This topic contains a solution. Click here to go to the answer

Author Question: Which of the following is the product of the first step of the reaction catalyzed by pyruvate ... (Read 27 times)

OSWALD

  • Hero Member
  • *****
  • Posts: 580
Which of the following is the product of the first step of the reaction catalyzed by pyruvate dehydrogenase?
 
Question 2

9OeLvPUMa9uBHnFdKPF9S5m3AvABAUp9Xip94uYtdGTpR3pY8gtrcy2uRmA/CBimqRb37B3NzGXDtNPo9cfle78Lh0z+eBfTJ+zzdaNfSBdjGE7K5m6h4B9fEze6K4RCVCzdSsqfxhB7bDdM06cnrhuNaPRGjGg34rJd5K/ktQ3L2VFZSq+EFC7uMRyP3c3Kgq2UBQOMTu2myCenqoTvCnZwasdeio+ahIj0OqPo/ZJoyX6VCDSgrZhmAAAgAElEQVRIRvUh0lyLXmWBq1oEmV1J6byNynMu/qTe0N5NCH/1gtgm6Yjqq5gOaxEEImQkrGItZpUFruKwEgAqMc2g9T2Qb4DpVTJZ8VyEzKrqAckhfw80GbVIe+tCNAKNRWC/c0aNzehQ4qmOxZDOx+SnqmyY1JPQpJ78VLlNjYxtqgezFjweSjk67eFHIEIiqjVN8Yzz8d6mheyqyFPCWeF+MMVEF44t8cwqZaaVkEgeh782WgKNgEagqRBoAjLazLSxGRjXzz8kmQxTdl+IY+Y7M9myagObf8ji4/dmAeLSrTugQwI3yhLXJhM7S3ZtpVDNCdV+YxFP7bAoq4oWRyOgEWgiBBp2YKinkAnP7arj1dSdKYt2MaWeuAceZOB2e3DYHQSNIDFuWfSor9aNgEmMy4lN7UfYumuqa6cR0AjsG4Em0Iz2nfmhvdkzu3Bo+ejU0Y6A7DmnL42ARuDXjUDUkZFQkEVDuoP69Xw1pcV1e/962lvXVCOwNwJRR0Z7i6hDNAIaAY2ARqC1I6DJqLW3sK6fRkAjoBH4BSAQPWSkDjQSF15BLXyonmWv+wXAqEXUCGgENAIagUNBIHrISI56xYbP5yUUMgmFAupezyUcSvPqtBoBjYBG4JeBwAG7djdPtawJbNMs48KLz6Nzl87KjSEtXY6GLm+eIlsyV3VarVbzWhJyXZZGQCPwy0IgSshIQJPtYVzExLh44rGpVFX5OeOMU2nfoUt4qxgrzi9HUwqTj2FXGh/4o9JjLEKREV82a1jQ8l/iSPktX7IuUSOgEYgGBKLETGeA4SHrpywuOv9KAgGT1NR2XH3VDbz3zntgJIax+gV0WWruK9ylG26yftrM449MAyMmqo5Pj5CQACuo1nxu6S+moc6HOJwStHSNdXkaAY1AXQSiSDOKYdq0aZx2+qnc8ud7lJyjRg2moHA3UKVO/MQULSPKOy0192WCIbtHJBIyg6xbl6XulXZklIEpm4IePmKNiIghO8HJRqV+a4PSwyKVgcNux2V31v1u6meNgEbgV4RAdJCRbJIaKmfz5myuvvpyoBTMCoYMG6GawjTLsY6cjnIiqv7ixPDdim9Ys3YzOTt3krsrn//+5xWCIS8nnngsqWmpYIYPEKxO03I3ShMx3ATw8/HP3zI8rQudPRkKc1N2T1d7pjctXUZarhYFGx58po8VhTsYWJhN14QMMLxg7jFpSrpaaVoOJl2SRkAj0IIIHD4yEnOWDNGVBmHHNCuRzZntjpoiSYet9nEGI946bE0dKxDl3ZNhJycnh5U/rqa0rIyS0gpWr/6JYLCKsWNHheeQWlY7sshA5uVEA3Hy+c41vLP5WzzOeD7etpaR6V25MvMoHNIeZqX6CjYVEUSISDJVZCcmSxzMyl7J+5u/4+iMPizM2ciKvC1c1288nWPTgApCdY7aivJWb8GfrS5KI9D6EDjg84yaBgIxY8kZNrEsXfI5ZaWlnHjyOVx+6QWcesopXHbF9co0tytnCyXFxWT26sv//vce/fr2oU+/kUBJrdFz08jUlLlI/TzKNLchazl/f/wZ/jn9JWUOg+Kwma6lp+tsSqaNpTt5bu0CvMEAv+07lsFJmRT4CpixbgEbi3ZzUeYRnNihn3IasQ40bBoKUMSmnDliWFW0nRfWLcRm2Lm23xj6Jor3ZECR48c//8hR6T24ss9o3DanOjqiqUixVgvr84xqwaEfNAKHGwH7PffcY03Q7CVJc7hUSydtB6MtOTk7mfbkU6xYvoLx48eTntGONolxPPTQ43TuksGO7Bxu+N0UOnXqxMDBI8jPz+elF15lY9Y6+g8YTExMW8uko+aQmqbD3AuCgwqI6AFBMIJkb9/Gyh9XceqEYwCZL5L3LUxERiylQR//XP2F6vAndBrAlIEnkuFJQEygsQ4H4zIG0qNNMm9tXMZn2WvplphGqjtF1eGQ5+lkbsqIpcBXwVOr5zH759Wc3X0Yv+t3HKkxbkyzAoMg/ZO6cFyn3nyTu4WX1i9Rc0m923TAUDt6W1ryQTVJfYmMuPpCdZhGQCNwmBBoQDPaZREHYh6TORw5CE2sZuLZVhk+/Ky2Q4Gp3LPFBCM/dIkvHa90wNIxC2Ek4PdX8Pqrb7L8m+WccuopnHHW6eEdF8RJoQ2ffjKTd/77nuqIJkw8hTPPPssyGxkJBANVvPXGf1m8eDEnnnQC55x3jjWjYFaEZxZC4QmGGuQk1kB5q7zcpAJCBEFlIjT3Ozsi5GnlJRxSI1cLi0b89/sDVFZWkZiYUMf5QklVbw7yRi5loDRsyrnAepZAwVx2qJC6ikRi1pQwcUIIYRomUlUlqzKH2Xhvy3d8uDWscfQ+Co89RmG6p5zwndJWHXyavYq3N62gb9t2TO47hjbOxPB8kpWvsq5GEluiqv+RsiWWvFb/DTfyvXhjwzfMyV7Nse17c3mvUTgMR7U5MCxtuJ2kfdxklexgxrqF+EJ+JvcZz4Ckrup7FyKEHLZofddqmnQFXsEl3GaRxjIlZqSEGsJqzagGGPpWI3D4EWiAjPIpKyvjww9nc845p+OJ9YBp4713P2DYsMF079EzbHaK/NSlE4gje/sWnp/+MoWFRYw8ajiXXHaBMsdgOJk393M+eP9D+vfvy2+umkRcXBKW2UqIS+aPBBAhv0hPIs9ChPIp+UtH1ZbcXT/z0ksvk7crn0suvYQRRw4Hs0SZ/taVGXy726RtjMHJGSEcRqTjdrK0wMZPpX6GtXUwuI2JaQYiM1L7aAk7q0qho9skyXmQI3NFGPawaW4fxdQTLFX2hUKUeL2kuj2KTEWCgqoKEpwe3A4xc8J3hdsp9lcxPLkjiY5YzJAPwyadtIdv8jfxyk+LaBPjZnK/8XSJy1BzMdbAoibGdQQw3HhDPl5dv5QluRs5ufMALuouziSSxmf193WSWN+CyP/I3JSLhbt+4vUNS2kXm8R1/cbRTrQtNXhQjVonlxqPkbmtHat5feNyerRJY3LfsaS62oQHQybFfh853jICoRBxDifd4sQxJKRIOYCJzbBIy17j+1Rda01GNcDWtxqBw4/AvsmIInZmb+OC86/ifx++QUqa7IZg48yJ53LDjddyysQzwCwLj/aFSFzs2pnLpEuu4ZRTT2DAoGE8NXUqo8ccwR1338ujDz9CRXkJV11zJd179A/P+9SdxBfCkU7KFiagegASckEm4dvw4/df88rLr9Krdy+u+921vLbZxz/W+xia5GRTeQjphN4e5yDRafLXH4N8mROifxsbS/MDXNbDzu39hCREa5Nywt1UpI80TDZVuBgws4zbB7i5e6D0bAdJSPVUo6Eg1aUbLpYVbOFv33zCuydfQ4xhUBkMcN68F3j8qHPVJP/1S99Qpq84Wwyby/KZOvJsxmf0ZVtFAS+sW0ROZQmTeh3FuPRegFeRr1XPiL9c/VJY5QsesWRX5DFj7QJyq8q5svdojkrLDDuSSNvtuVQaeVTkG8uWsl1MX7eAcp+XK/qOYURy92oZwi4pexLXexfOUbz+zAAvb1jGgp3rObVjX87uNhSPPZa/fPsuM7etoX9Ce3J8xfROTOXZ0ZOYuXk5ed5KcquKmdxvDBnueHWkfTURKTnl+6wvjYBGIFoQqGPnqC2WYTNIaptCUnKy0kjkbUpKKg6HkIGYifaYiGQk/urLrzJwUF9uuV2moQKMHjOQVSvXYIZKOPe8CfTuM9DaTcEsCHf+tboHK0wtgpGSpDOSq04cM2xmYzeDhw7l8aEDyFq3Bn/Iz4NrfEwblcBJKT5lvrr9uyrK/DZWltj433aTBSd7SHEEWVFk561NPvwhG06bnU1lBkVek6EpNmyGmLuku7Tz2sYqTunsZnFekNJADAmOYL1aQVjQJvyQupv4TZP8oJcYZT4zibEb5IV8eJwuXtm8mN2+Sj454VYVd+raj/g272dGpvbkn6vmMSi1E/cMnxAmdjFjirYiViwxTu77ipCKFa+MjrEJ3DviPKVl/Xv9EmZuXcnk/uPpEvZ4E0AiaTBiqQhW8uK6z1ixeytndRvM2V2Gh82K5SLBfjTRsFxqwGFYWJuVOAyDa3qNZWLngTyzah72kMmFvY4nu6qUq/uN4/96T8BHKcP/9xCf7lxJrq8cl9ODw+skNUa0b2/jyt03LPqNRkAj0MwISM++j8vE6XBSUlLCX/78Nx6456/cf/ft/LQ2C7db5oViKS8rY93a1eF5GAerV61n9JgjrUWq5m7aJiUz7ujjsNvt9O7Tt8ZcU0PdYUQcidNQPOlZxckiQK++/bEbJkPa2rnvhwr+vcVgS3mIh4fF0iHWxgfbghyX4SDFIUTjZ0TbII8Nd+K0GUxbF+T277y8vCnEpEVecqpcGIQoDtj5YleIp0e4SXCEeC9bNDLRtULVNBmRtKk/Lc3BwIkNLwFWFGWzpjiH5YU7CYbUbAmdY5PZUJLLvzfOZ1PZZm7udxJTBp6MAy/3HnEal/YYZXkcKld4kVDw2j8ZRBC3PsPaoFnOkamdeWbMRQxN6cxdy2fyzLr5VIVEk3Vb7uJGDO/9/B03LvyPct9+euzFnN1lhPKGw5TBgVWrRmElAw4la0Ru4dIK2rs93H/E2ZzdfbDSzsTbbkdFEVkl21mWv5XuccmkuuIZndqN0amdubDHMOxSkci4plGF60gHhsBsrlMOKuKkUuPvutkHlk2t2BuYNlbyuo76cpl9nYExdhobaqWJ3ocN08ZWYzN2Wj1Sz76OPXBZeO55jt56NbVkDWpGMjq2O2xkZnajTaK1Jc+XXyzE7fHww/dLuO/eB2jfvhMul8F9DzyAwykT6RF+i/QA0huIw0DkuYmroBwrfNgweX2sg0fXBHl5o4/H1oQYlxrk6SNiKA8ESHRL+TI2j6xvCrCqxMlLm4J8epKHDKfJNcvgiXU+Hhvq5L1tJsmxMXSKgeM7xfLmVi9XdJV5GjHVSV6RbruJ61MjO6fdQU5VCfd8Nwu3YafCDJDrLcEb8HFmpyOpDPh4bt1Cpq6ZR3t3Io8deS4D22ZgV84MVU0roSIUOL/7CE7u3I9/rVvE7xe9zcU9R5LmSeDFdQuJdbq4c/ipdE9or+amxEvugEioRt33vg0TIyFc4bVoLqeTD7b8wM6CQhYVbuSiHiMYlSpmxKo9XothItw7Px3SJAhsWM8qxjA1axFTBPomvWYw8bqzMaeLhv9LvWbz2M2LGTM1i0X1AjSb6ybOgFnTf6kVbDK5GyAjk0AgSGxsLFddMwmHM0VpBrNmz8XnraK4uJTf3ziZ4084m8svPZfl3yxi6NAhfL1kGRde8lswUsnP28jatesZf/ToPd54TSZ6zYxMfCEbK4uC3N7fpv5y/U7Gzylj7i4X/RINlhaKZuMIuyoblPidbCgzSXcbiojElDMyzcW87V7lzfWfn6vYUhbkki+97A7CkgI768oN+sbJqF3yav6rKugnMzaF/x53NW5slJt+TprzT7ymn7yqXM7tMoiLuo2kwFfGHT98zP8tf585J94QdixpevlUrc1KEh12/m/gKawv3cHz6xZS4qtiUq+RjE8X7VfmpkRjFa0pTNtNOg6JuEeaVPq9XNN3HH/pexqrSjfy2wWvs6t/PhkxCZjKcSXYtITc9JD+8nPMWsNiBnJHkxMRMGYMY2bcz7RbJzQD0bUs9AN7NwdALVuH5i4tosbUU47Y7EMUFRVTXFRqebVRQmFBkSKi4088izFjjuTOv/4Rt9vNEUeO4vwLz2X58u+Z+sQDfDRzJpdddh1fL/s27CFXTxFNFST+EzYb1y718vA6G+VBG4VVJi5sxDtMzuzk4Otdfj7dZackEMODa2HKsjIGt3WR5zWVx1yQOObuCDA2w8G3RSa5FUHePjqWO4e5+OdID6d2sDNtXVXYjboB2JqgTtYsjDW/UxUMYFdaZRBbKIQvGCTBGcf7P3/PSXOfw2sGSHa1pZ07gRjl9m0J0Bx6m9Ra1Vy5UJfROyGVx448m+ljL2R8ek/LbKo8FEUGyywobtjNdcnCXTMojhQ+BiakYxo21pXmqzayjJnNWHhzVeoXlu+G9atg8tk0i+4y8A5engo3P1afsa4OULOvqzaFibmwtjksYvqqbVKsawqraU7bO4865dV83FfZG6Yx1pjIDGDGxHrMjnXf1zQ9rpe0e8yeByyryntPeqnPAedRs44tcN9ArxoiITGeG278LbFxLsuTzPRz5dUX0advD2Wucjqd9B84EIfDxZbNm8lo35V/v/ocefl5zP9sFjfc8FtuueWPYAqZNeNlGjiNEI8fGcvHO7yc+5Wf3y+r4vpeTo5OC9I11s+jw2K5f1UZ5y308U1+kP8bkEiPWB9/7u/i3h+8XL+0gk4ek9/1cvHlzkqu7uFgcEKQ/okhMuND3NLPTklliKqgOAKIqa75rsjsisfmoLtHXJlFJ5GO1aSLJ4FA0M8F3UaSFOPhzLn/5Oz5/2B57mYePeLMsINIhM6aT0aLbPzheSlxn5d5oT2XkGFzEKKUYFGMSYeYOFKcsiGt4GNnSJt27CgtVJRpKEeY5pJgTz1/7XdZaxYzZtX9DRDBoSGUOeUOJs+YuFdHWitXIYOJM5g8S5ZryN8sBt7cC6NO7ztj4v30z7LiZE0dw4yJY4lM4QgR9boZpobfm1nCgr3qkFqtUq2HhsrOnMIicxaTISzb9NqkXff9oilE9KcZN7/NhQcrqxBRr5sZWI2HiTlrsiLECCQHXd96IGiyIHNfVyjHNM1c0zQrrU95VmHlpmlWmW+/+Zw559N3VOrrfnu5+a8Zf1fhpllkmqbPNE2vaZoVNdLuMs1Q8/2FwvL6zXxze2W+WRbMM00zT5UZCu00TTPfrAzlm9kVu03TlL8cMxTcpeQr8uea2yrkXsJ3mZWBcFpzZzi9yJ1r+oK7TX9QwgSL5quL5B0K7TIDgRyz1JdtBsPP8lnmyzZ9AWkbkbXAXFO0xlxTtMqqq1lghqRe4fjNLePhzr/cn21W+ndU17fcv8Ms9W43Q6Hc/bfPvr73OvwAEJhlTpaxwZipZlaNVLMmY46ZWjOkxstG3WaZU8dgSg8uV9bUMbXKkPz3lGnF3au8WZNNGGNaYlhy1oqTNdUcA6ZVRD3vpWCVx2TTkqI+wRtfdrgq9WRilb3nfT2yHKis+5W7njIaVd96xG/CoAY0IxmCyhhU9lKz7P/WaFjWFvnp1Lkr0599gd9NvoK4uBjOOe9sazGjKZPHhWAWWRqRyqMlRqiWWdFhBunoDhJnE6eJoFqpL8YlWeDqNgJ08ATUaN4Sy0rTxhGik0fMSgFVVbdKK4snLXgs6UM4bT7shj08Mm+y8cA+M7LbDOKdYmyUy3LJjnO6lBeg1Ec8Cfu1yaBfm/aqjWQvObX5bDNqJfsUtoVfyDcz1uHCbd8z7RnrcBLvEk/PiO7UwkL96oqbwHTRRGqM6AWCCWdPZvHNj9XrCXcwEGVOeZmp3MwVETWmZiYbPubtxbDXnEyv/oxhMWvk9JbwVStOZm9koYm6Zn/ADMZw4WkRvSQcrvKYwQf7shIeQNnhHBv9cUiyTjibycxg4j68ETnY+jZa+oOLuOeXvFf6MIFE1v1EPiWeWcbosWN4bfggcnPz6NK1W3gtieXCu1dWLRBgSRuRWQqsFRKew4gIEjGESacVnmUPd2A1U4VzCyey5kAiG91Ecmquz+qyw84SEYkjzhPqvWLUPYtPq+M0l1BRlK9Vf8uRZG+sLEGrw6NI7l+FKKoTv5kPZk9nQpNMJmUy5Y7J3DzxMWZPaaTXWU2yaRToi7m5l8HN9cStJq163tUbdMBl15tLA4H7k1UGCVn0H9uLiYbMWFmXmDH3OCbuL49Iqpb7bFgz2qcc0jFX4va46dJV9gyTEbl0ivrnv0/I9AuNwK8KgTH0l40/muqaMJ1Zk2dwf33aUX1lKJfz+l7sK0zc0yNzTrU/93Tg+0pbJ/yAy66Tfr+PjZE1kymL9tRj1mRxotgzR4Zyx9/z3pprs54PuL77lbdxEQ6ejJRGIaYwmcSOFKbJKIKE/tQItHoEwh5bkUnx6vqG3b2b2pt5wq3iVHAF96+qLgkyT+PCMbBqfZ3FpEqGRhKiMmvVNunVKGHft01R9r5zr//NQco6Ybo4UoTreJB51C9Q04UeJBlVs08dSfYVXieaftQIaAR++QhkTuEOGXHXmVSZ/cEMxky9tbbnWFPUVpW3mMWLa2ZmmfAW39yrhsddeCHp5DsauT5pArfW8a6TEtROD0ZNbaJmuXLfFGVbee5FpnWLqn5uhKzK1byO3OF5IktbbUQe1eW13E0Dc0YNCaE1oIbQ0e80Ar8WBCZMN5kl2/PU6BJkbmJR9VyRbO3Ti5sHzmqSnRTUCH+GtXanGuMJ0zFngTHRUGt6JFx2PDDr3fGgOlWtm8wpi8hiLL1qzRtNZpZZxx27Virx1jjUsidwthC6uKK/PZWsRb3rlrDX835lzRSZrsOoVZfau2TsN4+9Sm3+gH3v2m3mNn/pugSNwOFCQB8hcbiQ1+VqBOpF4CDNdPXmpQM1AhoBjYBGQCNwUAhoMjoo2HQijYBGQCOgEWhKBDQZNSWaOi+NgEZAI6AROCgENBkdFGwtlagh78SG3jVGvrrp6z7Xl0dj4tSXTodpBDQCGoGGEWgaMlJHhTdBR6VO+GxY4KZ9W8MFSGVc97lpSzvw3EQe+RNs6+J7qLLWTV/3uT5pZXv0unLUF0+HaQQ0AhqBA0PgIF276xQiWwWp4wvkAD7Z0Vr2s5M4jengauQV3guuRoh1q0hKeLOtOi9HTv2svlTnGA/InmRySfkl4X319lW+7LUXq06rhVJQp6FKXNleZl9pwtm3yIeAF5bD8ISPrZCCRb5Kawd1hbfUQc5fknC5r7DeHYiMKn85I0iOx5CrRtnhkNofsWHRpA2kveX8IjnIr2nGNbXLqvkkx9zL4YZSz7JwPQUjaUsJl927pS33J3/NPPW9RkAjEC0I2O+555576hdGDkhr5GU4KC4sZuq0qWzespEhgweDIpDGduzSoSSA4UA2+5SzN2pdhoHfH+TZZ/6J31tFl249w6QjJBjPj9+v4MH7H+KDd98lGKyib79+4eSKEWtlZXVecSxbspjnnn2G1JQkdfSF2tIoQgB1UrT8o1V/2aJj+bIVrPrxB35at5qSkgLad2iPYcRSVVnGnE8/w2aYxLgdLPhiASkpbXG748LktB+phcQNO98sW8Hu/DwyMjIaQcZ2vv/ue3bu3EFaagqfzJ5DKBQgJbUdhhoE7KfMQ3rtZMeOnXw+73My2qWG6ynt6yRn506+Xvo17Ttk4HQIMdXX7nUKNwQnfWkENALRgkATDWfjmTNnPn/5ywP89da/sSN7pxrByuF8GE4wksBIVJ2fKaN4FZYMRhtLozKS+WzOLJ59+jkMm4TL6DshPOoVEVNU//Lwg39n3rwF4dGxKA+xfLt8GSedeC67dxeRlJzCJRdcxX13PxzOQ8qWMtqCEd7NWWkUBo8+/BT3PzSNp6Y9rzo0a9VeHRI8nK2kDtay86c/3s3VV/2Bhx58movOv5qTjz+fbT9vJxAwufeuh1iy+Bu2bsnm7DMuZcOGrWAIfnL8u5CN28Ja3dvCz/IpmIo2mcBfbruHRx56Ktw+MZaWIZqGaBiSj3Taoj3JAMHwcP99j3PvXY/g98F99zzM5/O+xFADCUkreEt8q3x1qlJ1HvI+DKgiQpEtXqVR1CEySRsZchqv5CF5SZlyL+FuVq1cw+2338327TvDckp4MosXfcN551xBXm7BHvnDeTeKmA5nO+uyNQIaAYXAoZvplBbj56033+eqSZewevU6Zn88h2sm/x7DFmL37nxef/U50tNTOe/8M3G6EtiVs503Xn+atIwUJk26hKWLv+LWP91DKBSkX//+xMTY8XorOfb44ygvK2bunNkMGz6YtPR2eGLFbBW57Dz99PMkpSTz2ptCKm2RA/+2bN2qjleoKK/krTdepbikiPPOP4suXeVQQMhav4o1P/3En27+PbNmzyM/bzOpaaIZ+CMZR8Gn1XMHAj7OOus0npn+HD+t/Y4Jp5zP7bf9hdffeplXXp9ORrv2bMhaT5s2bSkrq2Dpkvn07dOVtsmpbNywnsQ28aSmpimNcuvWjXTr1hmnK55lXy8hJSWNxLZxxMa6KS8vpqQ4B5crhsKCYjJ798XvL2fxws9ISkpi8NDh6tA6d4ybilAlnrg4/v3q06SmplNY8DNVVRUEg0G2bN7G2HFHYticyC7iXm8Vixd9QVp6GgMHSh5iDnSwdfMm1q3LYsQRQ0hN60B52W4KdhcS43az/qcNDB8xhNi4WBYt/IJevbqTntGFUaNH8M47/6Z7jy5qAJG9fT3Z2UWKNxMT48O7AMSxI3sda9esY+RRR5CQmGQdbdLsZsQo+MpoETQCv2AEDp2MiGHrlp9Y/s33fPHVRzw//RXeefdjrpl8PWXl5Vx4wVWqU9mUtZEFX3zFfQ89wPnnXsqIEUcx65P5LF/+A6NGHonXH8Q0/axfn0V5WRmPPPwE23PWM3/eV1x/3RS+XjYfm92uZkcU3oYNM1TG2rUbOHLEsPCcUS73PXi36jRLSws4/5zLsNkMOnbsyPPTz+e/777KgEGjeOedj+jUsSP33P9XPvhwFp/NXcDFl/7G2n28evgeJa1qgM0mp8sa9O0/kklXnM+br7/Lrh3ZXD7pem64aTJjxw7HZrfx/HP/Znv2dkpKy/hkzgf8/YmnWb9uI3M//4q3/vMMjz0ylaVff8btf/6L0mSHDhvIDz/+xMUXD+CbpYu54YZb8cS6OOP0idw05UYuvvAyQiYUFRRxyqnH8cDDj2OzO3A6HWqX9osvup5b/3wjDpuDW265g/FHjyZr/Sa6duvEm2+9Rk7ODi6fNBmXw0Ze/m7OOHMi9973ILNmvsPf7nlEkcVddz7EqwIKPokAAAy1SURBVK8/j7eqgjNPv5Sx40ayedMWPB4P48YfxYIvl7AzZxcffvQ2JcVFnH/OFXy1aBZbv13DtdfcQP8BfSgrqSTWE09CQgKLvvqU2267g/btOnLf357gXy/+g8xevWrMiUVJu2oxNAIagVoINIGZzs1HM+ficLkoL/eTnpGqCKawYCffr1jB8q9X8M+nH+Oz+TOZdMWVzP74Q1auXE/7DumkJqfx6stvccGFZzBu/BEMGjSEyddP4dLLzsFmc7Lgy6/45JN5nHHG6XTt3hOv16tG21YNxIwkd7LtuXWujRUg2o2LefPns2jxcp7711P866VXMAwbr732lpprmv3RHHp070n2tgI6dmjPB+/L6VmSX8SOVAujw/tgGpjCCEprCxCfkEDAH1QaR0VFFV6fODDYqCgv59rJl/PuB6+zcePPLPt6GVdddRk//rCGndlr+GjmHCZMmMDWLdt47tmXeP6Facz417O4YzwEAkFFZlu2bOWGm37LLX/+fzz59yfZsiWbuZ99zNRpD/LU1OmsXbOcuLh4MC0zXFlFBT5/CDG9lpSWcN+DdzLz4zf5bO5XzJ0zixeff5m83Dw+nTeHBx+5l8efeJrVq5cxYNAQLrnsYgYO7K/kWbTwK5wuJ4UFJdz0h2sVOX311VJ69OjGp599QHFhOYsXLMTutFPhraC8opK/3fsQRxw5gnfen8XRx4yivKIcny/A448+RZwnnquvuZIfflzJ9Ode3GPWPbwtqUvXCGgEGkDg0DQj1XnLRPrnBAMhfvOb3yKnk4YCXj6b+wUdO2ZgGiaGzSA2Lp64uATKSqtw2FzYnYYioOHD+uLzBakqK8cWpsaM9j04+dTjeeKJ59iVk8Ojj4qPhYEM0w3lLSU1Em0hkYED+7BgwZKwV1kaf77lD1RUVHLMCWOVyc6tTv6044pxY7PZ2LZlJZs2bqGsopJLLplEVZWX7B3Z5ORspl27juF8GkCshV+FCOKMkfkuMU/6WbLwG9p3aEdKWqoiAamT8KjL5aJd+wzaJHpITkpV2tHpZ5xLj55dmfrkM2St28Ddd93G9uwduJxOevbojMedSreuXfD5/ARDQZKTkjh94inExSWycdPPdOrcEcOWQI/MrthsdnbuyMGhvjFCQAZ2uwObgUqblp5Oj+5iBg2SlNSGrVt2kL19O927dlKebr16dVOn5BYWFPLN19/xwYcfcsG5ZxPricWQeSIzhCc+hox2acS4Y0hMakO37l0VSbVtK84tTvUdcDjFpFjBjpw8xh8zXrXGoKGDhI8pLy+nqLCMQMDL3E/ncPHF59OvnxyqU9nCraaL0whoBA4UgUPUjGJZtvRr5n7yBS+8+CTzP/+UufPmcuJJx/L3x59h4KAB9M7syb13P8bJJ5zJY48+wPEnHkNcrAu7abB25Wq2b8vGE9uO2Nh4Fi5YykcfvqHmFK66+hIWfLEIl8PF0ceMI+Avobi4mMpK6VjEFVmqGuTGm66jrKSUC8+9kj/e9DueenI6PXp05uSTJ9Kteydu/dMd3Hf3n8nPzeOySRfy1NTnSM9I5rN5M5n3+ce8+97L7MrZzdtvfRju8A8UwuaILxqaoYjcH4BFS5bx1FNPcMkF5zFvzufcetsfiIvzUFxYit/rJxj0U1BYRFWVT2kHRUX5VFXKqbtuLrz4HP7x1AtqzmbAoKH06Z2J0+Xg+Rmv8cmst1i4aKGqgN9vUlxcRFmZeFGaTJhwAit/WM3cT95jxnOvkpTclqHDhrM7v5jyigq13Ehw93m9xLg87NyZx0svvcKrL/2Hgt27GX/0KI47frzSkud/9iH/mv4yGelp9O8/iLfeeIe4uDYMHT6I/Pw8/H6pg0lxUQlerw+/L0BRQYkaKIjbenFxKT5/lZqTknmltm3bcPS4Ubz/7gcsXDCfl196g/LSCmTeqGv3jrg9Hq645iqVPrOXEKTg2QgPu+ZoSp2nRkAj0CgEDs2127Art9oBg/pw4cVn4fG4cbtj6dOnq5onGjduJKdOPIkfvv+R4cOHcOddt9Gpc0+OGj2YhQsWk5ySyu9vvJY2SQn06d2ViqoqYmNj1OR1WmpbXn7xP5x1zkROPPlMQqFy2iQmMnrMkXTu0kE5KIg7drv2XTnttOPZumUrfn+AO+7+I5dfcSkxMR7OOO0kNm7YSFFhIQ89chdDho5gZ3Y2F11yDv0GDMHjtpOWlkbnzu1p1y6dPn3Cx6c3CrrmjBQ2QZomubtyw44BWaQkp/DQo/dw6sTT8XpL+fnn7WqOpVOn9uTszGXiaSeqDlmwOOaY0XTrnklaegLTp7/CVddcwthxx9M2KZHefbrz5hvvE/D7GHnUcPr370Wf3j0pLS1mwsQTiIuPYfDggSTEu3npxVcoKi7liakP0LvPEH7eupEuXTswZuyRbNm8laOPHkd+Xi6rV/5Ex47pzJw5mz/96SZOmXgqAwaKM4qLf7/4shpEPPHkA2T2GkTnTmksWLCIgvx8jj52NEOHDaJjx3bk5uYyYeJJuN0x7MjO5uRTjiMjI51NmzYzbuwopRHKoOK000/mhBOP4/tvV7Jk4SLGjjuCjh3S1bzW+GPG8f133/Huf9+jc5fOnH/+OcTGilZVZw2ZeOnpSyOgEYgaBBo4QmJXI4SUTlMWG8pCRFloKj94cd2WZw+YhWGX6ogHnCxW9FluxEgHIaPVCmvRpFp8KR2EjOhNPp83l3POuIT5Cz5i+BGjABmxy6LXKnXkuTXaFRFFBilPTFkyApbjz8vDC0Ol3EjZcjR6meXqLXHkPuJhJW7nsk5GhUXTvFGkbhEFVmxkETmluhG8pM5yLxhJG0h9xGvNzcz/vcuFF13Fd98tpG+/AeE44jYvc2sy9yN/kYWzgpW0kbShhIv7t2ii0lZiDiy13LxFazMrLJduYnn8kbt48onp/LxjJXaHtIWY3YpruJBLHrL+R5qrPCy3LE6Wekne8l7qIHJJu8j3QsoOL+IVN20lo6SR/GXBrWAhf1IP+Q6GLK85Zc5zWg4LCh/JQ+LUaVd9hITVHvq/RiBKEFAzAPXLUufHW28kwyIX1VFEIkiYdC7yJ/2KdIqR1f2Sp3RqkQ5HnmX2QdLUiGe46NAhjTfffkGNmq0dF6SDKowUEu6wJH2d8qpjRPIUOSJ1kbCScAzpCMOmG+k4q69wWPXz4boJ1y2Co6pnXdmEdMPyGUIici9rc2QnAvkMqDmdBx+4k76RuRMJF9JSkNRw/JC0Ko9whmZ4Jwu1JkkIMKJZWG1pISrkF2DsuNEYNpsyF9od3rArtWAteQmBSWzZOUIVEiYNCRNza/h7okSP7KBQRxZFkJF6Sp1FliAYMnCRbPx7mlh205BwkVvIU4FiSbsHrHBe+kMjoBGIGgQa1oxkYlmNtEXeyOg8Irt0LBLmDy+QjPzgI7//cMej4si9XNJBSUciI/4ID4afq6OEOyk1khZtp+bWL5F34ez0Rx0EIm1ggSmLTmW3BktzKAz3xZE4NZNGwK8ZVvO+Idwj2pu0VUQ7rpn2AO8je98p0jzAtLWiR+q5j7oZ7WrF1g8aAY3A4UWgATIqo7S0BKfLhc/nI+APKG80caOWn7d4cXmrqtSiS8tcEvnRC0EJwUAw6FXpHA5HOK2JzS7mJC+lJZY2EhcXh80uJhyL7GShpcPuwLBJWGREbuUdKSHSNUY+paz93dftmuo+R5qhZnh995F48inyROLUfa75rqH7SH5185HwSFgkvXxGwuu/N8TRvRYW8mD17/JOLnmv9kZQJUgZkfyttypSddk1w+S+rkwqRAoICxTJK/xYK37N9FYp1clUvJppIveReJG0NcPryhJ5F6lT3TS14qsdPmrmru81AhqBw4nAPskoEAjw6KOPMmTIEDp16sTixYvVRHr79u3VItL09HQWLVqE7J+WmNiGiopy1R/ZDAOHw6ncqnv27MHyFcuJccWoNUKhUIhgMET//v0UwRUWFlJaWkpKSoqy4JSVlZKdnY3kbXc46NmjB6NHjz6c+OiyNQIaAY2ARqAFENgnGQlx/PDDj6SmpigCKS+X9RsBRJPp2LGTWoUvZLJrVy6VlRVq9bu46Aq5yJqXxMREkpOTFQlt3LiRrVu3MnLkSPLy8sjMzFRVy8/fTSDgV8Qk2lNVVRXyKbsNyGd6egYdO4rnnL40AhoBjYBGoDUjsE8yas2V1nXTCGgENAIagehCoK5XQnRJp6XRCGgENAIagV8FApqMfhXNrCupEdAIaASiGwFNRtHdPlo6jYBGQCPwq0BAk9Gvopl1JTUCGgGNQHQjoMkouttHS6cR0AhoBH4VCGgy+lU0s66kRkAjoBGIbgT+P7ti6HFJTpvtAAAAAElFTkSuQmCC />"

Question 3

Which of the following best describes the role of NAD+?
  1.It is used as an electrophile in metabolic processes.
  2.It is used as a Brnsted Lowry acid in metabolic processes.
  3.It is used as a reducing reagent in metabolic processes.
  4.It is used as an oxidizing agent in metabolic processes.
  5.It is used as a nucleophile in metabolic processes.

Question 4

Under aerobic conditions, what happens to pyruvate after it is formed in glycolysis?
  1.It is excreted from the body.
  2.It is converted to ethanol.
  3.It is converted to lactic acid.
  4.It is converted to acetyl-CoA.
  5.It is converted to NAD+.

Question 5

The product of the following reaction is:
 



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

ambernicolefink

  • Sr. Member
  • ****
  • Posts: 359
Answer to Question 1



Answer to Question 2

2

Answer to Question 3

4

Answer to Question 4

4

Answer to Question 5

3




OSWALD

  • Member
  • Posts: 580
Reply 2 on: Aug 23, 2018
Wow, this really help


DylanD1323

  • Member
  • Posts: 314
Reply 3 on: Yesterday
Thanks for the timely response, appreciate it

 

Did you know?

Human kidneys will clean about 1 million gallons of blood in an average lifetime.

Did you know?

The use of salicylates dates back 2,500 years to Hippocrates’s recommendation of willow bark (from which a salicylate is derived) as an aid to the pains of childbirth. However, overdosage of salicylates can harm body fluids, electrolytes, the CNS, the GI tract, the ears, the lungs, the blood, the liver, and the kidneys and cause coma or death.

Did you know?

More than 30% of American adults, and about 12% of children utilize health care approaches that were developed outside of conventional medicine.

Did you know?

A strange skin disease referred to as Morgellons has occurred in the southern United States and in California. Symptoms include slowly healing sores, joint pain, persistent fatigue, and a sensation of things crawling through the skin. Another symptom is strange-looking, threadlike extrusions coming out of the skin.

Did you know?

Oxytocin is recommended only for pregnancies that have a medical reason for inducing labor (such as eclampsia) and is not recommended for elective procedures or for making the birthing process more convenient.

For a complete list of videos, visit our video library