bTQSy/VouLFi/uk6ndU6OXE36kEo2ql91Lq178fyT00HMmPPPIIxcbGUtasWalggYL0aPLkjjRvJ+nTp6PFi5bQo48+apiVpxIMYYmoSCYGETVcLGyoEQiUGGjyyq2gadKkiST3LyBpPa+iMXecKVMmiouLo4IFC1LKlKm07F6PyZM/SnNmz1UPd6PMTAyMUDEft279OurYsQPJFSWGhUAUkBabJZZq1a5FNarXpBo1aqgXrWEBHyOtJAZa09JNuiIIcltuRXpADBo1akRFivhm85ImTRrq2KGjW0LExEBDPHKPTAwid+xY8hAgYBUx0ES9evUq9R/Qn44d+5rkLpaUPn16ql2rNpWJj9eymDrCeKzd6+0ILyijEAxiIL0MGjWV5OPw9Y2XpXQqpAheyZLPULFixWjY0GF+YxMMYgCDWDnFRGfPniHUjzBVGsP26N7DbzmNCjIxMEIlsuKYGETWeLG0IUbAamKAr0zpjY/OnDmtiAG607VLV5oxY6alPWNiYCmcpipLLtXx0gbBkffPh/87d0SaPLGaGGik4Natn0juxArbMiUJEwOTA5LEsjExSGIDzt31DQEriYFGCn6UtgYnT50k6d9fCRMpxMA35CI7N5ZGli5TiqSHQbcdiYmJIZAB6SZbquOLUN269Si+TDxVqVKFsmfP7racmQQriYFGCu7LKYTBQ4bIZYR1HSIwMXBAwSd6BEJv78gtMgKRg0AgqxL0vcSyt3r164mKFZ8Vp06ddLIS79mzhz6rJee8KiEwGOvVr6s2aNJb80uSKODNEhs3FS9RTAwdOkRt7f3zzz8H1phBaStWJaBa7O0hbSBElSqV1TbsBw8ddLr3At1kzEB0wasSjFCJrDherhhZ48XShhgBK4iBnhRgUyBpW+D0cGZiEOJB9dLcIukDAIQARABLFnEO75V9+/UV2JhJGu95qSHwZCuIgSspgFRMDAIfm6RQAxODpDDK3Ee/EQiUGLiSAgjCxMDv4QhJQezACDIwYEB/sWnTRvHjjz+GpF19I4ESAyNSgPqZGOhR5nN3CLCNgX5ehc8ZARcEArEx0GwK7ty+Tbt27aaMGTOq2qVnRJJ+/x0tsY2BAwpbnMiHpduleKESMBAbA71Nwc6du9TKF03uQx8fomrVqmqXvCrBgQSf6BFgYqBHg88ZARcE/CUG7kgBqmdi4AIyXyZCwF9i4IkUoBEmBomg5ggDBJgYGIDCUYyAhoA/xMATKUC9TAw0dPnoDgF/iIE3UoC2mBi4Q5zj9QgwMdCjweeMgAsCvhIDb6QA1TMxcAGZLxMh4CsxMEMK0AgTg0RQc4QBAkwMDEDhKEZAQ8AXYmCGFKBeJgYaunx0h4AvxMAsKUBbTAzcIc7xTgi4s0rkeEaAERDC7KoE+XB2+CnAkkRPgVcleEKH04CAtipBOljyCsjatWsFVlLcu3fPa95QrEqQG1CJjRvf8SoLZ7AvArxc0b5jw5LZAAE4szlx4oRXSQ4fOSxefOlF4Y0UoKJQEIPq1auJ0aNHe5WbM9gTAbkTp0iXPq14Xr7wv/rqK69CmiEQqCSYxOCnn34Sb731pkidJpVYsXKFV5k5g30RYGJg37FhyWyAwOM5HhM5c+UQq1atEmYfvt7EDiYxuHHjhmjX/nWl6Rg3bqw3UTjdxghACzV5ymSRJTaz6NipgwBZCDQEgxjIKTQhdw0VsVmziLavtxHff/99oGJy+TAjwMQgzAPAzdsbAbkpjli6dKkAQahUqaI4cvRIwAIHgxjgJTJp8iSRMVMGUb9BfXH+/PmA5eQK7IHAzZs3RfsO7RRBAFHAWPsbrCQGf//9t9i+fZvyCglX39CacYgOBJgYRMc4ci+CjMDdu3fFwIEDRJq0qdUXOb7M/Q1WEgM8nLdseU8UKlxQPPV0CbFv315/xeJyNkfg6BdHFTktXKSQGnOMva/BKmJw8uRJUfPFmuKJ3LnE6tWrLdOm+dofzh8cBJgYBAdXrjVKEbh06ZLABkXYTMffrzeriAEezjVq1hBx2bKKefPnCblbY5Sizt3SEMB0Fl7EeCFj7M3Yv2hlcQyUGNy6dUt06fKWyJAxvRg2bGhI9o3Qy8/noUGAiUFocOZWogwBbKZT8pmnRZGihZU61Zevt0CJwe3bt0XXrl1E2nRpRK9ePUUwdveLsuGKuu5gIyfs7ohNnvCixgvbTPCXGMCOYMbMGcqOoHmL5uLKlStmmuM8EYoAE4MIHTgWO/wI4At9wdsLRLbsceKlWi+J06dPmxLKX2Lw8OFDMXvObJE1LlbUrVdXnD171lR7nCl6Ebh8+bJo2qypemFjC2XcI56Cr8QAhHfHju3iyWJFRekypcSBgwc8Vc9pUYIAE4MoGUjuRvgQwBc7vtyxvMzMF7w/xAC2A1gfjt+ePbvD11lu2ZYIaBqsYsWfFLt373Iroy/E4NSpU2oJbvbHsolFixcJGOJySBoIMDFIGuPMvQwBAviCr1O3jsCDdOGihW4fpL4QgwsXLogGDRsoO4K58+Z6/SIMQTe5CZsiAA0WbE2gUcJ9aKRRMkMMMC2hTVX16dNb/PLLLzbtMYsVLASYGAQLWa43ySKwa9dOgS83d6pXM8QAjpL69++n5pB79uwh7ty5k2Tx5I77hgBsULp162pog+KJGGAaAtMR8EeAqapz58751jDnjhoEmBhEzVByR+yEgP4h26JlC3Ht2jWHeJ6IAdS1CQkJym9C7Tq1xZkzZxzl+IQR8AUBrFioXqO6soGBLQw0CkbEAHYEO3fuUGTW21SEL+1z3shFgIlB5I4dSx4BCGjLu+B4aOTIEeLBgwduXSLLDW5EfNkyoniJYh7niSOg2yyiTRDAS/+99zaLgoUKqFU0M+XKguQxjzp+gwcPEiCg8K5oxnjRJt1iMYKMAO+u6LSlFF8wAsFBQPocoN59etOlSxepX9/+1KNnd0dDbdu0pQf/ekD79++n4cNHUOc3OlNMTIwjnU8YgUARkN4SSS43pAkTxlP27NlJarDoseyP0e07t+n1tq/TqFGjKS4uLtBmuHyUIMDEIEoGkrthfwQkyadt27ZSv/79iATR1WtXKVu2bHT//n0COQApiI2NtX9HWMKIRUDuY0CDhwwiuSMjlS1bjhbMX0AlS5aM2P6w4MFBgIlBcHDlWhkBtwhIZzEk/RGQVONS6dKladnS5VSsWDG3+TmBEbAagaNHj1J8fDw98sgjVlfN9UUBAkwMomAQuQuRiYDcppayZs3KD+fIHD6WmhGIWgSYGETt0HLHGAFGgBFgBBgB3xFgYuA7ZlyCEWAEGAFGgBGIWgSYGETt0HLHGAFGgBFgBBgB3xFgYuA7ZlyCEWAEGAFGgBGIWgSYGETt0HLHGAFGgBFgBBgB3xFgYuA7ZlyCEWAEGAFGgBGIWgSYGETt0HLHGAFGgBFgBBgB3xFgYuA7ZlyCEWAEGAFGgBGIWgSYGETt0HLHGAFGgBFgBBgB3xFgYuA7ZlyCEWAEGAFGgBGIWgSYGETt0HLHGAFGgBFgBBgB3xFgYuA7ZlyCEWAEGAFGgBGIWgSYGETt0HLHGAFGgBFgBBgB3xFgYuA7ZlyCEWAEGAFGgBGIWgSYGETt0HLHGAFGgBFgBBgB3xFgYuA7ZlyCEWAEGAFGgBGIWgSYGETt0HLHGAFGgBFgBBgB3xH4f1doza9Yr8JJAAAAAElFTkSuQmCC />"

Question 4

Write rational arrow-pushing mechanisms leading to three additional products that might have been formed in the reaction of -pinene oxide with aqueous sulfuric acid that are different from the product you isolated and the decomposition product you identified.

Question 5

Write an arrow-pushing mechanism for the reaction shown in Equation E16.3.

Question 6

Write arrow-pushing mechanisms for the reactions shown in Equations E16.1 and E16.2.

Question 7

8vej/fFVImVYEYFW7dtlT59emvzjIEDB0nJkiWz1Hv8+HHDE8eTMm/eYzLz3ply3XUdspxP1g+rV6+WosWKhp01T9Z1WA8JkAAJJJMABXMyaXqkrkwSzFOnTpGJkybK2WefLX1695FRo0ZLiRIlPDJSmdXMP//8U3LlzmmsfnwnBQsWzKzOW/QWwrdChQry8Ud7Lc6GPxROMKPEqVOn5DFDED9lCONs2bIZJhplJV++vLJv3z6BR47OnTrLkCFDpXDhwuEvkOCZHj27S+XKVWS08bvIRAJuIfDKK/+WX3/9TTp27OiWJrEdLiNAweyyAUlHczJJMO/cuVNq16mlsebIkUMgyjBzNnHCRLnooovSgZvXsEng999/lzx5c8tXR46mVLDZbI7j2SpWqiCYcT/5409y5pln2m5PJMEcXMmxY8cE9s0///yT4YaujJQqVSr4dMq+UzCnDC0rToDAuHF3y/Hvj8ujjzyWQC0s6mcCFMx+Ht0wffO7YP6///s/YwbtKXn88QWy+53dgo1RwemMM84QMQ5dceWVMnDgQOl+Y/e4XG4F18nviROgYM7KsHuPG2XFihWybdt2ueLyK7KeDPppzJjR+kE/ftwEbWZhVzAHVXHa17feelM++PBDGT5s+GnnEj1AwZwoQZZPBQEK5lRQ9VedFMz+Gk9bvfGzYP7ss89k4KCBcuDApzJ0yDC5Y+Ttmgn815511llaPENA//LLLwFWK1esTJm9ZuAi/BKVAAVzVkSI7texU0fp1auXPL5gYdaT//vp22+/FcxEYwb68KEvJE+ePJIMwYyZ53r160r//gNkzOgxlteO9yAFc7zkWC6VBCiYU0nXH3VTMPtjHGPqhV8F80cffSTNmjeVTh07yfTpMyR79uzSoGF9HRr4/PPP13axRQzbzHz58hkbAAsa//IbIYYLSN68eWPix8ypIUDBnJUrovjVqVNbr5LMmTNXBhjiFXbHZoLNcXsjsMkWI1z2uLvHyXhjYytSMgQz6kFglBo1r5Lly5ZL69ZtcCgpiYI5KRhZSZIJUDAnGagPq6Ng9uGgRuuSHwUzIprBb+xNvW6SCYZ9crCwiMaD591BgIL59HHAiknjJo20LTPMMlq3aSPnnXeefHbggKxYuUIww4zAJiuWr9AbW1FDsgQz6oIf6KHDhsiG9Rv1BkQcSzRRMCdKkOVTQYCCORVU/VUnBbO/xtNWb/wmmGGz3LBhA2NpuqJkgqs8W4PswUwUzNaDBndvEydOkGefe1bw3UwIQnLLLf20nTHMjcyUTMGMOiFwj351VN588y3R9v/mheL8pGCOExyLpZQABXNK8fqicgpmXwxjbJ3wm2BevHix4Tpugux5731twxkbDeZ2CwEK5sgjARMNeM34+eeftU/xCy64wHIlpWu3LlLo/EICM45kJET9g530ksVLpEWLaxKukoI5YYSsIAUEKJhTANVnVVIw+2xA7XTHT4IZs8uVq1wio+4cLb17947Y/Z27dsqiRQuNUMPrjE2BB3TeSpUqScMGDWWY4Q0AQSKYnCNAwewc+2hXnn3fbFm+fJns3LHLUqRHKx98noI5mAa/u4UABbNbRsK97aBgdu/YpKxlbhDMWDZG+uvP/wvbzw0bN0iTJo2lgSFo3zKWg60Swny3bdtGDh08LDlz5rTKIn/99ZcMHTpEFhhu5rB0XbduPbnIEMp//PmH4bJrm97cBC8a8+ctMEICd9F1mO1DGGGIBKbUE6BgTj3jeK/wxx9/SLnyZeWJRU9Is2bN461Gl6NgTggfC6eIAAVzisD6qFoKZh8Npt2u+EkwY+br448/imi73H9AP2NmeZEW3o8veNwI0lA6gAou5p555hm5ufdNetPU1i3bpFq1anrjFDJRMAdQpfxLLIIZ44Z/2NzJDZ4pHxp9ganTpuoXzJdfejmhC1IwJ4SPhVNEgII5RWB9VC0Fs48G025X/CSY4ae2dq1aMnz4CMvub922VerXryflypWTd3a/G3YWGsEfIL4RBRB+mTnDbIkzpQejCWZseHvkkYflecM/8ffffx/YgIaNaA0bNtQ+g2vWqJnSNmZy5T/88IOUKn2h7Nv7iRQvXjxuFBTMcaNjwRQSoGBOIVy/VG3M0jBlGIF7Jt+jjBlVR3t91tlnKvyLlNZvWK/zNGnaJGy2Vq1bKSOqX9jz6CeuM2/+vLB5cMJwz6XWrHlFf+Jns31XXnUFfmRKA4HffvtNc8dYhKb5C+YrwyRATZs+TR05ciTLaZRbvXqVuqrGlap3n5uVEZQmy3n+kDwCbdq2Uffdf19CFRoRDNX0GdMTqoOFSSDZBO6+e6waMLB/sqtlfT4iwBlmv7z5xNAPP80wIyIZgpLABtkqla9QTg4fPizv7/lALr74Yqsslsc4w2yJJaUHw80w33PPJNm0ebMsfmqxwDNEuPT3338L8q55dY288fqbRlCa/OGy8nicBLAK8+qrr8rbb70dZw3/uKmrXLmKjB41Ou46WJAEkk2AM8zJJuq/+iiY/TemUXvkJsG8ZPHTYdu7b99egd1kpE1/YQv/74QpfCNtLrSqwyxHG2YrOqk5ZiWYn3zySVny9BJ5dc2rOnKjnSvPmj1Ldu3apYN52MnPPPYJfPzxx3L5FdXl5I8/yTnnnGO/YFBOmmQEweBX1xCgYHbNULi2IRTMrh2a1DUsFYIZEcdKlCwucw3fr3369A1EHQvXC1OQhjsffNwUzOvWrTWi+P0T/jf4vNX3G7t3l35GUAfzOhTMVpTcdSxUMMNm+epaNWXzpi1SpEiR0xqLsbUaV8w0G6Y6MmTwYGnVqvVp5XggfgLwBZ0vf149JpdeemlcFVEwx4WNhVJMgII5xYB9UD0Fsw8GMdYupEIwG3ajkr9APt0UiJu7x94tvYww1eFMJUwhu379hrDN37NnjwwZMjgww/zNN9/I2rVrw+YPPnH55ZcLfCxfdHElQXjhT/btl7JlywZnifjdbB9nmCNiSurJUMGM1QWksXeNtbxOOMGMzNu2b5Mxo0cb98s6y7I8GD+BGjWvkjtuHymdOnWKqxIK5riwsVCKCVAwpxiwD6qnYPbBIMbahWQKZsOeX3bs3CHbt2+XKVMmy4kTJ3Rzzs1xruTMlVOmT58hPbr30P6Pg9tpClKrGUIznx0/zGbecJ/GJjBZsmSJdjvXo0ePcNn08Q7Xd5Ciho3shAkTpXiJYvoYBXNEZEk9GSqYIcxWLF8pCAFtlSIJZuSvWq2K4b/7bcvZaav6eMweAXimqVmzpiGa77BXICQXBXMIEP7oCgIUzK4YBlc3goLZ1cOTmsYlQzAjwt6/HvyXLFgwX2COUanSRfLuu+9o37jBrc6ePbsULFjQENNT5cZuNwaEc7oE89tvvyXXtLxG+1PetnW7nHnmmcHNC3x//fXXxPAAIMWKFZNP9x+QXLn/CYJCwRxAlPIvwYIZGznLlC0thw99Efa60QRzn769pVPHTkkJ5xy2ERl4Aqs+OXLkkJkzZ8XVewrmuLCxUIoJUDCnGLAPqqdg9sEgxtqFRAXzf/7ztgwdNlRfduxdd0vjxo0DM7K5cuUS2JAiIaAEbB4RJcxM5oxyugQzrgt71jfffEO6G3bNcx6cK3ny5DGboz8xQ96+/bVy7NgxmffYfB1i22wfBXMWVCn9IVgwFyhQ4B9zmgOfB65pjkngQJgv5j02atSdcsUVV8ZtOhCm+ow/DGHx3bHv9O9KPDAomOOhxjKpJkDBnGrC3q+fgtn7YxhzD+IVzDC/mDBhvNz/wP0ydeo0GTRwUGBz32PzHpNcOXMF2nL++ecF7Jfz5cuv8+XOnTsQZc8UP6a4CRQM+pIMkwxUhyAXLVtdY8yAv6uX59u2bStVq1aTX3/9VXbu3CkvvfSiYMZ85B0jZdq06boFZvsomIMGJMVfgwUzViXgEhAhz8MljFGk+6fvLX2kc6fOCYdyDnf9TD1u+KuV498fl8cenRcXAgrmuLCxUIoJUDCnGLAfqveRT2l2xSaBeAOXGJuwlOEJQ23ZusXmlcJnMwODhM+hlJ3AJZHKB58zZrnVjHtnqCpVKytDaAUCk5yTI7syIgGqF154Pjh74DwDl2TBktIfQgOXGBs21cmTJ8NeM1rgm5o1a6hDhw6FLc8T8RG47bZb1Z13joyvsFGKgUviRudIQWOVUK1atUohaM35hc7Tfxvx2f669uqtt97M0ibz77oX/24ycEmWoeQPFgQ4w+yHt54Y+xDPDPOKFSukX/9bZNPGzcbsbNUYr3h69q7duuiDy55ZfvrJ/x3Zu3ev3DN5khFw5BIZP2582HyxnjBEmHz11Ve6WOnSpS3DZZvtK12qtN64GOs1mD92AsEzzIULF5bBg2+TGkao63CbNSPNMMOjSpOmjeWjDz+OvSEsEZFAz1499J6FcN5LIhY2TnKGORoh95xHOPSu3boKzPCKFi0qTZo0kQL5C8jBQ4fkjTdelz///FNG3TlK71FBq/E7ieTFlTnOMOuh4/8iEKBgjgDHr6diFcwQl9UuraptFm+44Qa/YmG/HCYQKpjff/99MUKby84du+SMM844rXWRBPOYMaOliOHxZNjQYaeVy9QDBw8e1CZIJ386KdmM/8qUKS1XX11LsO8gltS6TWtp166d9O/XP5ZigbwUzAEUrv5iTLAJxhr7P+4ceaf2HoRN3GY6cOCAsaG6hY6k+tyzz0nbtu0omE04/PQlAQpmXw5r5E7FKpjhRip//nyyYP7jkSvmWRJIgECoYEZV/Qf0k+LFisv48acHrAknmHft3iU9e/aQd3a/q705JNAkXxR91QgVPm3aNDn1yympW6euFDJm75WxMffTA5/Kpk2bpGXLlobf9HFSvHhxW/2Fbfnzz70Q90oTBbMtzI5n+ve/X5brOlwn119/gyxfZr0SiJnnFte0kJrGStCmTZspmB0fNTYgpQQszDR4yMcEDA8Wqk2b1uqSyhcr2PVGS8aslMqZ61x15MiRaFl5ngQSIhBqw4zKTp06pWrVulrNvm+2rbqNjZ3q4ksuUrt377aV38+Z/vrrL2WYUal69eoqwxOMZVfxN8DYsKvKlS+rVq9eZZkn+KCxgVadmzOHrb8dweWCv9OGOZiGe7937tJZ2ytv37E9bCPxPDFmoJVhuqHz0IY5LCqe8AEBzjCn9HXEXZXDJnjE7SNk48aNxszbOdpjxP333R/RT+348ePks88/k6VPP+OuzrA1viNgNcOMTv7888/S7cZu2tPKDCMQTsWKFU/rO/I88ugj8uSTT8jixUvkqiuvOi1PJh2Aa0cwu8CIunn//Q9YmrQE8/jyyy+NmcLmMmXyFOnQ4frgU1m+L126VB41OGM2MZ4EN5OlSl8oxYoWM4Id7dCuJ+Oph2VST+DCUiUFNswnfvgx4A0p2lVpwxyNEM97moAPRD+7EIWAEX1PjRgxXM8M3dKvrzI2RClDnGivEXnz5VHtrm2n9u/fb1kLvEoYG/4sz/EgCSSLwBdffKEM0x89o4UZyK+//jpL1ZjJeuaZZ9Sll1VTV19dUw0bNlTdd/99asrUKXq3ftlyZbTnhh9//DFLuUz9AR5hut3Y1bL74byLYAwqVqqgDh8+bFkOBzFGo0ePCns+0olNmzepq2pcqfA3B6tWmPk2zGciFeE5BwngPoGnmliSV2eYDRejygiUpEpeWFI/G2PpM/NmDgFEZmPyKQHDt7BasGCBuqBokbAPJ2NDn+p1U0/9AMOD8KeffgrQMGbttIBBHiYSSAUBPKgMm3qVJ29uZYQmV8bOe9WyVUuVv0A+bYZhZTZkrJSoZcuWqQf+9YAyok2qrdu2KpgfMP1D4Pjx4wovEOFc8oUTzCj9xBNPqJtu7vVPRf/7P16wH3r4If23AWL3vffey3I+2g/G7LV2JVe4SCFlrAIow/e5du04cdJEVfC8Agov8Ua00GjV8HyaCRizxarSRRVjuqrXBDNexJ977lltkgRXeTA3Qp9ffvklw8z/75j6zsz+J0DB7NMx3rhpo4IvzJIXllDGMmrUX36IDszcFS9RTD311FMKvjeNXdAq+zln6+8+xcRuOUQAD6Nnn12thV3ValWy+HPFOTywMNsJe+Q1a15xqJXevOy9M+9VhilV2MZHEsx4ya5QsbzCqpSZUBfK3DlqpJ4hNo9H+4RNOny3FyiYXxkuAhWEPBLGF+MK22msJBghzNV55xdURkCkhGyjo7WH52MjgDGCgDRcx9ku6CXBbHjhUU2bNdX33tyH5qrvvvtOTxyNnzBe37N4ccfLORMJmAQomE0SPvnEbM6N3bvpX3w4Yscssd0EkYwZpmLFi+qNVkufWarfvO2WZz4SsEMAD6omTZsEHlTPPvusMnbkn1YUZkMQf/ny59VBEz755JPT8vDA6QSat2iusPkxXIokmFEGM75G9EtdHH8TDFtWLZhhRnH77SPUZ599Fq5qfRyC+Pnnn1OGNw09zhjv0DRx4gTVuEnjwGFsSqxTp7bejPzaa68GjvOLcwR697lZj7sRcTViIwzXj+qaltfo+yKcYEawG5j24d5wOmHjKl7g8DIwaNBAdezYsUCTYJ6IVSusquD3AHlwzwe/QAYy80vGEaBg9smQY2kb9pzm0nakh9rTTz+tmjVvFvahiqVcRPLCHwsjSIE6evSoTyixG04SsHpQQRTjIVuo8Plhm4b7D2YCuB9xX4YzNQhbQYadgDmGlSmLiSGaYIapi+mVxHAbpnLlzqnHyBRD+Axn5/zhhx/qvy1oA1YQwgmkjz76SNcZbKsOcY6/TVgVg3D59NNPzSbz0wECiOKHsUZEv3AJq5A5zj1HT7KYv8soExrpD6aB+B1v1KhhzCY94a4d63GYbcEkyGyH1UvlkiVLVO3atQJV79y1U9WtW0ebNaIPWIFhylwCFMweH3s8kEwbrNCl7XBdMzf8YanU8HMb1n4QM3oIh4oZvpmzZnIzRDigPB6RQKQH1YLHF+iHsp2NZNu2b9MrH0WLXaAWLVpEU6Ew1A0vFFnOBAvdSN/NQtgwCJtlpK5du2QJJY9ZZswOhwphuBUbOnSIXsrGizte4KOly6pfqh5+5OHTsmFVbOzYu7Qde+i+itMy80DKCGCMjcAl+vdz5Mg7FExsghNeaGC2gXvKvF/M+ytUMKMcTHIw0wyBHTqzG1xvKr6vW7dW4X4rXaaUWrly5Wn3r3lNbBrGPf7555+bh3RemDXiRQ79grkjU2YSoGD28LgH22DNmTsnJlszdNvc8IeNN/A4EG5WCjak+MPIzRAevlkcanqkBxVmirHRBpuLYD5kJ2EWEjb2sLWHzT1s75myEsBDPdKqEERNpISxAGPM/mJWH/kxRufkyK6Wr1iepShm3GCLXOSCwtoUDJ427KZp06ephg0bhM2O2UsjcEaWfRVhM/NESgjArrdmzRr6HsCLqhF0Rg0fPky1bddWC0vcGzBZMFMkwWzm2bNnjzbHgd06bIdTuWH30KFDqlPnTip3nlxqkrHJ9JdffjGbEfYT9xxMwUITXuTwuwFBDbNHmD8yZRYBCmYPjre5tI039YEDB+jNCol0w9zwBxdC4XYHQ0xjmRbeC7gZIhHamVHWzoMKs4d4kEGI2RXMJj2IbZTHwwteXujJxSSj9CY6K5twM0c0wYxVJdgUTzG8l8AcA6IZy9ibt2w2q9Cf6zesV5dfUT3uWTcIYrQlWlAkBMaAe0sslUcKopGlcfwhaQSw6Q8TMvXr19MrCBgzvOjiPjFt3c2LdenaWeFftBUjzF4jUA5cucFVJEx/kpkgjCcYm/dw/yIAC/4e2U1wX3nFlZeHzQ5zR3j0gfmj3dWUsJXxhKcIUDB7aLiCl7YxM2NlgxVvd4I3/GEDB2wMrZK5qx0PUcws0O+tFaXMPWb3QWXuSMfDNx7BbBKG/3DYu8LdGUwJYG6U6QkmWvBlHS5FEsz4/UbUP/w9gMkW8tYwZhixCcpMsF+GKIK7ygULErPrxCrBg3MeNKsO+wnRhnwQathkFmkGPWwlPOE6AjDduWfyPfrF+YaON6iDBw8m1EYI8eXLlyuYJVW//DKFFa5YE1yrQmhH85ABG2+YQeL3Bb9zoWZKsV6X+d1PgILZ/WOkW4hffPwBgA1WKncbY+Zu1Kg79R8w2CRiNtsqmbva8dB8/PHHuRnCClIGHYv1QdWrV8/Acn8igtlEDM8KCPcOV3SY9crkhxfEZbVLq4bdXBVJMGPFCu7d8DuNfA0a1A8sY+NlaNI9k7SQRiCkZHgOwLUQwMRuwosW2ggzMu6rsEvN/fnMlzAIVcwMnzp1KuZGv/POO9rEB6shjz72aEKmHhDvuNejJXP2HeYlcFFn5REmWh087x0CFMwuHytzaRt/SLDZxo4NVjK6hA1/sFPDHx9szLGyMzN3tZcoWVz7Z0UkL6bMI4CVDqx42H1QYec5xBiEMmxj4es7VpMMK8owG4IAw8woVkk+/vhjq2wZcQwv2BDNwTPD0Tr+yiv/1psqIQKwiQt7FvA7jpePVav+WT5PNlfYgeIeiMX2Gf0w7zm0EeYnmfyCFG1cvXR+3fp12swHM8SYKbYzrniJGjCwv95MOGTI4LCTPLFwwMbAylUusXV91Gu+yMFMEi7rwk00xdIG5nUfAQpm942JbhFmeuO1wUpml159dY3e8IeHL2wJrZK5qx32pFgK5mYIK0r+Owb/pZjtg3lOLA8qLLvCRy/8fcOGEeIZXhGSlYJ9qGKDUjJmQpPVtnTW8+STT2rPAHZeHODODb/jocJVb9Bq3CilM/d42cKLTqwJYgqrbVh1a9W6VdQl9FjrZ35nCJgbSfECjnsDM8dWyTTTMWd3P/jgA6tscR3DDDdslGONamm+yKHtcGFnNdEUV4NYyBUEKJhdMQynNwK/cBAic2zY951eOrlHMHMHLxqYuYNPznD+UbGJp2GjBnpjYHJbwNrcRCB0GTLWBxVmLREUoFatq/XS6w03XK8gzJKddu3epZf74cFh/oL5GWk2hFDj2MwLM6vQfQkYR5xHEBls5A22C8YS+aBbB2nTh1TbhkNYBPu+jfU+wKobVt/w92mEsa8i2LdzrHUxv3sIYJYWL+Lm5vbgACOYvDHthxEkx85MdKw9g51+PC/ywS9y8dpRx9pW5k8PAQrm9HCO+SpY+sRDDKYY+MUNFygg5ooTKICZu7639NGeCfAAxix4aMKMNJaymPxJ4IUXX9AzL5jVi+dBBZGG5VPYGqfDswUeXqYPVfhR3RLi6cGfo5S1V1gBgokFbIXBALbeNWpepWdm8bfl7bffylrA+Am+1/E3KB1jhL8rMMvBykMiCeXhUg/3FpN/COCF3AxhfcfIO7SpIGZ/EXY91Dd0MnuNwDtYCYtXjJsvcniGdzRsonft2pXM5rEuBwhQMDsA3c4lr21/rbYdhgN1bEDQfiSNTQh2AgLYqT+RPGb0I/jlxLJvcIJgxps/kz8JPL30aT3jU7hIIb2xJpbIV3jpa3FNC72rPFIkylSQg2iErf2KED/CqbiWm+vE7D5edINnk63ai1lpeAFIV0I471mzZyV8OYQ1hssvJn8RgGiFJwrse6hStUpazP4geOF9J1FXhtiHVL9BPVWkSGF/DUoG9oaC2aWDbgpms3nwUwl/lbD5xAaceN96zfoS/cT1YfdYp07tLHZaFMyJknV3eUS5Mj214FMvORobdSIl2APCpAezltcb5heI+OVEwu8PNrYxRSeAQEXpFMwLFy7UATKityxyDghm3GNM/iSAVQ94cElXQoCS4MAs8V73hReePy1ceLx1sZxzBCiYnWMf8cqhghmZsYEAS6vwRdq4SeOU2H1GbJSNkxTMNiB5OAsEM17akIKXHIODA8DsAhs/IU4RChf2+BCr4YLipAsHBbN90ukWzLBXha0q9kEkkiiYE6Hn/rLpFswQujBjwspMIomCORF67ilLweyescjSEivBbGbADN2txoYcPGDw6dSMndme4E8K5mAa/vseLJjN3mHJEYIZZkOYdTbDKMNOFvbKWNJ0ekUEbaVgNkcs+me6BTNahAA02GCYSKJgToSe+8umWzDDRhrRbRHVMpFEwZwIPfeUpWB2z1hkaUkkwWxm1C6fjJlmzDhj5tkNLmwomM3R8eenlWA2ewrfv7Bfh60wzHXcIJLNtuGTgjmYRuTvTghmbM6MFJI4cov/OUvBbIeSd/OkWzCDVM9ePfRKWSLUKJgToeeeshTM7hmLLC2xI5hRAKJk9epVqmy5MloQwNbZyUTB7CT91F87kmDG1fHShihbMMNo1KhhUsO3J9o7Cmb7BJ0QzGZIYgRNijdRMMdLzhvlnBDMCIyDiLaJTEhRMHvj/orWSgrmaIQcOm9XMJvNg/eMeybfo5fF4VUD3jWcSBTMTlBP3zWjCWazJaYPVfgSR3CTYB+qZp50f/pRMMOHMfxNx+KtxA53JwQz2tWpcyftLsxOG63yUDBbUfHPMScE8++//679kYcL3GWHLgWzHUruz0PB7NIxilUwm92A666u3bpo/83jx4/TgSHMc+n4pGBOB+V/roFgHAgf++OPP6btonYFs9mgYB+qc+bOUdgQ6FTym2CG9xFEScQ/uL9qb7iihCnMwQT9GWN8nBLM8H17WfVL475FKJjjRueJgk4IZoC5ufdNOgZBvJAomOMl565yFMzuGo9Aa+IVzGYFGzZu0PaAF5YqqZ555pm02ZNSMJsjkNpPmOKYYgm+SatdWk3hBQmuwFLpqztWwQwKaCuEEMyGYOOcTndlwaPgN8GMvi1eslhv/jXvBQR0wHfs7O/X/xa1ePHiuHzWOiWYce/C/aCdcN7BY2t+z1TBDG6JmAyY/Nz+6ZRgxnMNIbgR9TaeRMEcDzX3laFgdt+Y6BYlKphRCZZpMQuJ0MD169dTu3fvTnlvKZhTjjhwgR2G9wl4pDDFEswf8A/eU+B2cO5Dc8OGMQ9UEuOXeASzeQk81KdMnaIjBSK4RLqDl/hRMONlpKoRyMG8B4I/cW/kzZtHn6t0UUV1991j1dq1/9HuAM0xCffplGBGe3r07K4mGUGa4kmZKpjhoQZjf63haWTJkiVxvSTFwzvdZZwSzBDK2FwPe+Z4EgVzPNTcV4aC2X1joluUDMFsdu2HH35Qw4cP02IKs07ffvuteSrpnxTMSUcascLrOrTX4xoslMzvmG2EaILXihu736hDRMO2OJGUiGA2r/vFF18Y7emmQ6xDxCEKXzqSHwUzuGGTpSmYzLG3+kSI3py5ztX3S4OG9dVcw0QGM7lWM5NOCmaIknijhWaqYF60aGHgpQn3AkKNw1/6rYYfdPhDd5Pr0UR+150SzGjzLf366pe5eNpPwRwPNfeVyYYmCZPrCLS/rr00b95cBg0clLS2GQ9HGXH7CNm4cYNUKF9BOlx/fVx1N23aVGrXqm1Z9rXXXpU7R90p7+/5wPI8DyaXgDFjKK1atxJjNSFqxbly5RJjllfKG2OPe6txo0bSsGEjyZs3b9SyZoZNmzdJz5495PPPDpqH4v5EXcaLnBgvcDJj+r3StWtXyZYtW9z1RSto2MbKtKnTpFWr1lmyGi8VWX7OxB/++jPr/XNJ5Ytl7py50qRJ07TjMGzyxfBKIGNGj5EJEybGdP0H5zxo/H3bKKtXrY6pnB8yN2/RTNauXZulK2eccYbkyJFD/96XKVNGrruug7Rq2VJqGX+/s2fPniWvF35o2aql3HD9DdKnT5+0N9fY9CcdO3WUo199LTlz5ozp+i+++IIYq2uyc8eumMoxs7sIUDC7azwCrUmFYEblO3fukHr160munLkE14gnderYSVq0uMayqNcEM8WSSKhYshzY/x1MpmBGlUYELXniiSfk7nFjpWKFitKzV0+pW6depCaEPZcnTx4pXrx42POZLpjxMgKRZCwvS5UqVaRZ02ZSv359qVOnrhQoUCALNycEM+ZunnvuWRk5cqR8eeRLOeuss6RDhw5y74yZUqJEiSztC/dDJgvmLVu3SLNmTcXYWBsOjx5/cMa9UKNGDWnXtp20bNlKKlWqlNKX1bANivGEk4LZWAkTw12mfulY9syymFpOwRwTLvdmxgwzk/sIJNMkw+zdzl079caFNm1b612/5vFkfnrNJMNq6dqPx2DXjKVamGjAC8G06dMUNobG6mEjGSYZVvfbiRMnVIsWzfWyMkwH0NZY/0ULeuFHkwzsU7jo4kqB5fjQe9fcBFi+fDk1cuQdCn7a4e84Wkq3Scb777+vmjRtou1EYT5WrnxZHSYbtu7wADJ9xnQF917RUiImGaHsMuFnmOgE9zMaX6fPO2GSYcY6KFO2jP77ifvx+huujymMO00ynL5zknN92jAnh2PSa0m2YMaGP2xaMGZgtL9muMlJRfKaYE4Fg3TViT/kzZo3y/LAMx9+wQK5+uWXqdFjRusNK26wYbbigyhv8I6A9qfKxt6Pghm/z+aY4xMCGfarFStWUAMG9Nf2q7G+FGF80iWYg/11Dxo0UPvrHjp0iLr99hGB2+SNN15Xxoy3qlipQtRNVxTM/7gZDL4nwn3HCykEM16isVkYzxy3p3QL5nfffVc1btxIe/iZOGmC/v06evSoGjFiuH6RGzXqTnXy5Mmo2CiYoyLyRAYKZpcOUzIF8zvvvKPF8gP/ekD3FgFOKJhdOvAxNGv16tUBsQTXcpiZxcOxarWqavyE8WrNmlcUNnwmM6VihnnZsmVaLONlC+2nYLY3YnhQm2IIGzv79O2j/XJjtj7RlGrBjJnxx+Y9pgoXKaQaNmwQiAiJl8BSpS/Uqx/BfYCXgtn3zdb3SZu2bdT+/fuDTwe+JyKYA5V49MtTi58K/A0w74vgT9ODTu48uVXLlteoOcbLFlYdDbMoz/Q4XYL5u+++UwMG9tf3G56X8PAzePBtOrCOCQsbZtGeosUuUAsWLIgYPIiC2aTm7U8KZpeOX7IE83vvvafDFN93/32BnlIwB1B49guEhfkwhEeBQbcOUi+//FLSBXIooGQL5hUrVuiZGkTR+u233yiYQ4FH+Rmzr1999VWUXLGfTqVgDvYRj8A7uJfNtGPnDh2GGILaKmF2r9dNPfXM6Bhj1STUw0qmCma8JCF8s/k3AZ9YZTK9ojRq3FA98MD9auu2rZZeUaxYu/FYqgUzXswwsVTwvAKqS9fOCoHAkHCPIqYBXu6DE46/9NKLevXj8iuqq3Xr1gafDnynYA6g8PQXCmaXDl8yBPOePXv0DM6s2bOy9JKCOQsOz/6AKHqYCUlnSqZgXrVqlRbLr7/+mu4CBXM6RzLytVIhmOFOsNuNXSNGIR079i7tvity65TavGWzuqrGlTpAC2ZJzZSpghnjBZGMWWSsNsGe/957ZyisLjoZXdMcl2R9plIwY4ULpj/Y4xEqfPEiB7bhzC9gXz/D4A2zMiv7ZgrmZN0BztZDwews/7BXT1QwYxMNApbglzg0UTCHEuHPdgkkSzAj8h82zxheVQKXpmAOoHD8SzIFM8Z16rSpUQPWYLYO14XfYDsJs9CIYnowKBR4pgpmBATqe0tfHZgmdNbdDkuv5EmFYN63b5+CmQ/2+Dzy6COWM/DwF4880RJWe3r26qFn9jHzbCYKZpOEtz8pmF06fokI5g8//FAvz8ETglWiYLaiwmN2CCRDMBuuw7RYho11cKJgDqbh7PdkCGYIYAiF8hXKqSpVKyuY3URKH330kZ6hw30Qb8pUwRwvL6+VS6ZghhkLNpdi78dtRoCXSMFdcP8uXLjQNi7MSAdHMqVgto3O1RkpmF06PPEKZjx0sAkBMw7hEgVzODI8Ho1AooIZDw7MLFuFmKVgjkY/fecTFcx79+5VLa5poQoUzK8gYu2YBWAWunOXzgl1koI5IXyuL5wMwYyVifkL5usV2EaNGirs84mUMAMNTyKJmL9RMEci7J1zFMwuHat4BDN27RYrXlS7jYvULQrmSHR4LhKBRAQzlighlrE50SpRMFtRceZYooJ55qyZ2stALB5PYJMME4tEEgVzIvTcXzZRwQxxjM15pcuUUitXrsyy4TRc7++dea9q3KRxuNO2jlMw28Lk+kwUzC4dolgFM2Z0IJYnTpwQtUcUzFERMUMYAvEKZswoQywbEa/C1KzoJSMsmfSfSFQwx9riQ4cOaa8O8fiMDr4WBXMwDf99T1QwP/XUU2rSpInq1KlTtuHUrl1LzZk7x3Z+q4wUzFZUvHeMgtmlYxaLYP7kk08U/LCOHz/O1hszBbNLB90DzYpHMMNWGWL5+eefi9hDzjBHxJPWk+kWzBC6EEOJJgrmRAm6u3yigjnW3mETH7yPwMNLIomCORF67ilLweyescjSknbXtlMPPfxQlmNWP8A2EI7+sYsXm2zspFQL5ipVq9hpBvN4kECsghleMCCW4RUjWqJgjkYofefTLZgRvASBTBJNFMyJEnR3+XQL5kcfe1RdfXXNhKFQMCeM0BUVUDC7YhhOb8RFF1fSdlZw8h8tIey1XbGMulIlmD///HPVsFED7T4qWpt53psEYhHMa9f+R4tl+Fu2kyiY7VBKT55KF1WM6tUiWS355ptvdDjvZARg+ZcRdOK6Du2T1TTW4zIC6RbM2Lhq5Zo1ViwUzLESc2d+CmZ3jos6duyYnjWGyxs4+090SSi4m8kWzLAHgzkI2oroSNhVzORPAquNmWJ4PrATcht2y3hQ2E2pFMzYfAa/5IuXLLbbnIzOh0hnV9eqqbCRONUJYYXr1Kmd8GUQpAMTDQg+weRPAk2aNlHz5s1LS+fgdg5BYGDymGjC383Lql+WaDUs7zABCmaHByDa5eHLEZGD8uTNrSZPmaxj2kcrE+18sgQzZrURKhQmIdh5vH7D+miX5nmPE/j0009V5SqX6AiSWEIPF8I4nm6mQjDDZMkMdVv98urqwIED8TQt48rgJXjSPZNU/gL51PDhwxTEQ6pS6zatFbxqxJvg7mvAwP46nDHqwX3E5E8CZcqWVmXLllH/+c/bKe/g0qVLVbVLqyZ8HUQyRbuxz4jJ2wQomD0yfm+//Zb+5S1broxavXpVTCYYoV1MhmCGGUj9+vW0cJo3f15ShVNoe/mzuwjgRWnFihVJf1FKtmDGgwrivkLF8to7RyxmS+4i7lxrDh8+rFeNLihaRPuuTeYLEnoFrxg5zj0nrlk8vAw9OOdBHaHt5t43qaNHjzoHildOC4FffvlFmxTmzpNL3dDxBgUzwFSlTp07qQkTxsddPSYXsHkfezimz5ielMmuuBvDgkkhQMGcFIzpqeSvv/5Scx+aq847v6DC0hTCX8eTEhHMWNru1/8WdW7OHGrYsKG2lubjaSPLuJ8AZiHxQDFNcSCuEknJEszBDyrYH/7++++JNItlDQLr1q/Tq0hXXnWFgh17shL8LletFvsmYUQNRLlata5W27ZvS1ZzWI9HCOBvTdduXfTfHpgDxuImzk4Xf/31Vy103333XTvZs+T56aef1OjRo3R4bITJPnLkSJbz/MG7BCiYPTh2sG8eNGignpmJFtLTqnvxCObgpe3mLZorhN9mIgEQOHjwoOrYqaPCrA+W8TELFE9KVDCHPqiSsYksnn74tQxml2GGA1vwZO2rwCwePPzYTTCpua7Ddap4iWIKPnX/+9//2i3KfD4kADNAmAPCLBDmgclaRcL+i3Lly8ZUH+5F3JO4N2vWrKG2bN3iQ+KZ3SUKZg+PP6IWIbRnocLnq4cfeVhhBtpOilUwm0vb5SuU05u4kvVHyU5bmcc7BOAV49LLqml7PXjGiPU+iVcw80GV3nvk+++/V0OHDtGbPxPZV4FZPOzN2LlrZ9QO/Pzzz2rs2Lu0TTVm7/ByxEQCIIAXOZgFFi5SSJsJwlww0dT3lj7qjjtut13N9h3bFQKcFC12gVq0aBFf5GyT81ZGCmZvjddprYUoQYhPhPq8rPqlCqIlWrIrmIOXtqdNn8bNNNHA8rx+aXvk0Uf0S1zjxo3Unj17bFOJRzDzQWUbb9IzfvDBB6pZ82Z6Jg5+tmN9QUKodMwMRiqHc08//bQqeWEJBd/0+/fvT3o/WKE/CMBzD8wEYS4Is8FYwrIHE8DEE1ZRNm3eFHzY8jvs5mE/j2uOHHmHtsm3zMiDviBAweyLYVR6GRzL4VgWx/I4lsnDpWiCGbM3Y8aMpg1WOIA8HpXA8ePH1eDBt+kHya23DtJuEqMVikUw80EVjWZ6zkPQIoIjVp9i3VcBoTFkyOCwDcXMc926dbSbOATAYSIBOwRgLgizQbhGhIccmBPGkmDmAbOKSOY+2BcBjyz58udV8PJCV6qxEPZuXgpm746dZcvNXe3YiIUNWVabIcIJZvyBWLx4sXZ/U6PmVWrzls2W1+BBErBLABtTIaTOL3Se3rAayWzIjmDmg8ou+fTmw9hNnTZVm2ngRQlmG5ESRAxMyeD9JzQhkAmWxLG5OR7BE1off848AniRe/HFF7SHHHjKgVmh3TRixHC9R8gqP+qFfTMC+yAa5po1r1hl4zGfEqBg9unAmrvaseS5fPnyLMueVoJ5x84dtMHy6b3gdLfwkMGSPVwiwq+plUhCGyMJ5uAHFYJT8EHl9KhaX//LL79U3XvcqO1JYZoT7gUJ9wBeooJn//744w81+77ZWignsqRu3TIezUQC+JsCl25w7QYXbzAzjJTwdwab/eCFJTTt3btXtWrdStvR4z7F/cqUWQQomH083uaudmyGaNiwgUIkLKRgwfz111+r3n1upg2Wj+8Dt3QNm7ywSQxmQwjGE+pDNZxg5oPKLSNovx2w/7yqxpV6X8W6dWtPKwjvPjfd3CtwHC9AmLGrV6+u2rV7V+A4v5BAMgjAtRtcvOXMda42Nwy3aRRu5LCyEfwiB1/h2AAIO+U+fXsrPDOZMpMABXMGjLu5qx2/8IiIhV3mvXr1VLNmz9Jvy7TByoCbwEVdDPahOm7c3QGzoVDBzAeViwYtjqbghX3hwoXacwDcxx06dEjXAtMvbOKD7TPCDrdp20ZdWKqkgk9mzPAxkUCqCMDVG1y+IeoezA9D7ZQnTpyget3UU18e58z7F6HbsQrLlNkEKJgzaPzNXe14y8YsH5a2X3nl3xlEgF11E4ENGzeoK668PCCWMAN91tln6hkcPqjcNFKJtcV88UGYbeyrwIwz/v4g5DaOpSLwRGItZmk/E4AQhus3uICDKzh42jFT9csv065TsX8H+3ggrOGlJVRYm/n5mVkEsqG7wpQxBDDcw4YPFWOZW/798iuSPXv2jOk7O+o+AsaDSBY9sUiMmWapUL6CGFHbpGrVqmIE55Hp02ZIt27d5IwzznBfw9mimAkYngTk9jtulw0b1gvGvXXrNjLz3plSpkyZmOtiARJIlMDJkydl6tQp8tDDD0nXrl2l3y39pWmzJtK2bVt58cUXZfiw4TJ69BjJnTt3opdieZ8QoGD2yUCyGyTgZQInTpzQotkIQCCDBw+RSRMnSZ48ebzcJbbdggBe2I09E1KieAmZPHmKRQ4eIoH0EjDMgvSLnLERVQyTIP0iN2vmLClXrlx6G8KruZ4ABbPrh4gNJIHMIYAHFmeUM2e82VMScAsBrHJJtmwy+Z7JbmkS2+EyAhTMLhsQNocESIAESIAESIAESMBdBCiY3TUebA0JkAAJkAAJkAAJkIDLCFAwu2xA2BwSIAESIAESIAESIAF3EaBgdtd4sDUkQAIkQAIkQAIkQAIuI0DB7LIBYXNIgARIgARIgARIgATcRYCC2V3jwdaQAAmQAAmQAAmQAAm4jAAFs8sGhM0hARIgARIgARIgARJwFwEKZneNB1tDAiRAAiRAAiRAAiTgMgIUzC4bEDaHBEiABEiABEiABEjAXQQomN01HmwNCZAACZAACZAACZCAywhQMLtsQNgcEiABEiABEiABEiABdxGgYHbXeLA1JEACJEACJEACJEACLiNAweyyAWFzSIAESIAESIAESIAE3EWAgtld48HWkAAJkAAJkAAJkAAJuIwABbPLBoTNIQESIAESIAESIAEScBcBCmZ3jQdbQwIkQAIkQAIkQAIk4DIC/w+dKRTPOwbcTQAAAABJRU5ErkJggg== />"

Question 8

Draw the two enantiomers of -pinene (Figure E16.1) and assign the stereocenter(s) for each isomer as R or S.

Question 9

Are the ligands (DHQ)2PHAL and (DHQD)2PHAL enantiomers? Explain.



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

jaymee143

  • Sr. Member
  • ****
  • Posts: 341
Answer to Question 1

No, the outcome would be the same because the R- and S-carvone are enantiomers and will react in an identical fashion with the achiral Pd/C reagent.

Answer to Question 2


Answer to Question 3



Answer to Question 4



Answer to Question 5





lindiwe

  • Member
  • Posts: 577
Reply 2 on: Aug 23, 2018
Wow, this really help


bimper21

  • Member
  • Posts: 309
Reply 3 on: Yesterday
:D TYSM

 

Did you know?

According to research, pregnant women tend to eat more if carrying a baby boy. Male fetuses may secrete a chemical that stimulates their mothers to step up her energy intake.

Did you know?

Approximately one in three babies in the United States is now delivered by cesarean section. The number of cesarean sections in the United States has risen 46% since 1996.

Did you know?

Every flu season is different, and even healthy people can get extremely sick from the flu, as well as spread it to others. The flu season can begin as early as October and last as late as May. Every person over six months of age should get an annual flu vaccine. The vaccine cannot cause you to get influenza, but in some seasons, may not be completely able to prevent you from acquiring influenza due to changes in causative viruses. The viruses in the flu shot are killed—there is no way they can give you the flu. Minor side effects include soreness, redness, or swelling where the shot was given. It is possible to develop a slight fever, and body aches, but these are simply signs that the body is responding to the vaccine and making itself ready to fight off the influenza virus should you come in contact with it.

Did you know?

Vampire bats have a natural anticoagulant in their saliva that permits continuous bleeding after they painlessly open a wound with their incisors. This capillary blood does not cause any significant blood loss to their victims.

Did you know?

Sildenafil (Viagra®) has two actions that may be of consequence in patients with heart disease. It can lower the blood pressure, and it can interact with nitrates. It should never be used in patients who are taking nitrates.

For a complete list of videos, visit our video library