This topic contains a solution. Click here to go to the answer

Author Question: When a student ran an asymmetric dihydroxylation reaction using cis-stilbene and the ligand ... (Read 64 times)

Pea0909berry

  • Hero Member
  • *****
  • Posts: 573
When a student ran an asymmetric dihydroxylation reaction using cis-stilbene and the ligand (DHQ)2PHAL, the hydrobenzoin showed an optical rotation of 0. Explain this result.

Question 2

M2c8hqt3W61fv56tkPaoEKIMbGKHp3d2u2frXW4R8tbXTelCZGZYm9VREfHkIlpTz4d6qGvy7j27Iz6EkAp6jO7jj7eowSL+qF3CZkbeVnvblQ9Wnqt/nd3jLR2THnf38Zhw94ynJ+XKl3VklABv50SHxSpUuKCtj6K3eswPHgE84UFoWghPPCWBe11SCY/FtZjHDx5mqsKVEDO4WPE7kn3ErQW1N7swwwS3PUQ58CfpdpMS9Lg+6ag3ujwFvT+UWTbWCWD3Udycuy4gdx3z1GlT1fUIAjISCdHxYJ+3QCHaPl8nQCIxhlD0qT01cH3DhkzRlvQT6Yd69XSE6SEX9BglZpiwUMwu9jx87bE7ZLjdO+DrhB9HuxXw+kvmLSa9I85cGIzAQiMwwjoCuwTftzuKFVXRgRAhKFx/iGHr7fHps889q2xOTkTajYd5wSOA2YqEXDnVucB3CO51c+fNNfCdwYJU7ND6+uuvG/e0vkf90KEMbux93ZApWJZiYRpc6uC7ardIzZd+cL3A0zzclCDyhj8J48ZfUoIe7SHqjZ6dR3kKen8os2w8EHjssUfV/yW7J26YAceNe8FCtxvhjuCG6wPc5bwF1tBPEOD+G49Je2pgciWaEiZxatas4ah9lVIBoIQ4mX7MUrZcGbnvvvvk/xYu8uht1aqVcvLUKRk9arTHsVBlbNnykaxYsUJmzZotqVOnTtSNGZNezP9cMmHCU/LkE08mOhZPH/DVMGPhyvETx+XzEyclZ86ciYZvzsTKhKfGi3nBSpQf6g84X5MmTpYCBQok6spchCnmphVSsUJF+eijLZIqVapEx/khvAS+/PJLeWTgI2K6oCTbcalSpWT+/BelTu06yZYNdgFzUkGaNmsiGTNklKVLl0n+/Pl97sJclCf9B/STNWvWyIYNG6X6ndV9rouCpkhX5ceNGy9jx4xNsq4ZEULMIAKqTJs2bWXF8hVJludBEognAuYMr7r+Z8+eXQ7sP+jxu75mzWoxJw5lzJNjZPz4CWFDY4YzFPPJgbzy8gLp2bOnR79mNCt1/Th+7IRf1x6PhqI4w9ypXhYsXCCHDx2REiVKeIzkm2++kUWvmtox9HI1Ud8ZMmaUQQMHSdq0aRPl44M5ISW9+/SS6dNnyKPDH/U4HomMsAh6DMzcsEkmTnxKduzYKdWqVovEWH3q04xDr24+brrpJjl65DNJnz69T/VitdDefXvFXOwhvXr1kpdefNnRwzQXJIr55EX27N4rlSpVcrSt8WScGflFVpo3zzt37pQjR4+IGc1GDb9cuXJSpUoV6dihozRu3ERuvvnmiGGBqO/6QFfZZ37fJ02aLL179ZY0adJ4tQc3u6ZrkIwZO0bMmRpzfKukTJkyXst7O2DOzKtD9evXl/r16nsrpvLNqDdiLpjDU1UpWaKkmiBJsgIPkkCcEVi0aJH0699Xnn32ORkyeEii0eP/TbfuD0q2rNlk9uwXEh0L5YfJUyara9+6tesEusI14dpobsRpaqNJYZ3QdLXBCe9xbTPDPsqd5oTI+nXrPUwyXZFMDfKQuvZ5HAxhRqZMmWTzpg89JjPNPW7UzWOWLFnk0MHDSf5WhNA8z6bNL3lYEjZsgksGYs87eUWz3qly5coVYeESDZ0gcgce8+/bv8+x5mpfNnO21LE20jBnE8CjcewonDtPLvWH79LSpUsNuA/BTQjRDMxZPgOPhuFqBpc87HWADcwimcwnIQY2NWEigXgnAG1RvfqdRrbsWQ3suOzkhHV8cPcrXqKYAZegeE8vvfyS0hnRcC0bOXKEsvX9999z1GkLiw+9HjFEMoSh3SYQukwkXxHiELtHeotJH0nbItk31j5gkSOil0D0OC3hIo7QV7iII9QoU3QSwHcLax8Qfz2SCfHwTbc7tbFT0TuKJPJdhx8sFr5C+GP9jxOS3lznuZnPOcEc2kACESWwY+cOpTP69usTUTuS63zhwoXKTruw3snVjcXjuMFBWF5s0IT9BZyaTp48qaKZYf2X01JYBT1+sBGDNdKx572dhM5dOnmNSe+tTrzk640TnHgzhpBXuFGcNXtWvJyOmBzn1atX1Xns3qObo8aHMHKINHPu3DlH2aWNwQ0IFsni/wBFvabC13gmYLrWqP8PTn2qjGtdrtwJanLAiZNkkfrubN22VZ03b1ERI2WXa7/YZwThifHU1mkpbD702tnHjMEqlatUkvbt20vXLl11dsRfjx8/rvxh+/frL3PmzI24PU4zAH7P5SuUE/i6zTX5OGVtgRmZRAYPGSwJCQly8MAhj4VQTuNIe5ImYM6qiXmDJtu2bfd7gWnSLTvr6CeffCzjxo2TDz7YZLvgyl9rzZsO6dyls7m4brXMmPG0DB823N8mWJ4EYoaA6R5nBUj4+ONPHBcg4dFHh8v8F+erRaDFixePGe7BGAjWOaxdu1ZOHP9c8uTJE4wmg9aGuceNtG7TWi2CxWJYp6WwC3oAaNy4kWCRg9PSLbfcIt+cvyBYJc/kSeCVV15WUUs8j0Q+59VFr8kDDzwQeUNoQYoImC5T6oe4RPESStS7LyJLUeMOqYybY3MDGcmQIYPs3rXHY6FcoGZC1Hfp2kUt1nVS5AWMx/Rnlo0bN8ru3bvkOzMalTmzpYaZLVtWtRCuRfMWcvvttwc6dNYjAQ8CpiuamBskmhNQ89QEokeBCGWcPn1KTLdeGTZ0mEybNj1CVji3WzP0r5QuU0ruueceeX7mLMcYiuu2ubO4XL9+Td1sZM6c2TG2aUMiIugRXmrLli2SkCtB2xHxVzM2reRKyCUVKlSIuC1ONmDVqlWSK1cuSXWTM0JCmo8r5crlK9K6dWsnY6NtfhAw9z0QM6a0xOpNmukaJuaukfLhhx9Jvbr1/CCTfFHXmXoniHo8+Zw8ZZIKEZw3b14zokcDyZsnrzWQS5cvya5du8TcGEiaNWsuY8eOjeknM9bA+SbkBMxNBiVf/rwCveG0lC5dOvn2wndy6623Os00R9gzYuQIef75mY6wxd0IhF7v1q2be7YjPkdE0Dti5DSCBEjAkQQgSuGW99NPP6mZEIQOi5WEmWrsldCsWTNZ+taykAzLdaZ++TvLpW3bdlY/5sIzeeedd2TFyhVy6NBBMTe1Ucewx0RVM5xwq1atpEvnLikWGpiBnzZ9mhkCdKLcdVdDGTlihNSv38Cyw/3N0aNH5YU5s1Vs5759+srMmc87JxScu7H8HDUE1q1bZ95MLpeKDgpj/NlnR6VOnbrSs4dnTPqoARtiQzHB+pAZphJhjZMKHxxiMxI1f/nyZbl08aLaL8WpT44p6BOdMn4gARJwAoHNmzdJi5YtZNTIUSouvBNsCoYNffr2NjevWirHPjsuBQsWDEaTtm1A1JsLy6R9u/aCTbuQtm3fJn379pHTp0/b1tGZOXLkkOnTZkj37t11ll+veDRtLmw2N3f7SBYuWGg+Ovf96Rn2vehqug3ly5tPVq5cJdmyZfOrbxYmARIggXglQEEfr2ee4yYBhxPAro5YhIQN3ooUKeJwa5M3b8/ePWLuw6F2n8Yu1OFMWGg8aPBAgRsC1gp16NBBWjRvqVwMsaHXmTOnzQW6H8jSZUstF4UnRj8hTz31342v/LEVG/usX79eNn2wWUqXLu1PVVUWPrTNmjc1b3gKyep3V3Ohu98EWYEESCAeCVDQx+NZ55hJIAoImBsmSbnyZaVFi5YC15FoTljrUbduHfnmwjeCLd4zmluKhythZr5582ZKzGNb9TeWvCkVK1a07d7cc0Luv/8+2blrpzq+6P9elQcffNC2rF3ma6+9ZkadGiS7du4OSMzrNhGlpGKlCjLUXDiIGwsmEiABEiCBpAlQ0CfNh0dJgAQiSOCppyaYiyonywcbP1C+2BE0JUVdL168WMwdl+X11xZLly5dUtSWP5VxI1G9xp2mv/whFUVm3979kjVr1iSbuH79utzVsIEcPnxYsLU5wsfBxz65ZMbqV9u3I3IH/OBTmlavflceePABOfn5KcmXL19Km2N9EiABEohpAhT0MX16OTgSiG4Cv/32m5QpW1oJS4hRuItEW7p27ZoKw1a4UGH59NOtYY2JvWXLR9K0WVOFzJ+bCXO3TTMiTX0VXnLKlKky4vERyWIfN26srDbj4B86eDgooTixsLZmzRpSr149efrpZ5LtnwVIgARIIJ4JUNDH89nn2EkgCgisWLHC3DSpk7zwwhwZ0H9AFFic2MRRo0aKuYOr7NixU6qZkWTCmR5+eIAsWLhARa1BmDyEy/M11a9fTyDs4Z6zd8++ZKsVL1FMBg8eIgMfGZhsWV8LYAHx0GFD5OuvzgdlAy5f+2U5EiABEog2AhT00XbGaC8JxBkBzNQ2adpEjhw5LJ+fOBlVkU9OnjypfME7d+4s8EcPd6pRo7rsP7BfGjVqLBv+s8Gv7seOHSPTZ0wXLJq9cvmq2gjLWwNnzpxR4Ti/OPulFChQwFsxv/PxdCMhV07ZunVb2G+G/DaWFUiABEggggQo6CMIn12TAAn4RgBxyqtWq6Jm6GfNmu1bpQiXwo3I3ffcLdvNRamR2sY8e45sAlHcv19/mTNnrl9Eli1bJg92++/uywf2H5Ry5cp5rQ9/9169e8nlS1e8lgn0ABbHDnxkkPTu3TvQJliPBEiABGKeAAV9zJ9iDpAEYoPA0KFD5MWXXpT9+w5I2bJlHT+o995bL23btZXJk6eYGyuNjIi9qdP8d83B4489LlOnTvPLhnffXSX3mRFvkJJzF3rp5ZcEPvQ//nAxUR+6/0SZPnz468bfVqlmZoSeOnXqyNgxY608viEBEiABEkhMgII+MQ9+IgEScCiBq1evqigqFSpUlI0bNoZ1cam/SBDvvULF8vLPP/+oOPr++K7721dS5bWgDkTQr1q1Uu7vdL9qfteu3VKlchWvXcHXfcjQwSER9HXq1Jb2Ztz84cOGe+2fB0iABEgg3glQ0Mf7N4DjJ4EoIoAFnljouXLFSmnduo1jLccurU8++YSKn9+2bbuI2VmyVAk5e/asuZFUR1m2dJlfdkyaPEkmTvzvBlhXr/wkmTJl8lofTyN69OyhBH2qVKm8lgvkQIHb88uzzzxnxsf/781FIG2wDgmQAAnEOgEK+lg/wxwfCcQQAcx416xVQ3766Sc18502bVrHjQ6bIpUqXVKqVbvT3C11U0SfJPTo2V3efPNNyZ8/v2DBqj9iu9XdrczdYzcKNqP67OixJDmfO3dOihW/Q5VD+WClS5cuSZ68uZWbVfny5YPVLNshARIggZgjQEEfc6eUAyKB2Cawfcd2FSPd1/jo4abRvUc3gQsK4uZHWoSuW7fWdFdprxCsXbNW7brrC48vvvhCxc7HDRRi0IN1cqlwkULy6KOPBTVsJRbmDn90mFz45lu/bkaSs5XHSYAESCDWCFDQx9oZ5XhIIA4IQDSvWbMmYtFjvCFG3HbEb+/Xt5/MnTvPW7Gw5f/9999SomRx+frrr6VkyZKy9dNtcttttyXZP3aX7XhvR8HNQOrUqdWse5EiRZKsg4Nwz1m+YrkcOXw0aOIbC2LvKFpU5s2bn2z/LEACJEAC8UyAgj6ezz7HTgJRSgBuLUXvKCJp0qRxVFz6H3/8Ue1me/bMF5IjRw5H0N24cYPc0/oetesrFrauXbtOEhISbG3DYt7efXoJZsaR/FlMe/HiRcHmUvPnvSiIu5/StHnzJmndprUgZCZuRphIgARIgAS8E6Cg986GR0iABBxMYPjw4bJn7x4pXLiQY6w8fvy4KWa7yGOm64mT0tx5c2XYsKHKJNxoDBo0WFo0byEVKlSQm266SbAx1CZTQM+fP08+//xzVa5Jk6ayft16ddzXscyZO0cmTBgv27Zul1KlSvlazaPc5cuX1b4Dne7vJNOmTfc4zgwSIAESIIHEBCjoE/PgJxIgARKISQKYdUdoyStXkt786ZZbbpEhg4coIe3PIlpAg4sPYtefPXvG3Jl2o+TJk8dvlr/88ovcbS7I/euvv+Tjjz9Rbj9+N8IKJEACJBBnBCjo4+yEc7gkQALxSwBuMdicC/7xhw4dSgSiUKFC0qplK+nff0CKXFz++OMPade+nRw+fEhWr14jd5rRfnxNJ0+elM5dOim3pY0bPpCsWbP6WpXlSIAESCCuCVDQx/Xp5+BJgATilQBmwrFYFgk+9cH0+b9x44baOXb2C7OlY8eOMmrkaClTpoxX1BcuXDAXvs6VWbNnSdu2bZUffnKLd702xgMkQAIkEIcEKOjj8KRzyCRAAiQQDgK79+w2feonCBa4Vq1SVerWrWvGqy8uCTlzql10Dxw4IDt27BBEB8JxlG3cuEk4TGMfJEACJBBTBCjoY+p0cjAkQAIk4DwCp0+flrWmm8/u3bvlm/Pn5fw35yVLlixSrFhxqVSxojRv0cIv1xznjZAWkQAJkEBkCVDQR5Y/eycBEiABEiABEiABEiCBFBGgoE8RPlYmARIgARIgARIgARIggcgSoKCPLH/2TgIkQAIkQAIkQAIkQAKKADYozJc/r3q/ZPEb0qlTJ5/IUND7hImFSIAESIAESIAESIAESCC0BCjoQ8uXrZMACZAACZAACZAACZBASAlQ0IcULxsnARIgARIgARIgARIggdASoKAPLV+2TgIkQAIkQAIkQAIkQAJBI/Drr7/K8RPHxTAMKVe2nKRPn14CFfRohIkESIAESIAESIAEQkrg/PnzxujRo4zatWsZ2bJnNW5JfbP6K16imNG9Rzdj1+5dfvXfvkN7A39btnxkfPfdd8awYUONPHlzqzbz5stjDBz4iHHt2jXV5uXLl43HH3/MyF8gnzqeK3eCcX+n+w1zjwTbPg8ePGj06dvbKHpHEcvOArfnNx54sKvxyaefeNT5999/jffeW2907tLJKFS4YKI6HTp2MN58803jn3/+8aiHjJ27dhrduj9oFCla2KqH98jDsUBSUm3u2bvHo8m///7beOedd4xGjRtZ5wbnCJ+Rj+PuKRT827VvZ+Bv/fp1xrlz5xSD3HlyKS54BZNDhw65m2J9DmQc+ns4cdJEqx33NxUqllc2dOp8v3VIj//tt982rl+/bkyYMN4oU7a0dQ5r1KhuPPvcs7bn/dSpU+q7mz5DOqt85iy3GkOHDjHOnj1r5S1dutTqL7k3FPTJEeJxEiABEiABEiCBFBHYtOkDSyhCQN1esIBRrPgdBkSMFlRp0qZWwtfXjnQ9CClXMazz8Vq3bh3jq6++MsqVL2v143ocAh/Hdfrrr7+Mxx571Eid5harfOEihZStuh7sfOSRhxOJ3AED+lvl06ZLo8pjfLoOXlu2amn88ccfuivjl19+MXo+1CNRGfSFP9d6/Qf0U2Wtikm8QZtdunZOVN+9Tdg3cuQIq5UffvjBaNiooVUH58T93DRv0dxAOdekbQwmf93m4MGDrJuznAk5jFKlS1r2Zbo1o/HKgldcTVHvUzoOfwW9thUivFatmpZ9Ol+/4gbFNeHGFWPC8Sy3ZVY3MLhR0Dejrt9VCnpXcnxPAiRAAiRAAiQQMQIXL140sma7TQmYu+5qoGbFMaONdOPGDWPhwoVGhozp1XHMgtvNBtsZrwVTxkwZjIqVKhhr1qxWgvnChQtGj57dLYEFoYQ/zDRfuXLFuHr1qvHczOcs0Y6Ze50GDRqo6kG0Q1TiqYJOmOWfPGWykS59WlUGM/hImE3WtgwZMtjAeHVCf5jV18dnvzBbHcL4MZuv81Hmyy+/1NXUe9d6GI8vSbeJGxI8sfj222+taseOHTMaNKhv9blkyRI1e6zFPM7B/Bfnq9lmVMKsMz7rc9OiZQtDnzcc17YHk79uE68Q7gsWLLBmuDFj36RpE9UvzsH+/fthhkp4+pHScQQq6DF+fG9fevklA98RfKc3btxgVKla2WK0du0aZedPP/2kymJ8d1avluj8mO43Rq/eD1l1UIaC/n8nmC8kQAIkQAIkQAKRJTBl6hQlUuBecPLkSVtjIIS1mDtz5oxtGfdMXR4zyu6zx7///ruRI2d21SbEuZ3ryt333K2OV69+p2oaAlHPzGvh7d4nPkNkoW+U/fjjLcZDvXqqzxC+mOF3TxB4+gkCXFiQNm/epOqgHcz2e0u9+/Sy+oJrUVIJx7X94GmXcLOhZ4Ix6/3uu6ssO5YvX25XxXjjjTesMuvWrbXKBJs/GtZt4hU3eu7pt99+M8qWK6PK3dP6HutwMMYRqKDHzcWJEycsW/QbfI/1eDCLjwTRjzzcBHz99de6qPWKm1kIfV2Pgt5CwzckQAIkQAIkQAKRJABhAx/yl1952asZWuhAyBw+fNhrOdcDWvRA9NolPRtduUolu8PGE0+MVsIJLg5I2m2mfIVyST4lwCy1FpVwmYEg17bMmTvHti/46mPGW/vRwxccdSAGzUWQtnWQiWP6iQB8/pNKus3bsmYxMBPsLWHWe8SIx4158+cZHe/tqOyA77fr7LtrXeRr33BX9xE95mDxR5+6zdJlSnk9B2CMcriB0mskwAZ5KRlHoIIeTy68pYKFbld2ad/7xk0aq8+uNyPudV999VVVBuOhoHenw88kQAIkQAIkQAKOIgB3FPgTQ8y7+iD7K+hnPD3Ddlxa0Pfr39f2uLug1yIdi1g/3fppkn9t2raxBOSBAwcstxQtKuG6s3r1u17FOhYCoyxckJJLKIOyEIdJJX/a1O3oRb+PPjpcZ9m+4jhsgGuJTviMv2DxR7u6zYcfHqC78Xjdt3+fVW7b9m3qeDDGEaigHzt2jIeNOsN9Ma1e4Dtu3FhdxOMVC7I1Bwp6DzzMIAESIAESIAESiCQBuIRAqNWsWcNIyJXTwOJMLVxcX/0V9IsXL7Ydlr+C3tUGX99jlhgJLh/alcW1LtyMEO3kySefSORupMvAZzq55OpXnVRZf9rU7eg6L8x5QWfZvuK4LqsL6M/B4o92dZtJuTzBvUqX04JXf07JOAIV9P7U03b6Oz7NPKlXRrlJig6PkQAJkAAJkAAJpIgAIq+0btPaEmHw84b4bdjwLhWmD6Js6rSp1vFIC3q43MCVxpc/vTAWgOC3j1l5hMu8o1hRy59dizi8ovyff/5pjZWC/mYVgUh/wTQrfwWvrkdBr0nylQRIgARIgARIgASCSAD+2hBcmK1+ftbzicJE6m5S4kMfrBlixKaHnQj7GIyECDmwDf7diNiiRSdikyNsJz4jHGRyCTc+KIs6SSVtf3JtYuEu3J2QdFx+uB8llbTLDcrrpMcTLP5oV7eZlBsLXJx0ud17ditzgjGOpGba9aJm7QvvamtS9dxdbkqWKqFsx3oNb8nVpUg/gfBW1jWfM/SuNPieBEiABEiABEggqAS03zDCQHpLekEqhFqkZuh11Bv4ibvGi7ezGb7b2KDp0qVLxtZtW9WiX7jdeEuIaKJDd9avX8/QPvhYwKoXdtrVxTGUAZemzZraFbHyIORRDryTsh8RduDuhChAOrQi1jAklfQaB9xc6KRFdSgEPdylvCXM3qPvWzNnUk9FUA4LU5GXknHgyYpdwqZleqwpFfT6e44IQ97Csz7z7DNWfxT0dmeEeSRAAiRAAiRAAmEnoMXQtOnTbPv+/vvvrRCTKBspQb9s2TJLSE2aPMnWVmQiao/e6Ra7hSLsJezGLDHCKtolRLfB7rUoBzG/cuUKn/qCHZrf66+/bte0lffWW29ZZe1CPuqC+sYFT0xmPj9T1UFoT4TgtEvIx3HYgcg4Omm7QiHoccOhZ991f3j9+eeflTsT+nZ1dwIb5AUyDj2LXqJkcRVD3rU/vHddw5BSQY8xaW6zZs9y70rtYaCf3qAcBb0HImaQAAmQAAmQAAlEgoCeBUaUFmwO5Jr27ttrwGddixy8fvjhZtciXt/rOsESlAjPqN1b4OcPNxT32XPEqtfRZLDL55EjR1S8dG1L23Zt1eZCrkbDxQWLgXUZ3Diovv63OytEKGL1u8awx3vkaSGNGWv43ieVcFwvBEZsfuym6tom1jKMGjXSsgM74uK4FrSY2XcX9fisn7CgHDY/0kmPJ1j80a5uE68Qttt3bNfdqRspxPHHMey06hrHPSXjwIJl3S/4YR3EoUOHjLffflt9H/AkQN/ApVTQYzB4UoX+8B3D+cBGaNirYMOG/3j8X6Cgt04/35AACZAACZAACUSSwPvvv2cJU4gjiCbMUsPtAMIGrh/TZ0y3FpHCn96XpEVYMAUl4rdrUY/24SaDHUhhL2Kj6z4h5l03YkJoTH0Ms8uIbIM6EKBaDOI4NhjSsegRY75OndpWPZRr2aql+nOtgzKuO9YmxQblqt1Z1WozX/68yg6069ombjwgIpGw2Ze+SYGNiMsP2/Gqx4TjR48eTdS1PhZM/rpNfZMB0YuZc3zWUZEQIWnHzh2JbEnJOLCewPU8aBvwmj1HNrXDsLYnGIIeT3H0ngGufeE9npq4PpWhoPc4zcwgARIgARIgARKIFIH169cZlSpXtAQixAuEWd9+fYyzZ88qs+BCgUWDrqIpKXsxs4+/NWtW2xbr3qObOj5hwnjb41igi/oQr64JQhebYNWuXSuRvbAZAhl+0O5PGjDjjh1VIQyxC6irUMNNDNxc1q5d49qNeo+Z5RdfejGRCEddzMzjpmDRokWJZtk9GrDJQJvwM69arUoiO9AuxD7sdE8QtXgiod2CtP2FChc0nnpqgrWI1rVeKPjrfmH/xo0bjLp16yiRi3wsTMXiXLhoeUuBjANtgdmSJUtUNCaMC+cei7n1rsWInjNmzJMGnq7opMeP8+ctYSMulMPTENeE7wvCuGJTroqVKqgbFrzHkwE8SUFf+PPV/Qxtp8I/wkQCJEACJEACJEACISZw+fJlMeOIS5o0aaRo0aKSKlWqEPeYsubNhYty6tQp1Uj27NklISEhWZtNsSanT58WcyZeUqdOrcZ50003JWuI6c4iX331lSpXsGBByZgxY7J1kivgb5uQhKYLiJiuRpI5c2bJnz9/cl0E9bg5I6/ae+65mTJ40GD13gwHqliCh6/fl0iPI6hQfGyMgt5HUCxGAiRAAiRAAiRAAiQQOgJ2gj50vcVWyxT0sXU+ORoSIAESIAESIAESiEoCFPSBnzYK+sDZsSYJkAAJkAAJkAAJkECQCFDQBw6Sgj5wdqxJAiRAAiRAAiRAAiQQJAJmNBnV0ojHR0rXrl2D1Gp8NENBHx/nmaMkARIgARIgARIgARKIUQIU9DF6YjksEiABEiABEiABEiCB+CBAQR8f55mjJAESIAESIAESIAESiFECFPQxemI5LBIgARIgARIgARIggfggQEEfH+eZoyQBEiABEiABEiABEohRAhT0MXpiOSwSIAESIAESIIHIEli4cKEMeLi/jB07TsaZf+FOOgzkuHHjZeyYsT53r+tVrFhR9u7Z53O9lBS067Nzl06ydu1aeW/9e9KgwV0paT7m61LQx/wp5gBJgARIgARIgATCTWDf/n1Sp05tKV26tBLFN998c7hNEC2So1XQX758WcqULa24HTxwSPLkyRN2htHSIQV9tJwp2kkCJEACJEACJBAVBH7//XepdmdVOXnypHzyyadSq2atiNgdqKB/5tlnlL0JOROke/fuYbFd2+r+VEA/5WjWrLmsX7c+LLZEYycU9NF41mgzCZAACZAACZCAYwlMmjxJJk58Srp06SKvv7Y4YnZqkezvDH0kDNa2ugv6f/75Rz3pwBOPZUuXSYcOHSNhnuP7pKB3/CmigSRAAiRAAiRAAtFC4LvvvpM7ihWVGzduyGdHj0mJEiUiZroWya6C/ocffpAvz30padOklVKlSkm6dOkiZp9rx9pWd0GPMqtXvyv33nev5M2bV744+6VEwn3J1VZHvjeYSIAESIAESIAESIAEgkJg9OhRxi2pbzZatmrptb3z588bKFe7di0jW/asqjzqFC9RzOjeo5uxa/cu27p///238c477xiNGjey6qE+PiP/33//TVQPbeJv4qSJxs5dO4277mpg9YX8LLdlNvr172uYvuqJ6uXNl8fAX5OmTRLlt+/Q3sAf7J8zd46RK3eCaq9GjerG+++/Z5UNZHza1qrVqljt6DcYt3mTpPpavHixzuarCwFxec+3JEACJEACJEACJEACARL47bffjKzZbktSeG7a9IElxiFiby9YwChW/A4jc5ZbLbGdJm1q480330xkhTmzbpiLbK0yKO9er137dgbEr05aJNeqVdPImCmDgXZLlCyubiQy3ZrRagsiGrbrpOu5i2udP2zYUKuuzlu6dKmqHuj4dDvufWqbhg8fpvqsXKWSzuKrCwEKehcYfEsCJEACJEACJEACgRJ4991VltCFAHdPFy9etAQ/ZstPnz5tzaqbLjqGuQDUyJAxvWqjwO35LXGOmfeGjRqqfMyKL1q0yEB5pOvXrxtPPDHa6nfqtKlWt1ok4xU3A0eOHLGOYVb+gQe7WvUww6+TrucurnU+XqtUrWxs3LjB2L5juwGx/ccffxiBjg/96rbd+9Q2bdnykVXGXGyss/n6PwIU9PwqkAAJkAAJkAAJkEAQCAwc+IgSnSVLlbBtbcrUKep4+gzpDG+idMiQwZZwPXPmjGpn3bq1Vh5uGtwTBH/rNq1VGQh+PUuvRXL2HNmU2Hav9/PPP6tZe5SD7Trpeu7iWuenS5/WsLthCXR86Fe37d6ntunatWtWmXnz5+lsvv6PAAU9vwokQAIkQAIkQAIkEAQC8CWHMO14b0fb1iDQ4Urz8isv2x5H5ksvv2QJ18OHD6ty93e6X+WhfXc/ed3Qjp07jMGDBxmzZs8yINSRtEg2N2jSxTxeK1Qsr8p16ny/dUzXcxfXOr9FyxZWWdc3gY4Pbei23ft0bd+MSa/KPdSrp2s235sEGOXGkUuVaRQJkAAJkAAJkEC0EciTN7dcunRJhg0dJk8//d9Y7r6M4erVq3Lq9Ck5dOiQLH79ddmzd4+qtn/fASlfvryKmvPVV1/JkMFD5Nlnn/OlSVVGR45xjXLjXrlipQpy7Ngx6dixoyx9a1mieu4RZ3R7w4cNlxkznnZvyuvn5MaHirpt9z5dG211dyv54IONUq9uPfnww49cD8X9ewr6uP8KEAAJkAAJkAAJkEAwCGhROnbsOBln/nlLH3+8RZYvXy4HDx6Us1+cFXNGXRBv3T1pQa/bnTnzeRk0cJB7Ma+fdb1gC/qk2oMx/o4PdbStSQn6Tp07ycqVK9Tuu4cPHUE1pv8RoKDnV4EESIAESIAESIAEgkBAi1Jvgv7XX3+VLl27iBniUfWWKlUqyZEjh5QqWUrNxFevXkPFiB83bqw6Hm2CPtDxYbCaHQW9OvX+/0PHIxIgARIgARIgARIggZQTuC1rFuXjPWLE47aNIR++4lgU+/ys5w3TjcajnJ0PfUKunKoeotkklRBlxjVpv3TEofeWAvGh99ZeoOODbdrWpHzoTZcbVQ7x+5kSE+Ci2MQ8+IkESIAESIAESIAEAiJQqXJFJTjNXU1t6+fOk0sdx+JVb2nAgP6WuNWLYrFxFARv02ZNvVUzTD91A7HlEQcfC2+RtEj2JsBRJpiCPtDxudqalKAvW66MGlPPh3qgCpMLAQp6Fxh8SwIkQAIkQAIkQAKBEujdp5cSnN7CVmqBPW36NNsuvv/+eyNHzuyWENeC/pUFr6g8zOx/9tlntnVnPj/Tqnf8+HFVRvcXLkGv+/N3fDBW1/Um6P/880+rDMbKlJgABX1iHvxEAiRAAiRAAiRAAgERWLZsmSU67eK0YzMmCNeChW43zp07l6iPvfv2GuUrlLPqo9yHH25WZUzfdGsmHaEbd+3elagu4tRnuS2zqtula2frmBbJ4RL0gY4PBmtbvQl6c6GtVUbf6FgD5RuDgp5fAhIgARIgARIgARIIAgG4vWg/+iVLlni0aC6GtTZyujVzJqNBg/pGm7ZtjFKlSyqxitn56TOmG+YCUfUZ/vQ6HT16VN0IaOFbq1ZNVbdc+bKW0IUYvnLliq5i5YdL0KdkfHpc3gT96NGj1Hjg1sTkSYBRbvxfR8waJEACJEACJEACJGBLoE/f3vLaa69J8+YtZN3adR5l3ntvvYw1o9iYAt06li1bNmnbtq2MHDFKihQpIn379ZGtW7cKIr7o2PAojHjuU6dOkbeWviU//vijVT8hIUH69e0nI0eOkrRp01r5ppBX7+vXry/169W38l3fmDcNqq0ypUtLhw4d1SFdL3fu3NK3T1+ruOlvr94PGPCw9O/X38p3fRPo+Lz1ibbNzbTEdGOSL7/8UmbNmi2PPPyIa5d8bxKgoOfXgARIgARIgARIgASCRACi01y8KTdu3JBjnx2X4sWL27Z8+fJlMd1yJE2aNFK0aFFBCEtfkzk/KxcuXJBr165J5syZJV++fH7V97WflJRLyfjc+12zZrWYu+9Knjx55PMTJyVDhgzuReL+MwV93H8FCIAESIAESIAESCCYBIYPHyZz5s6RPr37yPz5Lwaz6bhs6667Gsi27dsUSzBl8iRAQe/JhDkkQAIkQAIkQAIkEDCBS5cuibl4Ve0Ae+TwUa+z9AF3EEcV4cLTtl1bqVy5suzYvlNuvvnmOBq970OloPedFUuSAAmQAAmQAAmQgE8EtJtIw4aNZOOGjT7VYaHEBH7//XepWKmCfPfdd7L1021SoUKFxAX4ySJAQW+h4BsSIAESIAESIAESCB6BoUOHyLz582TJ4jekU6dOwWs4TloaP36cTJ02VRa8slB69OgRJ6MObJgU9IFxYy0SIAESIAESIAESSJaAucmTpEuXTkWvSbYwCyQicOLECWvRcKID/OBBgILeAwkzSIAESIAESIAESIAESCB6CFDQR8+5oqUkQAIkQAIkQAIkQAIk4EGAgt4DCTNIgARIgARIgARIgARIIHoIUNBHz7mipSRAAiRAAiRAAiRAAiTgQYCC3gMJM0iABEiABEiABEiABEggeghQ0EfPuaKlJEACJEACJEACJEACJOBBgILeAwkzSIAESIAESIAESIAESCB6CFDQR8+5oqUkQAIkQAIkQAIkQAIk4EGAgt4DCTNIgARIgARIgARIgARIIHoIUNBHz7mipSRAAiRAAiRAAiRAAiTgQYCC3gMJM0iABEiABEiABEiABEggeghQ0EfPuaKlJEACJEACJEACJEACJOBBgILeAwkzSIAESIAESIAESIAESCB6CFDQR8+5oqUkQAIkQAIkQAIkQAIk4EGAgt4DCTNIgARIgARIgARIgARIIHoIUNBHz7mipSRAAiRAAiRAAiRAAiTgQYCC3gMJM0iABEiABEiABEiABEggeghQ0EfPuaKlJEACJEACJEACJEACJOBBgILeAwkzSIAESIAESIAESIAESCB6CFDQR8+5oqUkQAIkQAIkQAIkQAIk4EGAgt4DCTNIgARIgARIgARIgARIIHoI/D8FrRy/Q7WhYwAAAABJRU5ErkJggg== />"

Question 3

A student proposed the synthesis shown in Equation PE 14.5.
  After extraction and recrystallization, a white, flaky, crystalline product was obtained that had a melting point of 117119C. The desired product, shown in Equation PE14.5, has a melting point of 152154C. Write the structure of the compound that the student isolated and briefly explain what happened. Write a rational arrow-pushing mechanism for the formation of this product. Hint: If you were actually doing this reaction, you would have prepared a prelab writeup that included all of the physical constants for your starting materials.

Question 4

Propose three different syntheses of the alcohol shown below starting with a ketone and a Grignard reagent. In all cases, first show how you would make the Grignard reagent.
   
 

Question 5

ecmC4w4AfLpTEBHAiwwdITJWTEBIwmQEHjhhRfwyG5dsffJJ+GaNa64iyPTq3POPUeaYpFJllYoXKXcbkcdiSf1tqDL9U7c5XIGzSNQ4fTNImgIC+GZJwWA3alEeapCh4wwZUGx6F3zCgpztFsJVSvKsueXYI0qW091GTp8plFUl8IK1Zdh8uPdAQIsMAIs4t3SEhg0y/re++/Fm7Vu55NpKb3D1emll1ZIc1P1Pt5mAqlOgAVGqt9Brn/GEaCZhDmOOXIm4eLRF+OWLVuazYBMrXJypkvTKzLB+umnnzTzcLvdOHjwIOx0UEd87PHHdJ050SyQd5qUQC0WZnuFjCJobHY72qxeB3BlX25xU47gJr28JFaLBYZ+8LUEBr0ryZyTzDrJvDPZid7fJSVvBFWDBUYQDv6QJgRYYKTJjeTLyDwC3377LY6fME42nnfccXtUvhBkWkVCgUytSDiQgNBKat+P6dOn4W+//aZ1GO/LKAINWOFyol01W6EIC1t2HpZWxm+OlVE4fRfLAkO/u64lMCj3yspKadZJ5p0kOKiTb6bEAsNMd4ProhcBXgdDtJCcmEAqExDT/3DjjTPgxx9/hPnzFoDdbof/+7//07yk2bNnwfLC5ZB370IYPXo07LXXXkHHiVC08PAjD8PcufdA//4D4IFFD8Dxxx8fdAx/YAK7dmyH2voGAaIlZHXoBFmtmEmsBHgdjFjJBZ/3bum7MHLkCOjTpw+8/tob0K5du+ADxKe1a9fAjTfdCL///jvcuyAPxo4d2+gd2Ogkg3eIwRu4fNJlsHHjRvj+ux8MLo2zZwIJJKCXUuF8mAATSB4BChH7zDPP4CFdOuOAAf3xg7IPNCvzxx9/IK3KHZrIz4LW3KC1N4497hh89dVVmo7eoefx58wisGfPHnzyySeDno1ffvkFX375pcwCoePV8gxGfDC3bduGl1x6Ce63fxsUi31KX4bOhxyMTz31FNLzGppoFpcCZdAsLgXOoAAayUi0rpAYzMGOnQ5Eq/VMfPfdd5NRDS6TCRhGgE2kDEPLGTOBxBMgATFz5q3SbOqyyyfiDz/80GQlvvjiCxwxcoR09L5/0f2ajt5NZsIHZAQBMp2jDrE6GABFICPnf06xEWCBERu3uro6FDOyUlhcOu4SrKqqkhnRYEthYSEefsRh2O+Uvli6vlSzAPJDo9Dfrdu0wiuvmhLWD03z5Dh3vv32W9jLciJ273GUFOc0wMOJCaQbARYY6XZH+XqYgCDw9ddf46gLR2FW2/1x7ry5+NdffzXiQn4V5OhNC+qRozd1HjkxgUgEWGBEohPbdywwmseNBMSyZcuaFBDhBEhoaRUVFXjueefKAZa8hXlB4jn02Hg/03vZNsqGbdtl4fwF8zVnk+Mtg89nAmYhwALDLHeC68EEDCCwevXbcqTsqO7dsKioSJq2KI7eFBkqkqO3AdXhLFOcAAsM/W8gC4zomZLp52mn/Uuagj799NOaJlChualNqO6++y7cuXNn6CHy8xtvvI7Hn9BTrgW0cuUrQWaAmic0Y6d6ZnnS5Muxurq6GWfzoUwgNQmwwEjN+8a1ZgJREyBB8cijj0hbXzIZoAX1KA47ranBU/NRY+QDBQEWGPo/BiwwmmZKpp5k8knhZm+7bSZSh725ad2767BP35PxiK6H43PPPaf57vv777/xwYcexA4HtkeKSFVerqwt09zSvMeTDwgJIfKNI2FUtsG3GGZs2fFZTCClCHAUqQQ61HNRTCCZBGS0kssvgw4dOkBBwRJo06ZNMqvDZacgAeHQDYcdfijsrPsT9t13X3kFYuQXbr/jdvjs040peEXJrzJHkQp/D0RACnjgwQcgL+9eGDbsLFiYtxB69OgR/oQmvhHmVeB0OmHW7Dvh6B5Hw6IHHoBT+p3S6Kzt27eDmO0A51InXDH5CrE9Bzp27NjouEg7lOh+QpTDgvn3wrhx48JG94uUD3/HBFKWQErJIa4sE2ACTIAJJI0Az2Dojz7RMxiecqdc+d1CK8Bb87Am3CXVV2COb5V4S04xNo49F+7EkP2eSnTm2mWZoqMU+GuxYV5RGXpCDqePNLNKJp1k2mk5qReSqaeeaceOHXjzzTdJB+8rpkxGEeJbM3sROhaHDhuKB3bsgPmL85EiPzWVaH2iceMvlc7ns2bdieQLwokJZCIBNpHKxLvO18wEmAATiIEAC4wYoDVxSuIFRkGgky86/EWV2tKhtiwvcJy1AGNZRtFTXoTWIFFhRZvNGsiXvrM4sLIhAIkWxTvzzMFIPmKPPvYokomnUWnz5s143vnnYbsD2mI4B28SO6+88jIefUwPpCh74RL5dpCPBy3mN2bsGNy6dWu4Q3k/E8gIAiwwMuI280UyASbABOInwAIjfoahOSRbYNgK3KFVEp8bsDjHEhACtgLNmQaNEwO7aktV4sKOxeXVIldfaqjFskJHIP/sIv8Micv1jpxdoCh3iUolJW9IB28SEeEcvCl6lZbYIQHyn//8B7seeQSe3Kc3rlu3NlHV5nKYgKkJsA9Gyhq3ccWZABNgAoklwD4Y+vNOtA9G3aYl0NZydeBCLA6o3jgLugT2AOz6BCa27gvLlX22AvCsnApZymfxd8eWTbDhi22wW2zv374bnPKvXpDVInDA+oVDYNDMtWJHDlTUPwjHaaz2/uOae+DQobPlSQXlHpjaS11CIK9EbAnxAI89/hg4HHPEauB94YFFD0CvXr0iFi0W6YMbZ8yAr7/5Gu65Z67019h7770jnsNfMoGMIWBq+cOVYwJMgAkwAdMQ4BkM/W9F0mYwbNlot3p9IgpDzKRqXN7ZBbsjD+1kxhQ0g1GDhbkhZk7SDErMUlT6PCrq3d7zxH6HK6yXh4BZ758psTq0F8TTn3jkHGtqavDaa6+R6wNdf/11+OuvvzY64aeffsIpV14hfThuuulGJJ8OTkyACQQTYBOpYB78iQkwASbABMIQYIERBkwcu5MmMLKdWOLMlmZKtny1mVQ9FmWT8LAKs6ZSzA4SGA1Y4jedsqDDWYxlpSXosHmFCoANy0hjeNxok6LDhm5tFw8/saqiHK+plDU/Jj8Pf0Y6b3z22Wc4ZOgQGd578cOLpYM3rWC/8L6F0meDfDdokT5OTIAJaBP4fwAAAP//8qKw5wAAP09JREFU7Z0LfFTF+f4fKkGiBgsYingBDVbAsii0Bi+oG9SCWpdaUEsWJV4C3kJABYOCGlQM91BtA15CJaGtQSXYGrRN6D/YGn4ahEQJSsCgBmuiiSZoIkk7/5mzl+yScza7ye5md/Oczyfu2TlzZt75zsqZ58y870DwIAESIAESIAEvCPznP/8RvaOOE83Nzc7cf/vbX8WY803O7zzxjYDiqf6CdTSUZQkAApZcUVOdbzs3pYtqhwENJcKirpuzRF1ThbBqebNEg7zeUmXPD7MoqGpx3CE/G0Ruskkry5pdIZrKsm3lwipKm1yy6Zw681psdehk6bak//3vf+LVV18RccPP1v6GDjtTjDpvpHjjjb91m02smATChUAvZaj8x4YHCZAACZAACXgk8OWXX+L0M07DkcbvcPzxx2t55WALCx9eiN3v7/F4Ly/qE4jq01u70HK0VT+Dn1Mby9ehn2k2YM5GU5EFa8cMwIIyILeyCdPj+uLwtoU4bfJSWHMrsXH695jSy4R8SxYatswCHPfCisKKxzCk5Xu0SPuiTjgBVZtuwOTFsiBLNmpWnoRBw6fJK6mobFmNOFsTdVvitMdeR4xuru5NlIIa9953j/zN98Wa1WsQFRXVvQaxdhIIAwIUGGHQSTSRBEiABEKBAAWG/3uh+wRGlhQYs7B/3QyYZufAklmKLSkmbJoRhcQcEwqq92DSgF2YET0OOfbBf9UGmTcpxzMEUybq3



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

Chou

  • Sr. Member
  • ****
  • Posts: 335
Answer to Question 1

The resulting diol is a meso compound and is therefore achiral, which means it must have an optical rotation of 0.

Answer to Question 2



Answer to Question 3

The product that the student obtained was 4-hydroxybenzaldehyde. This occurred because the Grignard reagent, being a strong base, deprotonated the hydroxy group in the aldehyde, resulting in the formation of benzene and the phenoxide shown below. Protonation of the phenoxide gave the aldehyde back.


Answer to Question 4






 

Did you know?

Pink eye is a term that refers to conjunctivitis, which is inflammation of the thin, clear membrane (conjunctiva) over the white part of the eye (sclera). It may be triggered by a virus, bacteria, or foreign body in the eye. Antibiotic eye drops alleviate bacterial conjunctivitis, and antihistamine allergy pills or eye drops help control allergic conjunctivitis symptoms.

Did you know?

Though newer “smart” infusion pumps are increasingly becoming more sophisticated, they cannot prevent all programming and administration errors. Health care professionals that use smart infusion pumps must still practice the rights of medication administration and have other professionals double-check all high-risk infusions.

Did you know?

Children of people with alcoholism are more inclined to drink alcohol or use hard drugs. In fact, they are 400 times more likely to use hard drugs than those who do not have a family history of alcohol addiction.

Did you know?

Stroke kills people from all ethnic backgrounds, but the people at highest risk for fatal strokes are: black men, black women, Asian men, white men, and white women.

Did you know?

Each year in the United States, there are approximately six million pregnancies. This means that at any one time, about 4% of women in the United States are pregnant.

For a complete list of videos, visit our video library