This topic contains a solution. Click here to go to the answer

Author Question: When a student ran an asymmetric dihydroxylation reaction using cis-stilbene and the ligand ... (Read 80 times)

Pea0909berry

  • Hero Member
  • *****
  • Posts: 573
When a student ran an asymmetric dihydroxylation reaction using cis-stilbene and the ligand (DHQ)2PHAL, the hydrobenzoin showed an optical rotation of 0. Explain this result.

Question 2

M2c8hqt3W61fv56tkPaoEKIMbGKHp3d2u2frXW4R8tbXTelCZGZYm9VREfHkIlpTz4d6qGvy7j27Iz6EkAp6jO7jj7eowSL+qF3CZkbeVnvblQ9Wnqt/nd3jLR2THnf38Zhw94ynJ+XKl3VklABv50SHxSpUuKCtj6K3eswPHgE84UFoWghPPCWBe11SCY/FtZjHDx5mqsKVEDO4WPE7kn3ErQW1N7swwwS3PUQ58CfpdpMS9Lg+6ag3ujwFvT+UWTbWCWD3Udycuy4gdx3z1GlT1fUIAjISCdHxYJ+3QCHaPl8nQCIxhlD0qT01cH3DhkzRlvQT6Yd69XSE6SEX9BglZpiwUMwu9jx87bE7ZLjdO+DrhB9HuxXw+kvmLSa9I85cGIzAQiMwwjoCuwTftzuKFVXRgRAhKFx/iGHr7fHps889q2xOTkTajYd5wSOA2YqEXDnVucB3CO51c+fNNfCdwYJU7ND6+uuvG/e0vkf90KEMbux93ZApWJZiYRpc6uC7ardIzZd+cL3A0zzclCDyhj8J48ZfUoIe7SHqjZ6dR3kKen8os2w8EHjssUfV/yW7J26YAceNe8FCtxvhjuCG6wPc5bwF1tBPEOD+G49Je2pgciWaEiZxatas4ah9lVIBoIQ4mX7MUrZcGbnvvvvk/xYu8uht1aqVcvLUKRk9arTHsVBlbNnykaxYsUJmzZotqVOnTtSNGZNezP9cMmHCU/LkE08mOhZPH/DVMGPhyvETx+XzEyclZ86ciYZvzsTKhKfGi3nBSpQf6g84X5MmTpYCBQok6spchCnmphVSsUJF+eijLZIqVapEx/khvAS+/PJLeWTgI2K6oCTbcalSpWT+/BelTu06yZYNdgFzUkGaNmsiGTNklKVLl0n+/Pl97sJclCf9B/STNWvWyIYNG6X6ndV9rouCpkhX5ceNGy9jx4xNsq4ZEULMIAKqTJs2bWXF8hVJludBEognAuYMr7r+Z8+eXQ7sP+jxu75mzWoxJw5lzJNjZPz4CWFDY4YzFPPJgbzy8gLp2bOnR79mNCt1/Th+7IRf1x6PhqI4w9ypXhYsXCCHDx2REiVKeIzkm2++kUWvmtox9HI1Ud8ZMmaUQQMHSdq0aRPl44M5ISW9+/SS6dNnyKPDH/U4HomMsAh6DMzcsEkmTnxKduzYKdWqVovEWH3q04xDr24+brrpJjl65DNJnz69T/VitdDefXvFXOwhvXr1kpdefNnRwzQXJIr55EX27N4rlSpVcrSt8WScGflFVpo3zzt37pQjR4+IGc1GDb9cuXJSpUoV6dihozRu3ERuvvnmiGGBqO/6QFfZZ37fJ02aLL179ZY0adJ4tQc3u6ZrkIwZO0bMmRpzfKukTJkyXst7O2DOzKtD9evXl/r16nsrpvLNqDdiLpjDU1UpWaKkmiBJsgIPkkCcEVi0aJH0699Xnn32ORkyeEii0eP/TbfuD0q2rNlk9uwXEh0L5YfJUyara9+6tesEusI14dpobsRpaqNJYZ3QdLXBCe9xbTPDPsqd5oTI+nXrPUwyXZFMDfKQuvZ5HAxhRqZMmWTzpg89JjPNPW7UzWOWLFnk0MHDSf5WhNA8z6bNL3lYEjZsgksGYs87eUWz3qly5coVYeESDZ0gcgce8+/bv8+x5mpfNnO21LE20jBnE8CjcewonDtPLvWH79LSpUsNuA/BTQjRDMxZPgOPhuFqBpc87HWADcwimcwnIQY2NWEigXgnAG1RvfqdRrbsWQ3suOzkhHV8cPcrXqKYAZegeE8vvfyS0hnRcC0bOXKEsvX9999z1GkLiw+9HjFEMoSh3SYQukwkXxHiELtHeotJH0nbItk31j5gkSOil0D0OC3hIo7QV7iII9QoU3QSwHcLax8Qfz2SCfHwTbc7tbFT0TuKJPJdhx8sFr5C+GP9jxOS3lznuZnPOcEc2kACESWwY+cOpTP69usTUTuS63zhwoXKTruw3snVjcXjuMFBWF5s0IT9BZyaTp48qaKZYf2X01JYBT1+sBGDNdKx572dhM5dOnmNSe+tTrzk640TnHgzhpBXuFGcNXtWvJyOmBzn1atX1Xns3qObo8aHMHKINHPu3DlH2aWNwQ0IFsni/wBFvabC13gmYLrWqP8PTn2qjGtdrtwJanLAiZNkkfrubN22VZ03b1ERI2WXa7/YZwThifHU1mkpbD702tnHjMEqlatUkvbt20vXLl11dsRfjx8/rvxh+/frL3PmzI24PU4zAH7P5SuUE/i6zTX5OGVtgRmZRAYPGSwJCQly8MAhj4VQTuNIe5ImYM6qiXmDJtu2bfd7gWnSLTvr6CeffCzjxo2TDz7YZLvgyl9rzZsO6dyls7m4brXMmPG0DB823N8mWJ4EYoaA6R5nBUj4+ONPHBcg4dFHh8v8F+erRaDFixePGe7BGAjWOaxdu1ZOHP9c8uTJE4wmg9aGuceNtG7TWi2CxWJYp6WwC3oAaNy4kWCRg9PSLbfcIt+cvyBYJc/kSeCVV15WUUs8j0Q+59VFr8kDDzwQeUNoQYoImC5T6oe4RPESStS7LyJLUeMOqYybY3MDGcmQIYPs3rXHY6FcoGZC1Hfp2kUt1nVS5AWMx/Rnlo0bN8ru3bvkOzMalTmzpYaZLVtWtRCuRfMWcvvttwc6dNYjAQ8CpiuamBskmhNQ89QEokeBCGWcPn1KTLdeGTZ0mEybNj1CVji3WzP0r5QuU0ruueceeX7mLMcYiuu2ubO4XL9+Td1sZM6c2TG2aUMiIugRXmrLli2SkCtB2xHxVzM2reRKyCUVKlSIuC1ONmDVqlWSK1cuSXWTM0JCmo8r5crlK9K6dWsnY6NtfhAw9z0QM6a0xOpNmukaJuaukfLhhx9Jvbr1/CCTfFHXmXoniHo8+Zw8ZZIKEZw3b14zokcDyZsnrzWQS5cvya5du8TcGEiaNWsuY8eOjeknM9bA+SbkBMxNBiVf/rwCveG0lC5dOvn2wndy6623Os00R9gzYuQIef75mY6wxd0IhF7v1q2be7YjPkdE0Dti5DSCBEjAkQQgSuGW99NPP6mZEIQOi5WEmWrsldCsWTNZ+taykAzLdaZ++TvLpW3bdlY/5sIzeeedd2TFyhVy6NBBMTe1Ucewx0RVM5xwq1atpEvnLikWGpiBnzZ9mhkCdKLcdVdDGTlihNSv38Cyw/3N0aNH5YU5s1Vs5759+srMmc87JxScu7H8HDUE1q1bZ95MLpeKDgpj/NlnR6VOnbrSs4dnTPqoARtiQzHB+pAZphJhjZMKHxxiMxI1f/nyZbl08aLaL8WpT44p6BOdMn4gARJwAoHNmzdJi5YtZNTIUSouvBNsCoYNffr2NjevWirHPjsuBQsWDEaTtm1A1JsLy6R9u/aCTbuQtm3fJn379pHTp0/b1tGZOXLkkOnTZkj37t11ll+veDRtLmw2N3f7SBYuWGg+Ovf96Rn2vehqug3ly5tPVq5cJdmyZfOrbxYmARIggXglQEEfr2ee4yYBhxPAro5YhIQN3ooUKeJwa5M3b8/ePWLuw6F2n8Yu1OFMWGg8aPBAgRsC1gp16NBBWjRvqVwMsaHXmTOnzQW6H8jSZUstF4UnRj8hTz31342v/LEVG/usX79eNn2wWUqXLu1PVVUWPrTNmjc1b3gKyep3V3Ohu98EWYEESCAeCVDQx+NZ55hJIAoImBsmSbnyZaVFi5YC15FoTljrUbduHfnmwjeCLd4zmluKhythZr5582ZKzGNb9TeWvCkVK1a07d7cc0Luv/8+2blrpzq+6P9elQcffNC2rF3ma6+9ZkadGiS7du4OSMzrNhGlpGKlCjLUXDiIGwsmEiABEiCBpAlQ0CfNh0dJgAQiSOCppyaYiyonywcbP1C+2BE0JUVdL168WMwdl+X11xZLly5dUtSWP5VxI1G9xp2mv/whFUVm3979kjVr1iSbuH79utzVsIEcPnxYsLU5wsfBxz65ZMbqV9u3I3IH/OBTmlavflceePABOfn5KcmXL19Km2N9EiABEohpAhT0MX16OTgSiG4Cv/32m5QpW1oJS4hRuItEW7p27ZoKw1a4UGH59NOtYY2JvWXLR9K0WVOFzJ+bCXO3TTMiTX0VXnLKlKky4vERyWIfN26srDbj4B86eDgooTixsLZmzRpSr149efrpZ5LtnwVIgARIIJ4JUNDH89nn2EkgCgisWLHC3DSpk7zwwhwZ0H9AFFic2MRRo0aKuYOr7NixU6qZkWTCmR5+eIAsWLhARa1BmDyEy/M11a9fTyDs4Z6zd8++ZKsVL1FMBg8eIgMfGZhsWV8LYAHx0GFD5OuvzgdlAy5f+2U5EiABEog2AhT00XbGaC8JxBkBzNQ2adpEjhw5LJ+fOBlVkU9OnjypfME7d+4s8EcPd6pRo7rsP7BfGjVqLBv+s8Gv7seOHSPTZ0wXLJq9cvmq2gjLWwNnzpxR4Ti/OPulFChQwFsxv/PxdCMhV07ZunVb2G+G/DaWFUiABEggggQo6CMIn12TAAn4RgBxyqtWq6Jm6GfNmu1bpQiXwo3I3ffcLdvNRamR2sY8e45sAlHcv19/mTNnrl9Eli1bJg92++/uywf2H5Ry5cp5rQ9/9169e8nlS1e8lgn0ABbHDnxkkPTu3TvQJliPBEiABGKeAAV9zJ9iDpAEYoPA0KFD5MWXXpT9+w5I2bJlHT+o995bL23btZXJk6eYGyuNjIi9qdP8d83B4489LlOnTvPLhnffXSX3mRFvkJJzF3rp5ZcEPvQ//nAxUR+6/0SZPnz468bfVqlmZoSeOnXqyNgxY608viEBEiABEkhMgII+MQ9+IgEScCiBq1evqigqFSpUlI0bNoZ1cam/SBDvvULF8vLPP/+oOPr++K7721dS5bWgDkTQr1q1Uu7vdL9qfteu3VKlchWvXcHXfcjQwSER9HXq1Jb2Ztz84cOGe+2fB0iABEgg3glQ0Mf7N4DjJ4EoIoAFnljouXLFSmnduo1jLccurU8++YSKn9+2bbuI2VmyVAk5e/asuZFUR1m2dJlfdkyaPEkmTvzvBlhXr/wkmTJl8lofTyN69OyhBH2qVKm8lgvkQIHb88uzzzxnxsf/781FIG2wDgmQAAnEOgEK+lg/wxwfCcQQAcx416xVQ3766Sc18502bVrHjQ6bIpUqXVKqVbvT3C11U0SfJPTo2V3efPNNyZ8/v2DBqj9iu9XdrczdYzcKNqP67OixJDmfO3dOihW/Q5VD+WClS5cuSZ68uZWbVfny5YPVLNshARIggZgjQEEfc6eUAyKB2Cawfcd2FSPd1/jo4abRvUc3gQsK4uZHWoSuW7fWdFdprxCsXbNW7brrC48vvvhCxc7HDRRi0IN1cqlwkULy6KOPBTVsJRbmDn90mFz45lu/bkaSs5XHSYAESCDWCFDQx9oZ5XhIIA4IQDSvWbMmYtFjvCFG3HbEb+/Xt5/MnTvPW7Gw5f/9999SomRx+frrr6VkyZKy9dNtcttttyXZP3aX7XhvR8HNQOrUqdWse5EiRZKsg4Nwz1m+YrkcOXw0aOIbC2LvKFpU5s2bn2z/LEACJEAC8UyAgj6ezz7HTgJRSgBuLUXvKCJp0qRxVFz6H3/8Ue1me/bMF5IjRw5H0N24cYPc0/oetesrFrauXbtOEhISbG3DYt7efXoJZsaR/FlMe/HiRcHmUvPnvSiIu5/StHnzJmndprUgZCZuRphIgARIgAS8E6Cg986GR0iABBxMYPjw4bJn7x4pXLiQY6w8fvy4KWa7yGOm64mT0tx5c2XYsKHKJNxoDBo0WFo0byEVKlSQm266SbAx1CZTQM+fP08+//xzVa5Jk6ayft16ddzXscyZO0cmTBgv27Zul1KlSvlazaPc5cuX1b4Dne7vJNOmTfc4zgwSIAESIIHEBCjoE/PgJxIgARKISQKYdUdoyStXkt786ZZbbpEhg4coIe3PIlpAg4sPYtefPXvG3Jl2o+TJk8dvlr/88ovcbS7I/euvv+Tjjz9Rbj9+N8IKJEACJBBnBCjo4+yEc7gkQALxSwBuMdicC/7xhw4dSgSiUKFC0qplK+nff0CKXFz++OMPade+nRw+fEhWr14jd5rRfnxNJ0+elM5dOim3pY0bPpCsWbP6WpXlSIAESCCuCVDQx/Xp5+BJgATilQBmwrFYFgk+9cH0+b9x44baOXb2C7OlY8eOMmrkaClTpoxX1BcuXDAXvs6VWbNnSdu2bZUffnKLd702xgMkQAIkEIcEKOjj8KRzyCRAAiQQDgK79+w2feonCBa4Vq1SVerWrWvGqy8uCTlzql10Dxw4IDt27BBEB8JxlG3cuEk4TGMfJEACJBBTBCjoY+p0cjAkQAIk4DwCp0+flrWmm8/u3bvlm/Pn5fw35yVLlixSrFhxqVSxojRv0cIv1xznjZAWkQAJkEBkCVDQR5Y/eycBEiABEiABEiABEiCBFBGgoE8RPlYmARIgARIgARIgARIggcgSoKCPLH/2TgIkQAIkQAIkQAIkQAKKADYozJc/r3q/ZPEb0qlTJ5/IUND7hImFSIAESIAESIAESIAESCC0BCjoQ8uXrZMACZAACZAACZAACZBASAlQ0IcULxsnARIgARIgARIgARIggdASoKAPLV+2TgIkQAIkQAIkQAIkQAJBI/Drr7/K8RPHxTAMKVe2nKRPn14CFfRohIkESIAESIAESIAEQkrg/PnzxujRo4zatWsZ2bJnNW5JfbP6K16imNG9Rzdj1+5dfvXfvkN7A39btnxkfPfdd8awYUONPHlzqzbz5stjDBz4iHHt2jXV5uXLl43HH3/MyF8gnzqeK3eCcX+n+w1zjwTbPg8ePGj06dvbKHpHEcvOArfnNx54sKvxyaefeNT5999/jffeW2907tLJKFS4YKI6HTp2MN58803jn3/+8aiHjJ27dhrduj9oFCla2KqH98jDsUBSUm3u2bvHo8m///7beOedd4xGjRtZ5wbnCJ+Rj+PuKRT827VvZ+Bv/fp1xrlz5xSD3HlyKS54BZNDhw65m2J9DmQc+ns4cdJEqx33NxUqllc2dOp8v3VIj//tt982rl+/bkyYMN4oU7a0dQ5r1KhuPPvcs7bn/dSpU+q7mz5DOqt85iy3GkOHDjHOnj1r5S1dutTqL7k3FPTJEeJxEiABEiABEiCBFBHYtOkDSyhCQN1esIBRrPgdBkSMFlRp0qZWwtfXjnQ9CClXMazz8Vq3bh3jq6++MsqVL2v143ocAh/Hdfrrr7+Mxx571Eid5harfOEihZStuh7sfOSRhxOJ3AED+lvl06ZLo8pjfLoOXlu2amn88ccfuivjl19+MXo+1CNRGfSFP9d6/Qf0U2Wtikm8QZtdunZOVN+9Tdg3cuQIq5UffvjBaNiooVUH58T93DRv0dxAOdekbQwmf93m4MGDrJuznAk5jFKlS1r2Zbo1o/HKgldcTVHvUzoOfwW9thUivFatmpZ9Ol+/4gbFNeHGFWPC8Sy3ZVY3MLhR0Dejrt9VCnpXcnxPAiRAAiRAAiQQMQIXL140sma7TQmYu+5qoGbFMaONdOPGDWPhwoVGhozp1XHMgtvNBtsZrwVTxkwZjIqVKhhr1qxWgvnChQtGj57dLYEFoYQ/zDRfuXLFuHr1qvHczOcs0Y6Ze50GDRqo6kG0Q1TiqYJOmOWfPGWykS59WlUGM/hImE3WtgwZMtjAeHVCf5jV18dnvzBbHcL4MZuv81Hmyy+/1NXUe9d6GI8vSbeJGxI8sfj222+taseOHTMaNKhv9blkyRI1e6zFPM7B/Bfnq9lmVMKsMz7rc9OiZQtDnzcc17YHk79uE68Q7gsWLLBmuDFj36RpE9UvzsH+/fthhkp4+pHScQQq6DF+fG9fevklA98RfKc3btxgVKla2WK0du0aZedPP/2kymJ8d1avluj8mO43Rq/eD1l1UIaC/n8nmC8kQAIkQAIkQAKRJTBl6hQlUuBecPLkSVtjIIS1mDtz5oxtGfdMXR4zyu6zx7///ruRI2d21SbEuZ3ryt333K2OV69+p2oaAlHPzGvh7d4nPkNkoW+U/fjjLcZDvXqqzxC+mOF3TxB4+gkCXFiQNm/epOqgHcz2e0u9+/Sy+oJrUVIJx7X94GmXcLOhZ4Ix6/3uu6ssO5YvX25XxXjjjTesMuvWrbXKBJs/GtZt4hU3eu7pt99+M8qWK6PK3dP6HutwMMYRqKDHzcWJEycsW/QbfI/1eDCLjwTRjzzcBHz99de6qPWKm1kIfV2Pgt5CwzckQAIkQAIkQAKRJABhAx/yl1952asZWuhAyBw+fNhrOdcDWvRA9NolPRtduUolu8PGE0+MVsIJLg5I2m2mfIVyST4lwCy1FpVwmYEg17bMmTvHti/46mPGW/vRwxccdSAGzUWQtnWQiWP6iQB8/pNKus3bsmYxMBPsLWHWe8SIx4158+cZHe/tqOyA77fr7LtrXeRr33BX9xE95mDxR5+6zdJlSnk9B2CMcriB0mskwAZ5KRlHoIIeTy68pYKFbld2ad/7xk0aq8+uNyPudV999VVVBuOhoHenw88kQAIkQAIkQAKOIgB3FPgTQ8y7+iD7K+hnPD3Ddlxa0Pfr39f2uLug1yIdi1g/3fppkn9t2raxBOSBAwcstxQtKuG6s3r1u17FOhYCoyxckJJLKIOyEIdJJX/a1O3oRb+PPjpcZ9m+4jhsgGuJTviMv2DxR7u6zYcfHqC78Xjdt3+fVW7b9m3qeDDGEaigHzt2jIeNOsN9Ma1e4Dtu3FhdxOMVC7I1Bwp6DzzMIAESIAESIAESiCQBuIRAqNWsWcNIyJXTwOJMLVxcX/0V9IsXL7Ydlr+C3tUGX99jlhgJLh/alcW1LtyMEO3kySefSORupMvAZzq55OpXnVRZf9rU7eg6L8x5QWfZvuK4LqsL6M/B4o92dZtJuTzBvUqX04JXf07JOAIV9P7U03b6Oz7NPKlXRrlJig6PkQAJkAAJkAAJpIgAIq+0btPaEmHw84b4bdjwLhWmD6Js6rSp1vFIC3q43MCVxpc/vTAWgOC3j1l5hMu8o1hRy59dizi8ovyff/5pjZWC/mYVgUh/wTQrfwWvrkdBr0nylQRIgARIgARIgASCSAD+2hBcmK1+ftbzicJE6m5S4kMfrBlixKaHnQj7GIyECDmwDf7diNiiRSdikyNsJz4jHGRyCTc+KIs6SSVtf3JtYuEu3J2QdFx+uB8llbTLDcrrpMcTLP5oV7eZlBsLXJx0ud17ditzgjGOpGba9aJm7QvvamtS9dxdbkqWKqFsx3oNb8nVpUg/gfBW1jWfM/SuNPieBEiABEiABEggqAS03zDCQHpLekEqhFqkZuh11Bv4ibvGi7ezGb7b2KDp0qVLxtZtW9WiX7jdeEuIaKJDd9avX8/QPvhYwKoXdtrVxTGUAZemzZraFbHyIORRDryTsh8RduDuhChAOrQi1jAklfQaB9xc6KRFdSgEPdylvCXM3qPvWzNnUk9FUA4LU5GXknHgyYpdwqZleqwpFfT6e44IQ97Csz7z7DNWfxT0dmeEeSRAAiRAAiRAAmEnoMXQtOnTbPv+/vvvrRCTKBspQb9s2TJLSE2aPMnWVmQiao/e6Ra7hSLsJezGLDHCKtolRLfB7rUoBzG/cuUKn/qCHZrf66+/bte0lffWW29ZZe1CPuqC+sYFT0xmPj9T1UFoT4TgtEvIx3HYgcg4Omm7QiHoccOhZ991f3j9+eeflTsT+nZ1dwIb5AUyDj2LXqJkcRVD3rU/vHddw5BSQY8xaW6zZs9y70rtYaCf3qAcBb0HImaQAAmQAAmQAAlEgoCeBUaUFmwO5Jr27ttrwGddixy8fvjhZtciXt/rOsESlAjPqN1b4OcPNxT32XPEqtfRZLDL55EjR1S8dG1L23Zt1eZCrkbDxQWLgXUZ3Diovv63OytEKGL1u8awx3vkaSGNGWv43ieVcFwvBEZsfuym6tom1jKMGjXSsgM74uK4FrSY2XcX9fisn7CgHDY/0kmPJ1j80a5uE68Qttt3bNfdqRspxPHHMey06hrHPSXjwIJl3S/4YR3EoUOHjLffflt9H/AkQN/ApVTQYzB4UoX+8B3D+cBGaNirYMOG/3j8X6Cgt04/35AACZAACZAACUSSwPvvv2cJU4gjiCbMUsPtAMIGrh/TZ0y3FpHCn96XpEVYMAUl4rdrUY/24SaDHUhhL2Kj6z4h5l03YkJoTH0Ms8uIbIM6EKBaDOI4NhjSsegRY75OndpWPZRr2aql+nOtgzKuO9YmxQblqt1Z1WozX/68yg6069ombjwgIpGw2Ze+SYGNiMsP2/Gqx4TjR48eTdS1PhZM/rpNfZMB0YuZc3zWUZEQIWnHzh2JbEnJOLCewPU8aBvwmj1HNrXDsLYnGIIeT3H0ngGufeE9npq4PpWhoPc4zcwgARIgARIgARKIFIH169cZlSpXtAQixAuEWd9+fYyzZ88qs+BCgUWDrqIpKXsxs4+/NWtW2xbr3qObOj5hwnjb41igi/oQr64JQhebYNWuXSuRvbAZAhl+0O5PGjDjjh1VIQyxC6irUMNNDNxc1q5d49qNeo+Z5RdfejGRCEddzMzjpmDRokWJZtk9GrDJQJvwM69arUoiO9AuxD7sdE8QtXgiod2CtP2FChc0nnpqgrWI1rVeKPjrfmH/xo0bjLp16yiRi3wsTMXiXLhoeUuBjANtgdmSJUtUNCaMC+cei7n1rsWInjNmzJMGnq7opMeP8+ctYSMulMPTENeE7wvCuGJTroqVKqgbFrzHkwE8SUFf+PPV/Qxtp8I/wkQCJEACJEACJEACISZw+fJlMeOIS5o0aaRo0aKSKlWqEPeYsubNhYty6tQp1Uj27NklISEhWZtNsSanT58WcyZeUqdOrcZ50003JWuI6c4iX331lSpXsGBByZgxY7J1kivgb5uQhKYLiJiuRpI5c2bJnz9/cl0E9bg5I6/ae+65mTJ40GD13gwHqliCh6/fl0iPI6hQfGyMgt5HUCxGAiRAAiRAAiRAAiQQOgJ2gj50vcVWyxT0sXU+ORoSIAESIAESIAESiEoCFPSBnzYK+sDZsSYJkAAJkAAJkAAJkECQCFDQBw6Sgj5wdqxJAiRAAiRAAiRAAiQQJAJmNBnV0ojHR0rXrl2D1Gp8NENBHx/nmaMkARIgARIgARIgARKIUQIU9DF6YjksEiABEiABEiABEiCB+CBAQR8f55mjJAESIAESIAESIAESiFECFPQxemI5LBIgARIgARIgARIggfggQEEfH+eZoyQBEiABEiABEiABEohRAhT0MXpiOSwSIAESIAESIIHIEli4cKEMeLi/jB07TsaZf+FOOgzkuHHjZeyYsT53r+tVrFhR9u7Z53O9lBS067Nzl06ydu1aeW/9e9KgwV0paT7m61LQx/wp5gBJgARIgARIgATCTWDf/n1Sp05tKV26tBLFN998c7hNEC2So1XQX758WcqULa24HTxwSPLkyRN2htHSIQV9tJwp2kkCJEACJEACJBAVBH7//XepdmdVOXnypHzyyadSq2atiNgdqKB/5tlnlL0JOROke/fuYbFd2+r+VEA/5WjWrLmsX7c+LLZEYycU9NF41mgzCZAACZAACZCAYwlMmjxJJk58Srp06SKvv7Y4YnZqkezvDH0kDNa2ugv6f/75Rz3pwBOPZUuXSYcOHSNhnuP7pKB3/CmigSRAAiRAAiRAAtFC4LvvvpM7ihWVGzduyGdHj0mJEiUiZroWya6C/ocffpAvz30padOklVKlSkm6dOkiZp9rx9pWd0GPMqtXvyv33nev5M2bV744+6VEwn3J1VZHvjeYSIAESIAESIAESIAEgkJg9OhRxi2pbzZatmrptb3z588bKFe7di0jW/asqjzqFC9RzOjeo5uxa/cu27p///238c477xiNGjey6qE+PiP/33//TVQPbeJv4qSJxs5dO4277mpg9YX8LLdlNvr172uYvuqJ6uXNl8fAX5OmTRLlt+/Q3sAf7J8zd46RK3eCaq9GjerG+++/Z5UNZHza1qrVqljt6DcYt3mTpPpavHixzuarCwFxec+3JEACJEACJEACJEACARL47bffjKzZbktSeG7a9IElxiFiby9YwChW/A4jc5ZbLbGdJm1q480330xkhTmzbpiLbK0yKO9er137dgbEr05aJNeqVdPImCmDgXZLlCyubiQy3ZrRagsiGrbrpOu5i2udP2zYUKuuzlu6dKmqHuj4dDvufWqbhg8fpvqsXKWSzuKrCwEKehcYfEsCJEACJEACJEACgRJ4991VltCFAHdPFy9etAQ/ZstPnz5tzaqbLjqGuQDUyJAxvWqjwO35LXGOmfeGjRqqfMyKL1q0yEB5pOvXrxtPPDHa6nfqtKlWt1ok4xU3A0eOHLGOYVb+gQe7WvUww6+TrucurnU+XqtUrWxs3LjB2L5juwGx/ccffxiBjg/96rbd+9Q2bdnykVXGXGyss/n6PwIU9PwqkAAJkAAJkAAJkEAQCAwc+IgSnSVLlbBtbcrUKep4+gzpDG+idMiQwZZwPXPmjGpn3bq1Vh5uGtwTBH/rNq1VGQh+PUuvRXL2HNmU2Hav9/PPP6tZe5SD7Trpeu7iWuenS5/WsLthCXR86Fe37d6ntunatWtWmXnz5+lsvv6PAAU9vwokQAIkQAIkQAIkEAQC8CWHMO14b0fb1iDQ4Urz8isv2x5H5ksvv2QJ18OHD6ty93e6X+WhfXc/ed3Qjp07jMGDBxmzZs8yINSRtEg2N2jSxTxeK1Qsr8p16ny/dUzXcxfXOr9FyxZWWdc3gY4Pbei23ft0bd+MSa/KPdSrp2s235sEGOXGkUuVaRQJkAAJkAAJkEC0EciTN7dcunRJhg0dJk8//d9Y7r6M4erVq3Lq9Ck5dOiQLH79ddmzd4+qtn/fASlfvryKmvPVV1/JkMFD5Nlnn/OlSVVGR45xjXLjXrlipQpy7Ngx6dixoyx9a1mieu4RZ3R7w4cNlxkznnZvyuvn5MaHirpt9z5dG211dyv54IONUq9uPfnww49cD8X9ewr6uP8KEAAJkAAJkAAJkEAwCGhROnbsOBln/nlLH3+8RZYvXy4HDx6Us1+cFXNGXRBv3T1pQa/bnTnzeRk0cJB7Ma+fdb1gC/qk2oMx/o4PdbStSQn6Tp07ycqVK9Tuu4cPHUE1pv8RoKDnV4EESIAESIAESIAEgkBAi1Jvgv7XX3+VLl27iBniUfWWKlUqyZEjh5QqWUrNxFevXkPFiB83bqw6Hm2CPtDxYbCaHQW9OvX+/0PHIxIgARIgARIgARIggZQTuC1rFuXjPWLE47aNIR++4lgU+/ys5w3TjcajnJ0PfUKunKoeotkklRBlxjVpv3TEofeWAvGh99ZeoOODbdrWpHzoTZcbVQ7x+5kSE+Ci2MQ8+IkESIAESIAESIAEAiJQqXJFJTjNXU1t6+fOk0sdx+JVb2nAgP6WuNWLYrFxFARv02ZNvVUzTD91A7HlEQcfC2+RtEj2JsBRJpiCPtDxudqalKAvW66MGlPPh3qgCpMLAQp6Fxh8SwIkQAIkQAIkQAKBEujdp5cSnN7CVmqBPW36NNsuvv/+eyNHzuyWENeC/pUFr6g8zOx/9tlntnVnPj/Tqnf8+HFVRvcXLkGv+/N3fDBW1/Um6P/880+rDMbKlJgABX1iHvxEAiRAAiRAAiRAAgERWLZsmSU67eK0YzMmCNeChW43zp07l6iPvfv2GuUrlLPqo9yHH25WZUzfdGsmHaEbd+3elagu4tRnuS2zqtula2frmBbJ4RL0gY4PBmtbvQl6c6GtVUbf6FgD5RuDgp5fAhIgARIgARIgARIIAgG4vWg/+iVLlni0aC6GtTZyujVzJqNBg/pGm7ZtjFKlSyqxitn56TOmG+YCUfUZ/vQ6HT16VN0IaOFbq1ZNVbdc+bKW0IUYvnLliq5i5YdL0KdkfHpc3gT96NGj1Hjg1sTkSYBRbvxfR8waJEACJEACJEACJGBLoE/f3vLaa69J8+YtZN3adR5l3ntvvYw1o9iYAt06li1bNmnbtq2MHDFKihQpIn379ZGtW7cKIr7o2PAojHjuU6dOkbeWviU//vijVT8hIUH69e0nI0eOkrRp01r5ppBX7+vXry/169W38l3fmDcNqq0ypUtLhw4d1SFdL3fu3NK3T1+ruOlvr94PGPCw9O/X38p3fRPo+Lz1ibbNzbTEdGOSL7/8UmbNmi2PPPyIa5d8bxKgoOfXgARIgARIgARIgASCRACi01y8KTdu3JBjnx2X4sWL27Z8+fJlMd1yJE2aNFK0aFFBCEtfkzk/KxcuXJBr165J5syZJV++fH7V97WflJRLyfjc+12zZrWYu+9Knjx55PMTJyVDhgzuReL+MwV93H8FCIAESIAESIAESCCYBIYPHyZz5s6RPr37yPz5Lwaz6bhs6667Gsi27dsUSzBl8iRAQe/JhDkkQAIkQAIkQAIkEDCBS5cuibl4Ve0Ae+TwUa+z9AF3EEcV4cLTtl1bqVy5suzYvlNuvvnmOBq970OloPedFUuSAAmQAAmQAAmQgE8EtJtIw4aNZOOGjT7VYaHEBH7//XepWKmCfPfdd7L1021SoUKFxAX4ySJAQW+h4BsSIAESIAESIAESCB6BoUOHyLz582TJ4jekU6dOwWs4TloaP36cTJ02VRa8slB69OgRJ6MObJgU9IFxYy0SIAESIAESIAESSJaAucmTpEuXTkWvSbYwCyQicOLECWvRcKID/OBBgILeAwkzSIAESIAESIAESIAESCB6CFDQR8+5oqUkQAIkQAIkQAIkQAIk4EGAgt4DCTNIgARIgARIgARIgARIIHoIUNBHz7mipSRAAiRAAiRAAiRAAiTgQYCC3gMJM0iABEiABEiABEiABEggeghQ0EfPuaKlJEACJEACJEACJEACJOBBgILeAwkzSIAESIAESIAESIAESCB6CFDQR8+5oqUkQAIkQAIkQAIkQAIk4EGAgt4DCTNIgARIgARIgARIgARIIHoIUNBHz7mipSRAAiRAAiRAAiRAAiTgQYCC3gMJM0iABEiABEiABEiABEggeghQ0EfPuaKlJEACJEACJEACJEACJOBBgILeAwkzSIAESIAESIAESIAESCB6CFDQR8+5oqUkQAIkQAIkQAIkQAIk4EGAgt4DCTNIgARIgARIgARIgARIIHoIUNBHz7mipSRAAiRAAiRAAiRAAiTgQYCC3gMJM0iABEiABEiABEiABEggeghQ0EfPuaKlJEACJEACJEACJEACJOBBgILeAwkzSIAESIAESIAESIAESCB6CFDQR8+5oqUkQAIkQAIkQAIkQAIk4EGAgt4DCTNIgARIgARIgARIgARIIHoI/D8FrRy/Q7WhYwAAAABJRU5ErkJggg== />"

Question 3

A student proposed the synthesis shown in Equation PE 14.5.
  After extraction and recrystallization, a white, flaky, crystalline product was obtained that had a melting point of 117119C. The desired product, shown in Equation PE14.5, has a melting point of 152154C. Write the structure of the compound that the student isolated and briefly explain what happened. Write a rational arrow-pushing mechanism for the formation of this product. Hint: If you were actually doing this reaction, you would have prepared a prelab writeup that included all of the physical constants for your starting materials.

Question 4

Propose three different syntheses of the alcohol shown below starting with a ketone and a Grignard reagent. In all cases, first show how you would make the Grignard reagent.
   
 

Question 5

ecmC4w4AfLpTEBHAiwwdITJWTEBIwmQEHjhhRfwyG5dsffJJ+GaNa64iyPTq3POPUeaYpFJllYoXKXcbkcdiSf1tqDL9U7c5XIGzSNQ4fTNImgIC+GZJwWA3alEeapCh4wwZUGx6F3zCgpztFsJVSvKsueXYI0qW091GTp8plFUl8IK1Zdh8uPdAQIsMAIs4t3SEhg0y/re++/Fm7Vu55NpKb3D1emll1ZIc1P1Pt5mAqlOgAVGqt9Brn/GEaCZhDmOOXIm4eLRF+OWLVuazYBMrXJypkvTKzLB+umnnzTzcLvdOHjwIOx0UEd87PHHdJ050SyQd5qUQC0WZnuFjCJobHY72qxeB3BlX25xU47gJr28JFaLBYZ+8LUEBr0ryZyTzDrJvDPZid7fJSVvBFWDBUYQDv6QJgRYYKTJjeTLyDwC3377LY6fME42nnfccXtUvhBkWkVCgUytSDiQgNBKat+P6dOn4W+//aZ1GO/LKAINWOFyol01W6EIC1t2HpZWxm+OlVE4fRfLAkO/u64lMCj3yspKadZJ5p0kOKiTb6bEAsNMd4ProhcBXgdDtJCcmEAqExDT/3DjjTPgxx9/hPnzFoDdbof/+7//07yk2bNnwfLC5ZB370IYPXo07LXXXkHHiVC08PAjD8PcufdA//4D4IFFD8Dxxx8fdAx/YAK7dmyH2voGAaIlZHXoBFmtmEmsBHgdjFjJBZ/3bum7MHLkCOjTpw+8/tob0K5du+ADxKe1a9fAjTfdCL///jvcuyAPxo4d2+gd2Ogkg3eIwRu4fNJlsHHjRvj+ux8MLo2zZwIJJKCXUuF8mAATSB4BChH7zDPP4CFdOuOAAf3xg7IPNCvzxx9/IK3KHZrIz4LW3KC1N4497hh89dVVmo7eoefx58wisGfPHnzyySeDno1ffvkFX375pcwCoePV8gxGfDC3bduGl1x6Ce63fxsUi31KX4bOhxyMTz31FNLzGppoFpcCZdAsLgXOoAAayUi0rpAYzMGOnQ5Eq/VMfPfdd5NRDS6TCRhGgE2kDEPLGTOBxBMgATFz5q3SbOqyyyfiDz/80GQlvvjiCxwxcoR09L5/0f2ajt5NZsIHZAQBMp2jDrE6GABFICPnf06xEWCBERu3uro6FDOyUlhcOu4SrKqqkhnRYEthYSEefsRh2O+Uvli6vlSzAPJDo9Dfrdu0wiuvmhLWD03z5Dh3vv32W9jLciJ273GUFOc0wMOJCaQbARYY6XZH+XqYgCDw9ddf46gLR2FW2/1x7ry5+NdffzXiQn4V5OhNC+qRozd1HjkxgUgEWGBEohPbdywwmseNBMSyZcuaFBDhBEhoaRUVFXjueefKAZa8hXlB4jn02Hg/03vZNsqGbdtl4fwF8zVnk+Mtg89nAmYhwALDLHeC68EEDCCwevXbcqTsqO7dsKioSJq2KI7eFBkqkqO3AdXhLFOcAAsM/W8gC4zomZLp52mn/Uuagj799NOaJlChualNqO6++y7cuXNn6CHy8xtvvI7Hn9BTrgW0cuUrQWaAmic0Y6d6ZnnS5Muxurq6GWfzoUwgNQmwwEjN+8a1ZgJREyBB8cijj0hbXzIZoAX1KA47ranBU/NRY+QDBQEWGPo/BiwwmmZKpp5k8knhZm+7bSZSh725ad2767BP35PxiK6H43PPPaf57vv777/xwYcexA4HtkeKSFVerqwt09zSvMeTDwgJIfKNI2FUtsG3GGZs2fFZTCClCHAUqQQ61HNRTCCZBGS0kssvgw4dOkBBwRJo06ZNMqvDZacgAeHQDYcdfijsrPsT9t13X3kFYuQXbr/jdvjs040peEXJrzJHkQp/D0RACnjgwQcgL+9eGDbsLFiYtxB69OgR/oQmvhHmVeB0OmHW7Dvh6B5Hw6IHHoBT+p3S6Kzt27eDmO0A51InXDH5CrE9Bzp27NjouEg7lOh+QpTDgvn3wrhx48JG94uUD3/HBFKWQErJIa4sE2ACTIAJJI0Az2Dojz7RMxiecqdc+d1CK8Bb87Am3CXVV2COb5V4S04xNo49F+7EkP2eSnTm2mWZoqMU+GuxYV5RGXpCDqePNLNKJp1k2mk5qReSqaeeaceOHXjzzTdJB+8rpkxGEeJbM3sROhaHDhuKB3bsgPmL85EiPzWVaH2iceMvlc7ns2bdieQLwokJZCIBNpHKxLvO18wEmAATiIEAC4wYoDVxSuIFRkGgky86/EWV2tKhtiwvcJy1AGNZRtFTXoTWIFFhRZvNGsiXvrM4sLIhAIkWxTvzzMFIPmKPPvYokomnUWnz5s143vnnYbsD2mI4B28SO6+88jIefUwPpCh74RL5dpCPBy3mN2bsGNy6dWu4Q3k/E8gIAiwwMuI280UyASbABOInwAIjfoahOSRbYNgK3KFVEp8bsDjHEhACtgLNmQaNEwO7aktV4sKOxeXVIldfaqjFskJHIP/sIv8Micv1jpxdoCh3iUolJW9IB28SEeEcvCl6lZbYIQHyn//8B7seeQSe3Kc3rlu3NlHV5nKYgKkJsA9Gyhq3ccWZABNgAoklwD4Y+vNOtA9G3aYl0NZydeBCLA6o3jgLugT2AOz6BCa27gvLlX22AvCsnApZymfxd8eWTbDhi22wW2zv374bnPKvXpDVInDA+oVDYNDMtWJHDlTUPwjHaaz2/uOae+DQobPlSQXlHpjaS11CIK9EbAnxAI89/hg4HHPEauB94YFFD0CvXr0iFi0W6YMbZ8yAr7/5Gu65Z67019h7770jnsNfMoGMIWBq+cOVYwJMgAkwAdMQ4BkM/W9F0mYwbNlot3p9IgpDzKRqXN7ZBbsjD+1kxhQ0g1GDhbkhZk7SDErMUlT6PCrq3d7zxH6HK6yXh4BZ758psTq0F8TTn3jkHGtqavDaa6+R6wNdf/11+OuvvzY64aeffsIpV14hfThuuulGJJ8OTkyACQQTYBOpYB78iQkwASbABMIQYIERBkwcu5MmMLKdWOLMlmZKtny1mVQ9FmWT8LAKs6ZSzA4SGA1Y4jedsqDDWYxlpSXosHmFCoANy0hjeNxok6LDhm5tFw8/saqiHK+plDU/Jj8Pf0Y6b3z22Wc4ZOgQGd578cOLpYM3rWC/8L6F0meDfDdokT5OTIAJaBP4fwAAAP//8qKw5wAAP09JREFU7Z0LfFTF+f4fKkGiBgsYingBDVbAsii0Bi+oG9SCWpdaUEsWJV4C3kJABYOCGlQM91BtA15CJaGtQSXYGrRN6D/YGn4ahEQJSsCgBmuiiSZoIkk7/5mzl+yScza7ye5md/Oczyfu2TlzZt75zsqZ58y870DwIAESIAESIAEvCPznP/8RvaOOE83Nzc7cf/vbX8WY803O7zzxjYDiqf6CdTSUZQkAApZcUVOdbzs3pYtqhwENJcKirpuzRF1ThbBqebNEg7zeUmXPD7MoqGpx3CE/G0Ruskkry5pdIZrKsm3lwipKm1yy6Zw681psdehk6bak//3vf+LVV18RccPP1v6GDjtTjDpvpHjjjb91m02smATChUAvZaj8x4YHCZAACZAACXgk8OWXX+L0M07DkcbvcPzxx2t55WALCx9eiN3v7/F4Ly/qE4jq01u70HK0VT+Dn1Mby9ehn2k2YM5GU5EFa8cMwIIyILeyCdPj+uLwtoU4bfJSWHMrsXH695jSy4R8SxYatswCHPfCisKKxzCk5Xu0SPuiTjgBVZtuwOTFsiBLNmpWnoRBw6fJK6mobFmNOFsTdVvitMdeR4xuru5NlIIa9953j/zN98Wa1WsQFRXVvQaxdhIIAwIUGGHQSTSRBEiABEKBAAWG/3uh+wRGlhQYs7B/3QyYZufAklmKLSkmbJoRhcQcEwqq92DSgF2YET0OOfbBf9UGmTcpxzMEUybq3



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

Chou

  • Sr. Member
  • ****
  • Posts: 335
Answer to Question 1

The resulting diol is a meso compound and is therefore achiral, which means it must have an optical rotation of 0.

Answer to Question 2



Answer to Question 3

The product that the student obtained was 4-hydroxybenzaldehyde. This occurred because the Grignard reagent, being a strong base, deprotonated the hydroxy group in the aldehyde, resulting in the formation of benzene and the phenoxide shown below. Protonation of the phenoxide gave the aldehyde back.


Answer to Question 4






 

Did you know?

The largest baby ever born weighed more than 23 pounds but died just 11 hours after his birth in 1879. The largest surviving baby was born in October 2009 in Sumatra, Indonesia, and weighed an astounding 19.2 pounds at birth.

Did you know?

The people with the highest levels of LDL are Mexican American males and non-Hispanic black females.

Did you know?

Of the estimated 2 million heroin users in the United States, 600,000–800,000 are considered hardcore addicts. Heroin addiction is considered to be one of the hardest addictions to recover from.

Did you know?

The shortest mature adult human of whom there is independent evidence was Gul Mohammed in India. In 1990, he was measured in New Delhi and stood 22.5 inches tall.

Did you know?

The toxic levels for lithium carbonate are close to the therapeutic levels. Signs of toxicity include fine hand tremor, polyuria, mild thirst, nausea, general discomfort, diarrhea, vomiting, drowsiness, muscular weakness, lack of coordination, ataxia, giddiness, tinnitus, and blurred vision.

For a complete list of videos, visit our video library