This topic contains a solution. Click here to go to the answer

Author Question: When a student ran an asymmetric dihydroxylation reaction using cis-stilbene and the ligand ... (Read 70 times)

Pea0909berry

  • Hero Member
  • *****
  • Posts: 573
When a student ran an asymmetric dihydroxylation reaction using cis-stilbene and the ligand (DHQ)2PHAL, the hydrobenzoin showed an optical rotation of 0. Explain this result.

Question 2

M2c8hqt3W61fv56tkPaoEKIMbGKHp3d2u2frXW4R8tbXTelCZGZYm9VREfHkIlpTz4d6qGvy7j27Iz6EkAp6jO7jj7eowSL+qF3CZkbeVnvblQ9Wnqt/nd3jLR2THnf38Zhw94ynJ+XKl3VklABv50SHxSpUuKCtj6K3eswPHgE84UFoWghPPCWBe11SCY/FtZjHDx5mqsKVEDO4WPE7kn3ErQW1N7swwwS3PUQ58CfpdpMS9Lg+6ag3ujwFvT+UWTbWCWD3Udycuy4gdx3z1GlT1fUIAjISCdHxYJ+3QCHaPl8nQCIxhlD0qT01cH3DhkzRlvQT6Yd69XSE6SEX9BglZpiwUMwu9jx87bE7ZLjdO+DrhB9HuxXw+kvmLSa9I85cGIzAQiMwwjoCuwTftzuKFVXRgRAhKFx/iGHr7fHps889q2xOTkTajYd5wSOA2YqEXDnVucB3CO51c+fNNfCdwYJU7ND6+uuvG/e0vkf90KEMbux93ZApWJZiYRpc6uC7ardIzZd+cL3A0zzclCDyhj8J48ZfUoIe7SHqjZ6dR3kKen8os2w8EHjssUfV/yW7J26YAceNe8FCtxvhjuCG6wPc5bwF1tBPEOD+G49Je2pgciWaEiZxatas4ah9lVIBoIQ4mX7MUrZcGbnvvvvk/xYu8uht1aqVcvLUKRk9arTHsVBlbNnykaxYsUJmzZotqVOnTtSNGZNezP9cMmHCU/LkE08mOhZPH/DVMGPhyvETx+XzEyclZ86ciYZvzsTKhKfGi3nBSpQf6g84X5MmTpYCBQok6spchCnmphVSsUJF+eijLZIqVapEx/khvAS+/PJLeWTgI2K6oCTbcalSpWT+/BelTu06yZYNdgFzUkGaNmsiGTNklKVLl0n+/Pl97sJclCf9B/STNWvWyIYNG6X6ndV9rouCpkhX5ceNGy9jx4xNsq4ZEULMIAKqTJs2bWXF8hVJludBEognAuYMr7r+Z8+eXQ7sP+jxu75mzWoxJw5lzJNjZPz4CWFDY4YzFPPJgbzy8gLp2bOnR79mNCt1/Th+7IRf1x6PhqI4w9ypXhYsXCCHDx2REiVKeIzkm2++kUWvmtox9HI1Ud8ZMmaUQQMHSdq0aRPl44M5ISW9+/SS6dNnyKPDH/U4HomMsAh6DMzcsEkmTnxKduzYKdWqVovEWH3q04xDr24+brrpJjl65DNJnz69T/VitdDefXvFXOwhvXr1kpdefNnRwzQXJIr55EX27N4rlSpVcrSt8WScGflFVpo3zzt37pQjR4+IGc1GDb9cuXJSpUoV6dihozRu3ERuvvnmiGGBqO/6QFfZZ37fJ02aLL179ZY0adJ4tQc3u6ZrkIwZO0bMmRpzfKukTJkyXst7O2DOzKtD9evXl/r16nsrpvLNqDdiLpjDU1UpWaKkmiBJsgIPkkCcEVi0aJH0699Xnn32ORkyeEii0eP/TbfuD0q2rNlk9uwXEh0L5YfJUyara9+6tesEusI14dpobsRpaqNJYZ3QdLXBCe9xbTPDPsqd5oTI+nXrPUwyXZFMDfKQuvZ5HAxhRqZMmWTzpg89JjPNPW7UzWOWLFnk0MHDSf5WhNA8z6bNL3lYEjZsgksGYs87eUWz3qly5coVYeESDZ0gcgce8+/bv8+x5mpfNnO21LE20jBnE8CjcewonDtPLvWH79LSpUsNuA/BTQjRDMxZPgOPhuFqBpc87HWADcwimcwnIQY2NWEigXgnAG1RvfqdRrbsWQ3suOzkhHV8cPcrXqKYAZegeE8vvfyS0hnRcC0bOXKEsvX9999z1GkLiw+9HjFEMoSh3SYQukwkXxHiELtHeotJH0nbItk31j5gkSOil0D0OC3hIo7QV7iII9QoU3QSwHcLax8Qfz2SCfHwTbc7tbFT0TuKJPJdhx8sFr5C+GP9jxOS3lznuZnPOcEc2kACESWwY+cOpTP69usTUTuS63zhwoXKTruw3snVjcXjuMFBWF5s0IT9BZyaTp48qaKZYf2X01JYBT1+sBGDNdKx572dhM5dOnmNSe+tTrzk640TnHgzhpBXuFGcNXtWvJyOmBzn1atX1Xns3qObo8aHMHKINHPu3DlH2aWNwQ0IFsni/wBFvabC13gmYLrWqP8PTn2qjGtdrtwJanLAiZNkkfrubN22VZ03b1ERI2WXa7/YZwThifHU1mkpbD702tnHjMEqlatUkvbt20vXLl11dsRfjx8/rvxh+/frL3PmzI24PU4zAH7P5SuUE/i6zTX5OGVtgRmZRAYPGSwJCQly8MAhj4VQTuNIe5ImYM6qiXmDJtu2bfd7gWnSLTvr6CeffCzjxo2TDz7YZLvgyl9rzZsO6dyls7m4brXMmPG0DB823N8mWJ4EYoaA6R5nBUj4+ONPHBcg4dFHh8v8F+erRaDFixePGe7BGAjWOaxdu1ZOHP9c8uTJE4wmg9aGuceNtG7TWi2CxWJYp6WwC3oAaNy4kWCRg9PSLbfcIt+cvyBYJc/kSeCVV15WUUs8j0Q+59VFr8kDDzwQeUNoQYoImC5T6oe4RPESStS7LyJLUeMOqYybY3MDGcmQIYPs3rXHY6FcoGZC1Hfp2kUt1nVS5AWMx/Rnlo0bN8ru3bvkOzMalTmzpYaZLVtWtRCuRfMWcvvttwc6dNYjAQ8CpiuamBskmhNQ89QEokeBCGWcPn1KTLdeGTZ0mEybNj1CVji3WzP0r5QuU0ruueceeX7mLMcYiuu2ubO4XL9+Td1sZM6c2TG2aUMiIugRXmrLli2SkCtB2xHxVzM2reRKyCUVKlSIuC1ONmDVqlWSK1cuSXWTM0JCmo8r5crlK9K6dWsnY6NtfhAw9z0QM6a0xOpNmukaJuaukfLhhx9Jvbr1/CCTfFHXmXoniHo8+Zw8ZZIKEZw3b14zokcDyZsnrzWQS5cvya5du8TcGEiaNWsuY8eOjeknM9bA+SbkBMxNBiVf/rwCveG0lC5dOvn2wndy6623Os00R9gzYuQIef75mY6wxd0IhF7v1q2be7YjPkdE0Dti5DSCBEjAkQQgSuGW99NPP6mZEIQOi5WEmWrsldCsWTNZ+taykAzLdaZ++TvLpW3bdlY/5sIzeeedd2TFyhVy6NBBMTe1Ucewx0RVM5xwq1atpEvnLikWGpiBnzZ9mhkCdKLcdVdDGTlihNSv38Cyw/3N0aNH5YU5s1Vs5759+srMmc87JxScu7H8HDUE1q1bZ95MLpeKDgpj/NlnR6VOnbrSs4dnTPqoARtiQzHB+pAZphJhjZMKHxxiMxI1f/nyZbl08aLaL8WpT44p6BOdMn4gARJwAoHNmzdJi5YtZNTIUSouvBNsCoYNffr2NjevWirHPjsuBQsWDEaTtm1A1JsLy6R9u/aCTbuQtm3fJn379pHTp0/b1tGZOXLkkOnTZkj37t11ll+veDRtLmw2N3f7SBYuWGg+Ovf96Rn2vehqug3ly5tPVq5cJdmyZfOrbxYmARIggXglQEEfr2ee4yYBhxPAro5YhIQN3ooUKeJwa5M3b8/ePWLuw6F2n8Yu1OFMWGg8aPBAgRsC1gp16NBBWjRvqVwMsaHXmTOnzQW6H8jSZUstF4UnRj8hTz31342v/LEVG/usX79eNn2wWUqXLu1PVVUWPrTNmjc1b3gKyep3V3Ohu98EWYEESCAeCVDQx+NZ55hJIAoImBsmSbnyZaVFi5YC15FoTljrUbduHfnmwjeCLd4zmluKhythZr5582ZKzGNb9TeWvCkVK1a07d7cc0Luv/8+2blrpzq+6P9elQcffNC2rF3ma6+9ZkadGiS7du4OSMzrNhGlpGKlCjLUXDiIGwsmEiABEiCBpAlQ0CfNh0dJgAQiSOCppyaYiyonywcbP1C+2BE0JUVdL168WMwdl+X11xZLly5dUtSWP5VxI1G9xp2mv/whFUVm3979kjVr1iSbuH79utzVsIEcPnxYsLU5wsfBxz65ZMbqV9u3I3IH/OBTmlavflceePABOfn5KcmXL19Km2N9EiABEohpAhT0MX16OTgSiG4Cv/32m5QpW1oJS4hRuItEW7p27ZoKw1a4UGH59NOtYY2JvWXLR9K0WVOFzJ+bCXO3TTMiTX0VXnLKlKky4vERyWIfN26srDbj4B86eDgooTixsLZmzRpSr149efrpZ5LtnwVIgARIIJ4JUNDH89nn2EkgCgisWLHC3DSpk7zwwhwZ0H9AFFic2MRRo0aKuYOr7NixU6qZkWTCmR5+eIAsWLhARa1BmDyEy/M11a9fTyDs4Z6zd8++ZKsVL1FMBg8eIgMfGZhsWV8LYAHx0GFD5OuvzgdlAy5f+2U5EiABEog2AhT00XbGaC8JxBkBzNQ2adpEjhw5LJ+fOBlVkU9OnjypfME7d+4s8EcPd6pRo7rsP7BfGjVqLBv+s8Gv7seOHSPTZ0wXLJq9cvmq2gjLWwNnzpxR4Ti/OPulFChQwFsxv/PxdCMhV07ZunVb2G+G/DaWFUiABEggggQo6CMIn12TAAn4RgBxyqtWq6Jm6GfNmu1bpQiXwo3I3ffcLdvNRamR2sY8e45sAlHcv19/mTNnrl9Eli1bJg92++/uywf2H5Ry5cp5rQ9/9169e8nlS1e8lgn0ABbHDnxkkPTu3TvQJliPBEiABGKeAAV9zJ9iDpAEYoPA0KFD5MWXXpT9+w5I2bJlHT+o995bL23btZXJk6eYGyuNjIi9qdP8d83B4489LlOnTvPLhnffXSX3mRFvkJJzF3rp5ZcEPvQ//nAxUR+6/0SZPnz468bfVqlmZoSeOnXqyNgxY608viEBEiABEkhMgII+MQ9+IgEScCiBq1evqigqFSpUlI0bNoZ1cam/SBDvvULF8vLPP/+oOPr++K7721dS5bWgDkTQr1q1Uu7vdL9qfteu3VKlchWvXcHXfcjQwSER9HXq1Jb2Ztz84cOGe+2fB0iABEgg3glQ0Mf7N4DjJ4EoIoAFnljouXLFSmnduo1jLccurU8++YSKn9+2bbuI2VmyVAk5e/asuZFUR1m2dJlfdkyaPEkmTvzvBlhXr/wkmTJl8lofTyN69OyhBH2qVKm8lgvkQIHb88uzzzxnxsf/781FIG2wDgmQAAnEOgEK+lg/wxwfCcQQAcx416xVQ3766Sc18502bVrHjQ6bIpUqXVKqVbvT3C11U0SfJPTo2V3efPNNyZ8/v2DBqj9iu9XdrczdYzcKNqP67OixJDmfO3dOihW/Q5VD+WClS5cuSZ68uZWbVfny5YPVLNshARIggZgjQEEfc6eUAyKB2Cawfcd2FSPd1/jo4abRvUc3gQsK4uZHWoSuW7fWdFdprxCsXbNW7brrC48vvvhCxc7HDRRi0IN1cqlwkULy6KOPBTVsJRbmDn90mFz45lu/bkaSs5XHSYAESCDWCFDQx9oZ5XhIIA4IQDSvWbMmYtFjvCFG3HbEb+/Xt5/MnTvPW7Gw5f/9999SomRx+frrr6VkyZKy9dNtcttttyXZP3aX7XhvR8HNQOrUqdWse5EiRZKsg4Nwz1m+YrkcOXw0aOIbC2LvKFpU5s2bn2z/LEACJEAC8UyAgj6ezz7HTgJRSgBuLUXvKCJp0qRxVFz6H3/8Ue1me/bMF5IjRw5H0N24cYPc0/oetesrFrauXbtOEhISbG3DYt7efXoJZsaR/FlMe/HiRcHmUvPnvSiIu5/StHnzJmndprUgZCZuRphIgARIgAS8E6Cg986GR0iABBxMYPjw4bJn7x4pXLiQY6w8fvy4KWa7yGOm64mT0tx5c2XYsKHKJNxoDBo0WFo0byEVKlSQm266SbAx1CZTQM+fP08+//xzVa5Jk6ayft16ddzXscyZO0cmTBgv27Zul1KlSvlazaPc5cuX1b4Dne7vJNOmTfc4zgwSIAESIIHEBCjoE/PgJxIgARKISQKYdUdoyStXkt786ZZbbpEhg4coIe3PIlpAg4sPYtefPXvG3Jl2o+TJk8dvlr/88ovcbS7I/euvv+Tjjz9Rbj9+N8IKJEACJBBnBCjo4+yEc7gkQALxSwBuMdicC/7xhw4dSgSiUKFC0qplK+nff0CKXFz++OMPade+nRw+fEhWr14jd5rRfnxNJ0+elM5dOim3pY0bPpCsWbP6WpXlSIAESCCuCVDQx/Xp5+BJgATilQBmwrFYFgk+9cH0+b9x44baOXb2C7OlY8eOMmrkaClTpoxX1BcuXDAXvs6VWbNnSdu2bZUffnKLd702xgMkQAIkEIcEKOjj8KRzyCRAAiQQDgK79+w2feonCBa4Vq1SVerWrWvGqy8uCTlzql10Dxw4IDt27BBEB8JxlG3cuEk4TGMfJEACJBBTBCjoY+p0cjAkQAIk4DwCp0+flrWmm8/u3bvlm/Pn5fw35yVLlixSrFhxqVSxojRv0cIv1xznjZAWkQAJkEBkCVDQR5Y/eycBEiABEiABEiABEiCBFBGgoE8RPlYmARIgARIgARIgARIggcgSoKCPLH/2TgIkQAIkQAIkQAIkQAKKADYozJc/r3q/ZPEb0qlTJ5/IUND7hImFSIAESIAESIAESIAESCC0BCjoQ8uXrZMACZAACZAACZAACZBASAlQ0IcULxsnARIgARIgARIgARIggdASoKAPLV+2TgIkQAIkQAIkQAIkQAJBI/Drr7/K8RPHxTAMKVe2nKRPn14CFfRohIkESIAESIAESIAEQkrg/PnzxujRo4zatWsZ2bJnNW5JfbP6K16imNG9Rzdj1+5dfvXfvkN7A39btnxkfPfdd8awYUONPHlzqzbz5stjDBz4iHHt2jXV5uXLl43HH3/MyF8gnzqeK3eCcX+n+w1zjwTbPg8ePGj06dvbKHpHEcvOArfnNx54sKvxyaefeNT5999/jffeW2907tLJKFS4YKI6HTp2MN58803jn3/+8aiHjJ27dhrduj9oFCla2KqH98jDsUBSUm3u2bvHo8m///7beOedd4xGjRtZ5wbnCJ+Rj+PuKRT827VvZ+Bv/fp1xrlz5xSD3HlyKS54BZNDhw65m2J9DmQc+ns4cdJEqx33NxUqllc2dOp8v3VIj//tt982rl+/bkyYMN4oU7a0dQ5r1KhuPPvcs7bn/dSpU+q7mz5DOqt85iy3GkOHDjHOnj1r5S1dutTqL7k3FPTJEeJxEiABEiABEiCBFBHYtOkDSyhCQN1esIBRrPgdBkSMFlRp0qZWwtfXjnQ9CClXMazz8Vq3bh3jq6++MsqVL2v143ocAh/Hdfrrr7+Mxx571Eid5harfOEihZStuh7sfOSRhxOJ3AED+lvl06ZLo8pjfLoOXlu2amn88ccfuivjl19+MXo+1CNRGfSFP9d6/Qf0U2Wtikm8QZtdunZOVN+9Tdg3cuQIq5UffvjBaNiooVUH58T93DRv0dxAOdekbQwmf93m4MGDrJuznAk5jFKlS1r2Zbo1o/HKgldcTVHvUzoOfwW9thUivFatmpZ9Ol+/4gbFNeHGFWPC8Sy3ZVY3MLhR0Dejrt9VCnpXcnxPAiRAAiRAAiQQMQIXL140sma7TQmYu+5qoGbFMaONdOPGDWPhwoVGhozp1XHMgtvNBtsZrwVTxkwZjIqVKhhr1qxWgvnChQtGj57dLYEFoYQ/zDRfuXLFuHr1qvHczOcs0Y6Ze50GDRqo6kG0Q1TiqYJOmOWfPGWykS59WlUGM/hImE3WtgwZMtjAeHVCf5jV18dnvzBbHcL4MZuv81Hmyy+/1NXUe9d6GI8vSbeJGxI8sfj222+taseOHTMaNKhv9blkyRI1e6zFPM7B/Bfnq9lmVMKsMz7rc9OiZQtDnzcc17YHk79uE68Q7gsWLLBmuDFj36RpE9UvzsH+/fthhkp4+pHScQQq6DF+fG9fevklA98RfKc3btxgVKla2WK0du0aZedPP/2kymJ8d1avluj8mO43Rq/eD1l1UIaC/n8nmC8kQAIkQAIkQAKRJTBl6hQlUuBecPLkSVtjIIS1mDtz5oxtGfdMXR4zyu6zx7///ruRI2d21SbEuZ3ryt333K2OV69+p2oaAlHPzGvh7d4nPkNkoW+U/fjjLcZDvXqqzxC+mOF3TxB4+gkCXFiQNm/epOqgHcz2e0u9+/Sy+oJrUVIJx7X94GmXcLOhZ4Ix6/3uu6ssO5YvX25XxXjjjTesMuvWrbXKBJs/GtZt4hU3eu7pt99+M8qWK6PK3dP6HutwMMYRqKDHzcWJEycsW/QbfI/1eDCLjwTRjzzcBHz99de6qPWKm1kIfV2Pgt5CwzckQAIkQAIkQAKRJABhAx/yl1952asZWuhAyBw+fNhrOdcDWvRA9NolPRtduUolu8PGE0+MVsIJLg5I2m2mfIVyST4lwCy1FpVwmYEg17bMmTvHti/46mPGW/vRwxccdSAGzUWQtnWQiWP6iQB8/pNKus3bsmYxMBPsLWHWe8SIx4158+cZHe/tqOyA77fr7LtrXeRr33BX9xE95mDxR5+6zdJlSnk9B2CMcriB0mskwAZ5KRlHoIIeTy68pYKFbld2ad/7xk0aq8+uNyPudV999VVVBuOhoHenw88kQAIkQAIkQAKOIgB3FPgTQ8y7+iD7K+hnPD3Ddlxa0Pfr39f2uLug1yIdi1g/3fppkn9t2raxBOSBAwcstxQtKuG6s3r1u17FOhYCoyxckJJLKIOyEIdJJX/a1O3oRb+PPjpcZ9m+4jhsgGuJTviMv2DxR7u6zYcfHqC78Xjdt3+fVW7b9m3qeDDGEaigHzt2jIeNOsN9Ma1e4Dtu3FhdxOMVC7I1Bwp6DzzMIAESIAESIAESiCQBuIRAqNWsWcNIyJXTwOJMLVxcX/0V9IsXL7Ydlr+C3tUGX99jlhgJLh/alcW1LtyMEO3kySefSORupMvAZzq55OpXnVRZf9rU7eg6L8x5QWfZvuK4LqsL6M/B4o92dZtJuTzBvUqX04JXf07JOAIV9P7U03b6Oz7NPKlXRrlJig6PkQAJkAAJkAAJpIgAIq+0btPaEmHw84b4bdjwLhWmD6Js6rSp1vFIC3q43MCVxpc/vTAWgOC3j1l5hMu8o1hRy59dizi8ovyff/5pjZWC/mYVgUh/wTQrfwWvrkdBr0nylQRIgARIgARIgASCSAD+2hBcmK1+ftbzicJE6m5S4kMfrBlixKaHnQj7GIyECDmwDf7diNiiRSdikyNsJz4jHGRyCTc+KIs6SSVtf3JtYuEu3J2QdFx+uB8llbTLDcrrpMcTLP5oV7eZlBsLXJx0ud17ditzgjGOpGba9aJm7QvvamtS9dxdbkqWKqFsx3oNb8nVpUg/gfBW1jWfM/SuNPieBEiABEiABEggqAS03zDCQHpLekEqhFqkZuh11Bv4ibvGi7ezGb7b2KDp0qVLxtZtW9WiX7jdeEuIaKJDd9avX8/QPvhYwKoXdtrVxTGUAZemzZraFbHyIORRDryTsh8RduDuhChAOrQi1jAklfQaB9xc6KRFdSgEPdylvCXM3qPvWzNnUk9FUA4LU5GXknHgyYpdwqZleqwpFfT6e44IQ97Csz7z7DNWfxT0dmeEeSRAAiRAAiRAAmEnoMXQtOnTbPv+/vvvrRCTKBspQb9s2TJLSE2aPMnWVmQiao/e6Ra7hSLsJezGLDHCKtolRLfB7rUoBzG/cuUKn/qCHZrf66+/bte0lffWW29ZZe1CPuqC+sYFT0xmPj9T1UFoT4TgtEvIx3HYgcg4Omm7QiHoccOhZ991f3j9+eeflTsT+nZ1dwIb5AUyDj2LXqJkcRVD3rU/vHddw5BSQY8xaW6zZs9y70rtYaCf3qAcBb0HImaQAAmQAAmQAAlEgoCeBUaUFmwO5Jr27ttrwGddixy8fvjhZtciXt/rOsESlAjPqN1b4OcPNxT32XPEqtfRZLDL55EjR1S8dG1L23Zt1eZCrkbDxQWLgXUZ3Diovv63OytEKGL1u8awx3vkaSGNGWv43ieVcFwvBEZsfuym6tom1jKMGjXSsgM74uK4FrSY2XcX9fisn7CgHDY/0kmPJ1j80a5uE68Qttt3bNfdqRspxPHHMey06hrHPSXjwIJl3S/4YR3EoUOHjLffflt9H/AkQN/ApVTQYzB4UoX+8B3D+cBGaNirYMOG/3j8X6Cgt04/35AACZAACZAACUSSwPvvv2cJU4gjiCbMUsPtAMIGrh/TZ0y3FpHCn96XpEVYMAUl4rdrUY/24SaDHUhhL2Kj6z4h5l03YkJoTH0Ms8uIbIM6EKBaDOI4NhjSsegRY75OndpWPZRr2aql+nOtgzKuO9YmxQblqt1Z1WozX/68yg6069ombjwgIpGw2Ze+SYGNiMsP2/Gqx4TjR48eTdS1PhZM/rpNfZMB0YuZc3zWUZEQIWnHzh2JbEnJOLCewPU8aBvwmj1HNrXDsLYnGIIeT3H0ngGufeE9npq4PpWhoPc4zcwgARIgARIgARKIFIH169cZlSpXtAQixAuEWd9+fYyzZ88qs+BCgUWDrqIpKXsxs4+/NWtW2xbr3qObOj5hwnjb41igi/oQr64JQhebYNWuXSuRvbAZAhl+0O5PGjDjjh1VIQyxC6irUMNNDNxc1q5d49qNeo+Z5RdfejGRCEddzMzjpmDRokWJZtk9GrDJQJvwM69arUoiO9AuxD7sdE8QtXgiod2CtP2FChc0nnpqgrWI1rVeKPjrfmH/xo0bjLp16yiRi3wsTMXiXLhoeUuBjANtgdmSJUtUNCaMC+cei7n1rsWInjNmzJMGnq7opMeP8+ctYSMulMPTENeE7wvCuGJTroqVKqgbFrzHkwE8SUFf+PPV/Qxtp8I/wkQCJEACJEACJEACISZw+fJlMeOIS5o0aaRo0aKSKlWqEPeYsubNhYty6tQp1Uj27NklISEhWZtNsSanT58WcyZeUqdOrcZ50003JWuI6c4iX331lSpXsGBByZgxY7J1kivgb5uQhKYLiJiuRpI5c2bJnz9/cl0E9bg5I6/ae+65mTJ40GD13gwHqliCh6/fl0iPI6hQfGyMgt5HUCxGAiRAAiRAAiRAAiQQOgJ2gj50vcVWyxT0sXU+ORoSIAESIAESIAESiEoCFPSBnzYK+sDZsSYJkAAJkAAJkAAJkECQCFDQBw6Sgj5wdqxJAiRAAiRAAiRAAiQQJAJmNBnV0ojHR0rXrl2D1Gp8NENBHx/nmaMkARIgARIgARIgARKIUQIU9DF6YjksEiABEiABEiABEiCB+CBAQR8f55mjJAESIAESIAESIAESiFECFPQxemI5LBIgARIgARIgARIggfggQEEfH+eZoyQBEiABEiABEiABEohRAhT0MXpiOSwSIAESIAESIIHIEli4cKEMeLi/jB07TsaZf+FOOgzkuHHjZeyYsT53r+tVrFhR9u7Z53O9lBS067Nzl06ydu1aeW/9e9KgwV0paT7m61LQx/wp5gBJgARIgARIgATCTWDf/n1Sp05tKV26tBLFN998c7hNEC2So1XQX758WcqULa24HTxwSPLkyRN2htHSIQV9tJwp2kkCJEACJEACJBAVBH7//XepdmdVOXnypHzyyadSq2atiNgdqKB/5tlnlL0JOROke/fuYbFd2+r+VEA/5WjWrLmsX7c+LLZEYycU9NF41mgzCZAACZAACZCAYwlMmjxJJk58Srp06SKvv7Y4YnZqkezvDH0kDNa2ugv6f/75Rz3pwBOPZUuXSYcOHSNhnuP7pKB3/CmigSRAAiRAAiRAAtFC4LvvvpM7ihWVGzduyGdHj0mJEiUiZroWya6C/ocffpAvz30padOklVKlSkm6dOkiZp9rx9pWd0GPMqtXvyv33nev5M2bV744+6VEwn3J1VZHvjeYSIAESIAESIAESIAEgkJg9OhRxi2pbzZatmrptb3z588bKFe7di0jW/asqjzqFC9RzOjeo5uxa/cu27p///238c477xiNGjey6qE+PiP/33//TVQPbeJv4qSJxs5dO4277mpg9YX8LLdlNvr172uYvuqJ6uXNl8fAX5OmTRLlt+/Q3sAf7J8zd46RK3eCaq9GjerG+++/Z5UNZHza1qrVqljt6DcYt3mTpPpavHixzuarCwFxec+3JEACJEACJEACJEACARL47bffjKzZbktSeG7a9IElxiFiby9YwChW/A4jc5ZbLbGdJm1q480330xkhTmzbpiLbK0yKO9er137dgbEr05aJNeqVdPImCmDgXZLlCyubiQy3ZrRagsiGrbrpOu5i2udP2zYUKuuzlu6dKmqHuj4dDvufWqbhg8fpvqsXKWSzuKrCwEKehcYfEsCJEACJEACJEACgRJ4991VltCFAHdPFy9etAQ/ZstPnz5tzaqbLjqGuQDUyJAxvWqjwO35LXGOmfeGjRqqfMyKL1q0yEB5pOvXrxtPPDHa6nfqtKlWt1ok4xU3A0eOHLGOYVb+gQe7WvUww6+TrucurnU+XqtUrWxs3LjB2L5juwGx/ccffxiBjg/96rbd+9Q2bdnykVXGXGyss/n6PwIU9PwqkAAJkAAJkAAJkEAQCAwc+IgSnSVLlbBtbcrUKep4+gzpDG+idMiQwZZwPXPmjGpn3bq1Vh5uGtwTBH/rNq1VGQh+PUuvRXL2HNmU2Hav9/PPP6tZe5SD7Trpeu7iWuenS5/WsLthCXR86Fe37d6ntunatWtWmXnz5+lsvv6PAAU9vwokQAIkQAIkQAIkEAQC8CWHMO14b0fb1iDQ4Urz8isv2x5H5ksvv2QJ18OHD6ty93e6X+WhfXc/ed3Qjp07jMGDBxmzZs8yINSRtEg2N2jSxTxeK1Qsr8p16ny/dUzXcxfXOr9FyxZWWdc3gY4Pbei23ft0bd+MSa/KPdSrp2s235sEGOXGkUuVaRQJkAAJkAAJkEC0EciTN7dcunRJhg0dJk8//d9Y7r6M4erVq3Lq9Ck5dOiQLH79ddmzd4+qtn/fASlfvryKmvPVV1/JkMFD5Nlnn/OlSVVGR45xjXLjXrlipQpy7Ngx6dixoyx9a1mieu4RZ3R7w4cNlxkznnZvyuvn5MaHirpt9z5dG211dyv54IONUq9uPfnww49cD8X9ewr6uP8KEAAJkAAJkAAJkEAwCGhROnbsOBln/nlLH3+8RZYvXy4HDx6Us1+cFXNGXRBv3T1pQa/bnTnzeRk0cJB7Ma+fdb1gC/qk2oMx/o4PdbStSQn6Tp07ycqVK9Tuu4cPHUE1pv8RoKDnV4EESIAESIAESIAEgkBAi1Jvgv7XX3+VLl27iBniUfWWKlUqyZEjh5QqWUrNxFevXkPFiB83bqw6Hm2CPtDxYbCaHQW9OvX+/0PHIxIgARIgARIgARIggZQTuC1rFuXjPWLE47aNIR++4lgU+/ys5w3TjcajnJ0PfUKunKoeotkklRBlxjVpv3TEofeWAvGh99ZeoOODbdrWpHzoTZcbVQ7x+5kSE+Ci2MQ8+IkESIAESIAESIAEAiJQqXJFJTjNXU1t6+fOk0sdx+JVb2nAgP6WuNWLYrFxFARv02ZNvVUzTD91A7HlEQcfC2+RtEj2JsBRJpiCPtDxudqalKAvW66MGlPPh3qgCpMLAQp6Fxh8SwIkQAIkQAIkQAKBEujdp5cSnN7CVmqBPW36NNsuvv/+eyNHzuyWENeC/pUFr6g8zOx/9tlntnVnPj/Tqnf8+HFVRvcXLkGv+/N3fDBW1/Um6P/880+rDMbKlJgABX1iHvxEAiRAAiRAAiRAAgERWLZsmSU67eK0YzMmCNeChW43zp07l6iPvfv2GuUrlLPqo9yHH25WZUzfdGsmHaEbd+3elagu4tRnuS2zqtula2frmBbJ4RL0gY4PBmtbvQl6c6GtVUbf6FgD5RuDgp5fAhIgARIgARIgARIIAgG4vWg/+iVLlni0aC6GtTZyujVzJqNBg/pGm7ZtjFKlSyqxitn56TOmG+YCUfUZ/vQ6HT16VN0IaOFbq1ZNVbdc+bKW0IUYvnLliq5i5YdL0KdkfHpc3gT96NGj1Hjg1sTkSYBRbvxfR8waJEACJEACJEACJGBLoE/f3vLaa69J8+YtZN3adR5l3ntvvYw1o9iYAt06li1bNmnbtq2MHDFKihQpIn379ZGtW7cKIr7o2PAojHjuU6dOkbeWviU//vijVT8hIUH69e0nI0eOkrRp01r5ppBX7+vXry/169W38l3fmDcNqq0ypUtLhw4d1SFdL3fu3NK3T1+ruOlvr94PGPCw9O/X38p3fRPo+Lz1ibbNzbTEdGOSL7/8UmbNmi2PPPyIa5d8bxKgoOfXgARIgARIgARIgASCRACi01y8KTdu3JBjnx2X4sWL27Z8+fJlMd1yJE2aNFK0aFFBCEtfkzk/KxcuXJBr165J5syZJV++fH7V97WflJRLyfjc+12zZrWYu+9Knjx55PMTJyVDhgzuReL+MwV93H8FCIAESIAESIAESCCYBIYPHyZz5s6RPr37yPz5Lwaz6bhs6667Gsi27dsUSzBl8iRAQe/JhDkkQAIkQAIkQAIkEDCBS5cuibl4Ve0Ae+TwUa+z9AF3EEcV4cLTtl1bqVy5suzYvlNuvvnmOBq970OloPedFUuSAAmQAAmQAAmQgE8EtJtIw4aNZOOGjT7VYaHEBH7//XepWKmCfPfdd7L1021SoUKFxAX4ySJAQW+h4BsSIAESIAESIAESCB6BoUOHyLz582TJ4jekU6dOwWs4TloaP36cTJ02VRa8slB69OgRJ6MObJgU9IFxYy0SIAESIAESIAESSJaAucmTpEuXTkWvSbYwCyQicOLECWvRcKID/OBBgILeAwkzSIAESIAESIAESIAESCB6CFDQR8+5oqUkQAIkQAIkQAIkQAIk4EGAgt4DCTNIgARIgARIgARIgARIIHoIUNBHz7mipSRAAiRAAiRAAiRAAiTgQYCC3gMJM0iABEiABEiABEiABEggeghQ0EfPuaKlJEACJEACJEACJEACJOBBgILeAwkzSIAESIAESIAESIAESCB6CFDQR8+5oqUkQAIkQAIkQAIkQAIk4EGAgt4DCTNIgARIgARIgARIgARIIHoIUNBHz7mipSRAAiRAAiRAAiRAAiTgQYCC3gMJM0iABEiABEiABEiABEggeghQ0EfPuaKlJEACJEACJEACJEACJOBBgILeAwkzSIAESIAESIAESIAESCB6CFDQR8+5oqUkQAIkQAIkQAIkQAIk4EGAgt4DCTNIgARIgARIgARIgARIIHoIUNBHz7mipSRAAiRAAiRAAiRAAiTgQYCC3gMJM0iABEiABEiABEiABEggeghQ0EfPuaKlJEACJEACJEACJEACJOBBgILeAwkzSIAESIAESIAESIAESCB6CFDQR8+5oqUkQAIkQAIkQAIkQAIk4EGAgt4DCTNIgARIgARIgARIgARIIHoI/D8FrRy/Q7WhYwAAAABJRU5ErkJggg== />"

Question 3

A student proposed the synthesis shown in Equation PE 14.5.
  After extraction and recrystallization, a white, flaky, crystalline product was obtained that had a melting point of 117119C. The desired product, shown in Equation PE14.5, has a melting point of 152154C. Write the structure of the compound that the student isolated and briefly explain what happened. Write a rational arrow-pushing mechanism for the formation of this product. Hint: If you were actually doing this reaction, you would have prepared a prelab writeup that included all of the physical constants for your starting materials.

Question 4

Propose three different syntheses of the alcohol shown below starting with a ketone and a Grignard reagent. In all cases, first show how you would make the Grignard reagent.
   
 

Question 5

ecmC4w4AfLpTEBHAiwwdITJWTEBIwmQEHjhhRfwyG5dsffJJ+GaNa64iyPTq3POPUeaYpFJllYoXKXcbkcdiSf1tqDL9U7c5XIGzSNQ4fTNImgIC+GZJwWA3alEeapCh4wwZUGx6F3zCgpztFsJVSvKsueXYI0qW091GTp8plFUl8IK1Zdh8uPdAQIsMAIs4t3SEhg0y/re++/Fm7Vu55NpKb3D1emll1ZIc1P1Pt5mAqlOgAVGqt9Brn/GEaCZhDmOOXIm4eLRF+OWLVuazYBMrXJypkvTKzLB+umnnzTzcLvdOHjwIOx0UEd87PHHdJ050SyQd5qUQC0WZnuFjCJobHY72qxeB3BlX25xU47gJr28JFaLBYZ+8LUEBr0ryZyTzDrJvDPZid7fJSVvBFWDBUYQDv6QJgRYYKTJjeTLyDwC3377LY6fME42nnfccXtUvhBkWkVCgUytSDiQgNBKat+P6dOn4W+//aZ1GO/LKAINWOFyol01W6EIC1t2HpZWxm+OlVE4fRfLAkO/u64lMCj3yspKadZJ5p0kOKiTb6bEAsNMd4ProhcBXgdDtJCcmEAqExDT/3DjjTPgxx9/hPnzFoDdbof/+7//07yk2bNnwfLC5ZB370IYPXo07LXXXkHHiVC08PAjD8PcufdA//4D4IFFD8Dxxx8fdAx/YAK7dmyH2voGAaIlZHXoBFmtmEmsBHgdjFjJBZ/3bum7MHLkCOjTpw+8/tob0K5du+ADxKe1a9fAjTfdCL///jvcuyAPxo4d2+gd2Ogkg3eIwRu4fNJlsHHjRvj+ux8MLo2zZwIJJKCXUuF8mAATSB4BChH7zDPP4CFdOuOAAf3xg7IPNCvzxx9/IK3KHZrIz4LW3KC1N4497hh89dVVmo7eoefx58wisGfPHnzyySeDno1ffvkFX375pcwCoePV8gxGfDC3bduGl1x6Ce63fxsUi31KX4bOhxyMTz31FNLzGppoFpcCZdAsLgXOoAAayUi0rpAYzMGOnQ5Eq/VMfPfdd5NRDS6TCRhGgE2kDEPLGTOBxBMgATFz5q3SbOqyyyfiDz/80GQlvvjiCxwxcoR09L5/0f2ajt5NZsIHZAQBMp2jDrE6GABFICPnf06xEWCBERu3uro6FDOyUlhcOu4SrKqqkhnRYEthYSEefsRh2O+Uvli6vlSzAPJDo9Dfrdu0wiuvmhLWD03z5Dh3vv32W9jLciJ273GUFOc0wMOJCaQbARYY6XZH+XqYgCDw9ddf46gLR2FW2/1x7ry5+NdffzXiQn4V5OhNC+qRozd1HjkxgUgEWGBEohPbdywwmseNBMSyZcuaFBDhBEhoaRUVFXjueefKAZa8hXlB4jn02Hg/03vZNsqGbdtl4fwF8zVnk+Mtg89nAmYhwALDLHeC68EEDCCwevXbcqTsqO7dsKioSJq2KI7eFBkqkqO3AdXhLFOcAAsM/W8gC4zomZLp52mn/Uuagj799NOaJlChualNqO6++y7cuXNn6CHy8xtvvI7Hn9BTrgW0cuUrQWaAmic0Y6d6ZnnS5Muxurq6GWfzoUwgNQmwwEjN+8a1ZgJREyBB8cijj0hbXzIZoAX1KA47ranBU/NRY+QDBQEWGPo/BiwwmmZKpp5k8knhZm+7bSZSh725ad2767BP35PxiK6H43PPPaf57vv777/xwYcexA4HtkeKSFVerqwt09zSvMeTDwgJIfKNI2FUtsG3GGZs2fFZTCClCHAUqQQ61HNRTCCZBGS0kssvgw4dOkBBwRJo06ZNMqvDZacgAeHQDYcdfijsrPsT9t13X3kFYuQXbr/jdvjs040peEXJrzJHkQp/D0RACnjgwQcgL+9eGDbsLFiYtxB69OgR/oQmvhHmVeB0OmHW7Dvh6B5Hw6IHHoBT+p3S6Kzt27eDmO0A51InXDH5CrE9Bzp27NjouEg7lOh+QpTDgvn3wrhx48JG94uUD3/HBFKWQErJIa4sE2ACTIAJJI0Az2Dojz7RMxiecqdc+d1CK8Bb87Am3CXVV2COb5V4S04xNo49F+7EkP2eSnTm2mWZoqMU+GuxYV5RGXpCDqePNLNKJp1k2mk5qReSqaeeaceOHXjzzTdJB+8rpkxGEeJbM3sROhaHDhuKB3bsgPmL85EiPzWVaH2iceMvlc7ns2bdieQLwokJZCIBNpHKxLvO18wEmAATiIEAC4wYoDVxSuIFRkGgky86/EWV2tKhtiwvcJy1AGNZRtFTXoTWIFFhRZvNGsiXvrM4sLIhAIkWxTvzzMFIPmKPPvYokomnUWnz5s143vnnYbsD2mI4B28SO6+88jIefUwPpCh74RL5dpCPBy3mN2bsGNy6dWu4Q3k/E8gIAiwwMuI280UyASbABOInwAIjfoahOSRbYNgK3KFVEp8bsDjHEhACtgLNmQaNEwO7aktV4sKOxeXVIldfaqjFskJHIP/sIv8Micv1jpxdoCh3iUolJW9IB28SEeEcvCl6lZbYIQHyn//8B7seeQSe3Kc3rlu3NlHV5nKYgKkJsA9Gyhq3ccWZABNgAoklwD4Y+vNOtA9G3aYl0NZydeBCLA6o3jgLugT2AOz6BCa27gvLlX22AvCsnApZymfxd8eWTbDhi22wW2zv374bnPKvXpDVInDA+oVDYNDMtWJHDlTUPwjHaaz2/uOae+DQobPlSQXlHpjaS11CIK9EbAnxAI89/hg4HHPEauB94YFFD0CvXr0iFi0W6YMbZ8yAr7/5Gu65Z67019h7770jnsNfMoGMIWBq+cOVYwJMgAkwAdMQ4BkM/W9F0mYwbNlot3p9IgpDzKRqXN7ZBbsjD+1kxhQ0g1GDhbkhZk7SDErMUlT6PCrq3d7zxH6HK6yXh4BZ758psTq0F8TTn3jkHGtqavDaa6+R6wNdf/11+OuvvzY64aeffsIpV14hfThuuulGJJ8OTkyACQQTYBOpYB78iQkwASbABMIQYIERBkwcu5MmMLKdWOLMlmZKtny1mVQ9FmWT8LAKs6ZSzA4SGA1Y4jedsqDDWYxlpSXosHmFCoANy0hjeNxok6LDhm5tFw8/saqiHK+plDU/Jj8Pf0Y6b3z22Wc4ZOgQGd578cOLpYM3rWC/8L6F0meDfDdokT5OTIAJaBP4fwAAAP//8qKw5wAAP09JREFU7Z0LfFTF+f4fKkGiBgsYingBDVbAsii0Bi+oG9SCWpdaUEsWJV4C3kJABYOCGlQM91BtA15CJaGtQSXYGrRN6D/YGn4ahEQJSsCgBmuiiSZoIkk7/5mzl+yScza7ye5md/Oczyfu2TlzZt75zsqZ58y870DwIAESIAESIAEvCPznP/8RvaOOE83Nzc7cf/vbX8WY803O7zzxjYDiqf6CdTSUZQkAApZcUVOdbzs3pYtqhwENJcKirpuzRF1ThbBqebNEg7zeUmXPD7MoqGpx3CE/G0Ruskkry5pdIZrKsm3lwipKm1yy6Zw681psdehk6bak//3vf+LVV18RccPP1v6GDjtTjDpvpHjjjb91m02smATChUAvZaj8x4YHCZAACZAACXgk8OWXX+L0M07DkcbvcPzxx2t55WALCx9eiN3v7/F4Ly/qE4jq01u70HK0VT+Dn1Mby9ehn2k2YM5GU5EFa8cMwIIyILeyCdPj+uLwtoU4bfJSWHMrsXH695jSy4R8SxYatswCHPfCisKKxzCk5Xu0SPuiTjgBVZtuwOTFsiBLNmpWnoRBw6fJK6mobFmNOFsTdVvitMdeR4xuru5NlIIa9953j/zN98Wa1WsQFRXVvQaxdhIIAwIUGGHQSTSRBEiABEKBAAWG/3uh+wRGlhQYs7B/3QyYZufAklmKLSkmbJoRhcQcEwqq92DSgF2YET0OOfbBf9UGmTcpxzMEUybq3



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

Chou

  • Sr. Member
  • ****
  • Posts: 335
Answer to Question 1

The resulting diol is a meso compound and is therefore achiral, which means it must have an optical rotation of 0.

Answer to Question 2



Answer to Question 3

The product that the student obtained was 4-hydroxybenzaldehyde. This occurred because the Grignard reagent, being a strong base, deprotonated the hydroxy group in the aldehyde, resulting in the formation of benzene and the phenoxide shown below. Protonation of the phenoxide gave the aldehyde back.


Answer to Question 4






 

Did you know?

In 2010, opiate painkllers, such as morphine, OxyContin®, and Vicodin®, were tied to almost 60% of drug overdose deaths.

Did you know?

Approximately one in four people diagnosed with diabetes will develop foot problems. Of these, about one-third will require lower extremity amputation.

Did you know?

When Gabriel Fahrenheit invented the first mercury thermometer, he called "zero degrees" the lowest temperature he was able to attain with a mixture of ice and salt. For the upper point of his scale, he used 96°, which he measured as normal human body temperature (we know it to be 98.6° today because of more accurate thermometers).

Did you know?

According to research, pregnant women tend to eat more if carrying a baby boy. Male fetuses may secrete a chemical that stimulates their mothers to step up her energy intake.

Did you know?

ACTH levels are normally highest in the early morning (between 6 and 8 A.M.) and lowest in the evening (between 6 and 11 P.M.). Therefore, a doctor who suspects abnormal levels looks for low ACTH in the morning and high ACTH in the evening.

For a complete list of videos, visit our video library