This topic contains a solution. Click here to go to the answer

Author Question: Which of the following is the product of the first step of the reaction catalyzed by pyruvate ... (Read 57 times)

OSWALD

  • Hero Member
  • *****
  • Posts: 580
Which of the following is the product of the first step of the reaction catalyzed by pyruvate dehydrogenase?
 
Question 2

9OeLvPUMa9uBHnFdKPF9S5m3AvABAUp9Xip94uYtdGTpR3pY8gtrcy2uRmA/CBimqRb37B3NzGXDtNPo9cfle78Lh0z+eBfTJ+zzdaNfSBdjGE7K5m6h4B9fEze6K4RCVCzdSsqfxhB7bDdM06cnrhuNaPRGjGg34rJd5K/ktQ3L2VFZSq+EFC7uMRyP3c3Kgq2UBQOMTu2myCenqoTvCnZwasdeio+ahIj0OqPo/ZJoyX6VCDSgrZhmAAAgAElEQVRIRvUh0lyLXmWBq1oEmV1J6byNynMu/qTe0N5NCH/1gtgm6Yjqq5gOaxEEImQkrGItZpUFruKwEgAqMc2g9T2Qb4DpVTJZ8VyEzKrqAckhfw80GbVIe+tCNAKNRWC/c0aNzehQ4qmOxZDOx+SnqmyY1JPQpJ78VLlNjYxtqgezFjweSjk67eFHIEIiqjVN8Yzz8d6mheyqyFPCWeF+MMVEF44t8cwqZaaVkEgeh782WgKNgEagqRBoAjLazLSxGRjXzz8kmQxTdl+IY+Y7M9myagObf8ji4/dmAeLSrTugQwI3yhLXJhM7S3ZtpVDNCdV+YxFP7bAoq4oWRyOgEWgiBBp2YKinkAnP7arj1dSdKYt2MaWeuAceZOB2e3DYHQSNIDFuWfSor9aNgEmMy4lN7UfYumuqa6cR0AjsG4Em0Iz2nfmhvdkzu3Bo+ejU0Y6A7DmnL42ARuDXjUDUkZFQkEVDuoP69Xw1pcV1e/962lvXVCOwNwJRR0Z7i6hDNAIaAY2ARqC1I6DJqLW3sK6fRkAjoBH4BSAQPWSkDjQSF15BLXyonmWv+wXAqEXUCGgENAIagUNBIHrISI56xYbP5yUUMgmFAupezyUcSvPqtBoBjYBG4JeBwAG7djdPtawJbNMs48KLz6Nzl87KjSEtXY6GLm+eIlsyV3VarVbzWhJyXZZGQCPwy0IgSshIQJPtYVzExLh44rGpVFX5OeOMU2nfoUt4qxgrzi9HUwqTj2FXGh/4o9JjLEKREV82a1jQ8l/iSPktX7IuUSOgEYgGBKLETGeA4SHrpywuOv9KAgGT1NR2XH3VDbz3zntgJIax+gV0WWruK9ylG26yftrM449MAyMmqo5Pj5CQACuo1nxu6S+moc6HOJwStHSNdXkaAY1AXQSiSDOKYdq0aZx2+qnc8ud7lJyjRg2moHA3UKVO/MQULSPKOy0192WCIbtHJBIyg6xbl6XulXZklIEpm4IePmKNiIghO8HJRqV+a4PSwyKVgcNux2V31v1u6meNgEbgV4RAdJCRbJIaKmfz5myuvvpyoBTMCoYMG6GawjTLsY6cjnIiqv7ixPDdim9Ys3YzOTt3krsrn//+5xWCIS8nnngsqWmpYIYPEKxO03I3ShMx3ATw8/HP3zI8rQudPRkKc1N2T1d7pjctXUZarhYFGx58po8VhTsYWJhN14QMMLxg7jFpSrpaaVoOJl2SRkAj0IIIHD4yEnOWDNGVBmHHNCuRzZntjpoiSYet9nEGI946bE0dKxDl3ZNhJycnh5U/rqa0rIyS0gpWr/6JYLCKsWNHheeQWlY7sshA5uVEA3Hy+c41vLP5WzzOeD7etpaR6V25MvMoHNIeZqX6CjYVEUSISDJVZCcmSxzMyl7J+5u/4+iMPizM2ciKvC1c1288nWPTgApCdY7aivJWb8GfrS5KI9D6EDjg84yaBgIxY8kZNrEsXfI5ZaWlnHjyOVx+6QWcesopXHbF9co0tytnCyXFxWT26sv//vce/fr2oU+/kUBJrdFz08jUlLlI/TzKNLchazl/f/wZ/jn9JWUOg+Kwma6lp+tsSqaNpTt5bu0CvMEAv+07lsFJmRT4CpixbgEbi3ZzUeYRnNihn3IasQ40bBoKUMSmnDliWFW0nRfWLcRm2Lm23xj6Jor3ZECR48c//8hR6T24ss9o3DanOjqiqUixVgvr84xqwaEfNAKHGwH7PffcY03Q7CVJc7hUSydtB6MtOTk7mfbkU6xYvoLx48eTntGONolxPPTQ43TuksGO7Bxu+N0UOnXqxMDBI8jPz+elF15lY9Y6+g8YTExMW8uko+aQmqbD3AuCgwqI6AFBMIJkb9/Gyh9XceqEYwCZL5L3LUxERiylQR//XP2F6vAndBrAlIEnkuFJQEygsQ4H4zIG0qNNMm9tXMZn2WvplphGqjtF1eGQ5+lkbsqIpcBXwVOr5zH759Wc3X0Yv+t3HKkxbkyzAoMg/ZO6cFyn3nyTu4WX1i9Rc0m923TAUDt6W1ryQTVJfYmMuPpCdZhGQCNwmBBoQDPaZREHYh6TORw5CE2sZuLZVhk+/Ky2Q4Gp3LPFBCM/dIkvHa90wNIxC2Ek4PdX8Pqrb7L8m+WccuopnHHW6eEdF8RJoQ2ffjKTd/77nuqIJkw8hTPPPssyGxkJBANVvPXGf1m8eDEnnnQC55x3jjWjYFaEZxZC4QmGGuQk1kB5q7zcpAJCBEFlIjT3Ozsi5GnlJRxSI1cLi0b89/sDVFZWkZiYUMf5QklVbw7yRi5loDRsyrnAepZAwVx2qJC6ikRi1pQwcUIIYRomUlUlqzKH2Xhvy3d8uDWscfQ+Co89RmG6p5zwndJWHXyavYq3N62gb9t2TO47hjbOxPB8kpWvsq5GEluiqv+RsiWWvFb/DTfyvXhjwzfMyV7Nse17c3mvUTgMR7U5MCxtuJ2kfdxklexgxrqF+EJ+JvcZz4Ckrup7FyKEHLZofddqmnQFXsEl3GaRxjIlZqSEGsJqzagGGPpWI3D4EWiAjPIpKyvjww9nc845p+OJ9YBp4713P2DYsMF079EzbHaK/NSlE4gje/sWnp/+MoWFRYw8ajiXXHaBMsdgOJk393M+eP9D+vfvy2+umkRcXBKW2UqIS+aPBBAhv0hPIs9ChPIp+UtH1ZbcXT/z0ksvk7crn0suvYQRRw4Hs0SZ/taVGXy726RtjMHJGSEcRqTjdrK0wMZPpX6GtXUwuI2JaQYiM1L7aAk7q0qho9skyXmQI3NFGPawaW4fxdQTLFX2hUKUeL2kuj2KTEWCgqoKEpwe3A4xc8J3hdsp9lcxPLkjiY5YzJAPwyadtIdv8jfxyk+LaBPjZnK/8XSJy1BzMdbAoibGdQQw3HhDPl5dv5QluRs5ufMALuouziSSxmf193WSWN+CyP/I3JSLhbt+4vUNS2kXm8R1/cbRTrQtNXhQjVonlxqPkbmtHat5feNyerRJY3LfsaS62oQHQybFfh853jICoRBxDifd4sQxJKRIOYCJzbBIy17j+1Rda01GNcDWtxqBw4/AvsmIInZmb+OC86/ifx++QUqa7IZg48yJ53LDjddyysQzwCwLj/aFSFzs2pnLpEuu4ZRTT2DAoGE8NXUqo8ccwR1338ujDz9CRXkJV11zJd179A/P+9SdxBfCkU7KFiagegASckEm4dvw4/df88rLr9Krdy+u+921vLbZxz/W+xia5GRTeQjphN4e5yDRafLXH4N8mROifxsbS/MDXNbDzu39hCREa5Nywt1UpI80TDZVuBgws4zbB7i5e6D0bAdJSPVUo6Eg1aUbLpYVbOFv33zCuydfQ4xhUBkMcN68F3j8qHPVJP/1S99Qpq84Wwyby/KZOvJsxmf0ZVtFAS+sW0ROZQmTeh3FuPRegFeRr1XPiL9c/VJY5QsesWRX5DFj7QJyq8q5svdojkrLDDuSSNvtuVQaeVTkG8uWsl1MX7eAcp+XK/qOYURy92oZwi4pexLXexfOUbz+zAAvb1jGgp3rObVjX87uNhSPPZa/fPsuM7etoX9Ce3J8xfROTOXZ0ZOYuXk5ed5KcquKmdxvDBnueHWkfTURKTnl+6wvjYBGIFoQqGPnqC2WYTNIaptCUnKy0kjkbUpKKg6HkIGYifaYiGQk/urLrzJwUF9uuV2moQKMHjOQVSvXYIZKOPe8CfTuM9DaTcEsCHf+tboHK0wtgpGSpDOSq04cM2xmYzeDhw7l8aEDyFq3Bn/Iz4NrfEwblcBJKT5lvrr9uyrK/DZWltj433aTBSd7SHEEWVFk561NPvwhG06bnU1lBkVek6EpNmyGmLuku7Tz2sYqTunsZnFekNJADAmOYL1aQVjQJvyQupv4TZP8oJcYZT4zibEb5IV8eJwuXtm8mN2+Sj454VYVd+raj/g272dGpvbkn6vmMSi1E/cMnxAmdjFjirYiViwxTu77ipCKFa+MjrEJ3DviPKVl/Xv9EmZuXcnk/uPpEvZ4E0AiaTBiqQhW8uK6z1ixeytndRvM2V2Gh82K5SLBfjTRsFxqwGFYWJuVOAyDa3qNZWLngTyzah72kMmFvY4nu6qUq/uN4/96T8BHKcP/9xCf7lxJrq8cl9ODw+skNUa0b2/jyt03LPqNRkAj0MwISM++j8vE6XBSUlLCX/78Nx6456/cf/ft/LQ2C7db5oViKS8rY93a1eF5GAerV61n9JgjrUWq5m7aJiUz7ujjsNvt9O7Tt8ZcU0PdYUQcidNQPOlZxckiQK++/bEbJkPa2rnvhwr+vcVgS3mIh4fF0iHWxgfbghyX4SDFIUTjZ0TbII8Nd+K0GUxbF+T277y8vCnEpEVecqpcGIQoDtj5YleIp0e4SXCEeC9bNDLRtULVNBmRtKk/Lc3BwIkNLwFWFGWzpjiH5YU7CYbUbAmdY5PZUJLLvzfOZ1PZZm7udxJTBp6MAy/3HnEal/YYZXkcKld4kVDw2j8ZRBC3PsPaoFnOkamdeWbMRQxN6cxdy2fyzLr5VIVEk3Vb7uJGDO/9/B03LvyPct9+euzFnN1lhPKGw5TBgVWrRmElAw4la0Ru4dIK2rs93H/E2ZzdfbDSzsTbbkdFEVkl21mWv5XuccmkuuIZndqN0amdubDHMOxSkci4plGF60gHhsBsrlMOKuKkUuPvutkHlk2t2BuYNlbyuo76cpl9nYExdhobaqWJ3ocN08ZWYzN2Wj1Sz76OPXBZeO55jt56NbVkDWpGMjq2O2xkZnajTaK1Jc+XXyzE7fHww/dLuO/eB2jfvhMul8F9DzyAwykT6RF+i/QA0huIw0DkuYmroBwrfNgweX2sg0fXBHl5o4/H1oQYlxrk6SNiKA8ESHRL+TI2j6xvCrCqxMlLm4J8epKHDKfJNcvgiXU+Hhvq5L1tJsmxMXSKgeM7xfLmVi9XdJV5GjHVSV6RbruJ61MjO6fdQU5VCfd8Nwu3YafCDJDrLcEb8HFmpyOpDPh4bt1Cpq6ZR3t3Io8deS4D22ZgV84MVU0roSIUOL/7CE7u3I9/rVvE7xe9zcU9R5LmSeDFdQuJdbq4c/ipdE9or+amxEvugEioRt33vg0TIyFc4bVoLqeTD7b8wM6CQhYVbuSiHiMYlSpmxKo9XothItw7Px3SJAhsWM8qxjA1axFTBPomvWYw8bqzMaeLhv9LvWbz2M2LGTM1i0X1AjSb6ybOgFnTf6kVbDK5GyAjk0AgSGxsLFddMwmHM0VpBrNmz8XnraK4uJTf3ziZ4084m8svPZfl3yxi6NAhfL1kGRde8lswUsnP28jatesZf/ToPd54TSZ6zYxMfCEbK4uC3N7fpv5y/U7Gzylj7i4X/RINlhaKZuMIuyoblPidbCgzSXcbiojElDMyzcW87V7lzfWfn6vYUhbkki+97A7CkgI768oN+sbJqF3yav6rKugnMzaF/x53NW5slJt+TprzT7ymn7yqXM7tMoiLuo2kwFfGHT98zP8tf585J94QdixpevlUrc1KEh12/m/gKawv3cHz6xZS4qtiUq+RjE8X7VfmpkRjFa0pTNtNOg6JuEeaVPq9XNN3HH/pexqrSjfy2wWvs6t/PhkxCZjKcSXYtITc9JD+8nPMWsNiBnJHkxMRMGYMY2bcz7RbJzQD0bUs9AN7NwdALVuH5i4tosbUU47Y7EMUFRVTXFRqebVRQmFBkSKi4088izFjjuTOv/4Rt9vNEUeO4vwLz2X58u+Z+sQDfDRzJpdddh1fL/s27CFXTxFNFST+EzYb1y718vA6G+VBG4VVJi5sxDtMzuzk4Otdfj7dZackEMODa2HKsjIGt3WR5zWVx1yQOObuCDA2w8G3RSa5FUHePjqWO4e5+OdID6d2sDNtXVXYjboB2JqgTtYsjDW/UxUMYFdaZRBbKIQvGCTBGcf7P3/PSXOfw2sGSHa1pZ07gRjl9m0J0Bx6m9Ra1Vy5UJfROyGVx448m+ljL2R8ek/LbKo8FEUGyywobtjNdcnCXTMojhQ+BiakYxo21pXmqzayjJnNWHhzVeoXlu+G9atg8tk0i+4y8A5engo3P1afsa4OULOvqzaFibmwtjksYvqqbVKsawqraU7bO4865dV83FfZG6Yx1pjIDGDGxHrMjnXf1zQ9rpe0e8yeByyryntPeqnPAedRs44tcN9ArxoiITGeG278LbFxLsuTzPRz5dUX0advD2Wucjqd9B84EIfDxZbNm8lo35V/v/ocefl5zP9sFjfc8FtuueWPYAqZNeNlGjiNEI8fGcvHO7yc+5Wf3y+r4vpeTo5OC9I11s+jw2K5f1UZ5y308U1+kP8bkEiPWB9/7u/i3h+8XL+0gk4ek9/1cvHlzkqu7uFgcEKQ/okhMuND3NLPTklliKqgOAKIqa75rsjsisfmoLtHXJlFJ5GO1aSLJ4FA0M8F3UaSFOPhzLn/5Oz5/2B57mYePeLMsINIhM6aT0aLbPzheSlxn5d5oT2XkGFzEKKUYFGMSYeYOFKcsiGt4GNnSJt27CgtVJRpKEeY5pJgTz1/7XdZaxYzZtX9DRDBoSGUOeUOJs+YuFdHWitXIYOJM5g8S5ZryN8sBt7cC6NO7ztj4v30z7LiZE0dw4yJY4lM4QgR9boZpobfm1nCgr3qkFqtUq2HhsrOnMIicxaTISzb9NqkXff9oilE9KcZN7/NhQcrqxBRr5sZWI2HiTlrsiLECCQHXd96IGiyIHNfVyjHNM1c0zQrrU95VmHlpmlWmW+/+Zw559N3VOrrfnu5+a8Zf1fhpllkmqbPNE2vaZoVNdLuMs1Q8/2FwvL6zXxze2W+WRbMM00zT5UZCu00TTPfrAzlm9kVu03TlL8cMxTcpeQr8uea2yrkXsJ3mZWBcFpzZzi9yJ1r+oK7TX9QwgSL5quL5B0K7TIDgRyz1JdtBsPP8lnmyzZ9AWkbkbXAXFO0xlxTtMqqq1lghqRe4fjNLePhzr/cn21W+ndU17fcv8Ms9W43Q6Hc/bfPvr73OvwAEJhlTpaxwZipZlaNVLMmY46ZWjOkxstG3WaZU8dgSg8uV9bUMbXKkPz3lGnF3au8WZNNGGNaYlhy1oqTNdUcA6ZVRD3vpWCVx2TTkqI+wRtfdrgq9WRilb3nfT2yHKis+5W7njIaVd96xG/CoAY0IxmCyhhU9lKz7P/WaFjWFvnp1Lkr0599gd9NvoK4uBjOOe9sazGjKZPHhWAWWRqRyqMlRqiWWdFhBunoDhJnE6eJoFqpL8YlWeDqNgJ08ATUaN4Sy0rTxhGik0fMSgFVVbdKK4snLXgs6UM4bT7shj08Mm+y8cA+M7LbDOKdYmyUy3LJjnO6lBeg1Ec8Cfu1yaBfm/aqjWQvObX5bDNqJfsUtoVfyDcz1uHCbd8z7RnrcBLvEk/PiO7UwkL96oqbwHTRRGqM6AWCCWdPZvHNj9XrCXcwEGVOeZmp3MwVETWmZiYbPubtxbDXnEyv/oxhMWvk9JbwVStOZm9koYm6Zn/ADMZw4WkRvSQcrvKYwQf7shIeQNnhHBv9cUiyTjibycxg4j68ETnY+jZa+oOLuOeXvFf6MIFE1v1EPiWeWcbosWN4bfggcnPz6NK1W3gtieXCu1dWLRBgSRuRWQqsFRKew4gIEjGESacVnmUPd2A1U4VzCyey5kAiG91Ecmquz+qyw84SEYkjzhPqvWLUPYtPq+M0l1BRlK9Vf8uRZG+sLEGrw6NI7l+FKKoTv5kPZk9nQpNMJmUy5Y7J3DzxMWZPaaTXWU2yaRToi7m5l8HN9cStJq163tUbdMBl15tLA4H7k1UGCVn0H9uLiYbMWFmXmDH3OCbuL49Iqpb7bFgz2qcc0jFX4va46dJV9gyTEbl0ivrnv0/I9AuNwK8KgTH0l40/muqaMJ1Zk2dwf33aUX1lKJfz+l7sK0zc0yNzTrU/93Tg+0pbJ/yAy66Tfr+PjZE1kymL9tRj1mRxotgzR4Zyx9/z3pprs54PuL77lbdxEQ6ejJRGIaYwmcSOFKbJKIKE/tQItHoEwh5bkUnx6vqG3b2b2pt5wq3iVHAF96+qLgkyT+PCMbBqfZ3FpEqGRhKiMmvVNunVKGHft01R9r5zr//NQco6Ybo4UoTreJB51C9Q04UeJBlVs08dSfYVXieaftQIaAR++QhkTuEOGXHXmVSZ/cEMxky9tbbnWFPUVpW3mMWLa2ZmmfAW39yrhsddeCHp5DsauT5pArfW8a6TEtROD0ZNbaJmuXLfFGVbee5FpnWLqn5uhKzK1byO3OF5IktbbUQe1eW13E0Dc0YNCaE1oIbQ0e80Ar8WBCZMN5kl2/PU6BJkbmJR9VyRbO3Ti5sHzmqSnRTUCH+GtXanGuMJ0zFngTHRUGt6JFx2PDDr3fGgOlWtm8wpi8hiLL1qzRtNZpZZxx27Virx1jjUsidwthC6uKK/PZWsRb3rlrDX835lzRSZrsOoVZfau2TsN4+9Sm3+gH3v2m3mNn/pugSNwOFCQB8hcbiQ1+VqBOpF4CDNdPXmpQM1AhoBjYBGQCNwUAhoMjoo2HQijYBGQCOgEWhKBDQZNSWaOi+NgEZAI6AROCgENBkdFGwtlagh78SG3jVGvrrp6z7Xl0dj4tSXTodpBDQCGoGGEWgaMlJHhTdBR6VO+GxY4KZ9W8MFSGVc97lpSzvw3EQe+RNs6+J7qLLWTV/3uT5pZXv0unLUF0+HaQQ0AhqBA0PgIF276xQiWwWp4wvkAD7Z0Vr2s5M4jengauQV3guuRoh1q0hKeLOtOi9HTv2svlTnGA/InmRySfkl4X319lW+7LUXq06rhVJQp6FKXNleZl9pwtm3yIeAF5bD8ISPrZCCRb5Kawd1hbfUQc5fknC5r7DeHYiMKn85I0iOx5CrRtnhkNofsWHRpA2kveX8IjnIr2nGNbXLqvkkx9zL4YZSz7JwPQUjaUsJl927pS33J3/NPPW9RkAjEC0I2O+555576hdGDkhr5GU4KC4sZuq0qWzespEhgweDIpDGduzSoSSA4UA2+5SzN2pdhoHfH+TZZ/6J31tFl249w6QjJBjPj9+v4MH7H+KDd98lGKyib79+4eSKEWtlZXVecSxbspjnnn2G1JQkdfSF2tIoQgB1UrT8o1V/2aJj+bIVrPrxB35at5qSkgLad2iPYcRSVVnGnE8/w2aYxLgdLPhiASkpbXG748LktB+phcQNO98sW8Hu/DwyMjIaQcZ2vv/ue3bu3EFaagqfzJ5DKBQgJbUdhhoE7KfMQ3rtZMeOnXw+73My2qWG6ynt6yRn506+Xvo17Ttk4HQIMdXX7nUKNwQnfWkENALRgkATDWfjmTNnPn/5ywP89da/sSN7pxrByuF8GE4wksBIVJ2fKaN4FZYMRhtLozKS+WzOLJ59+jkMm4TL6DshPOoVEVNU//Lwg39n3rwF4dGxKA+xfLt8GSedeC67dxeRlJzCJRdcxX13PxzOQ8qWMtqCEd7NWWkUBo8+/BT3PzSNp6Y9rzo0a9VeHRI8nK2kDtay86c/3s3VV/2Bhx58movOv5qTjz+fbT9vJxAwufeuh1iy+Bu2bsnm7DMuZcOGrWAIfnL8u5CN28Ja3dvCz/IpmIo2mcBfbruHRx56Ktw+MZaWIZqGaBiSj3Taoj3JAMHwcP99j3PvXY/g98F99zzM5/O+xFADCUkreEt8q3x1qlJ1HvI+DKgiQpEtXqVR1CEySRsZchqv5CF5SZlyL+FuVq1cw+2338327TvDckp4MosXfcN551xBXm7BHvnDeTeKmA5nO+uyNQIaAYXAoZvplBbj56033+eqSZewevU6Zn88h2sm/x7DFmL37nxef/U50tNTOe/8M3G6EtiVs503Xn+atIwUJk26hKWLv+LWP91DKBSkX//+xMTY8XorOfb44ygvK2bunNkMGz6YtPR2eGLFbBW57Dz99PMkpSTz2ptCKm2RA/+2bN2qjleoKK/krTdepbikiPPOP4suXeVQQMhav4o1P/3En27+PbNmzyM/bzOpaaIZ+CMZR8Gn1XMHAj7OOus0npn+HD+t/Y4Jp5zP7bf9hdffeplXXp9ORrv2bMhaT5s2bSkrq2Dpkvn07dOVtsmpbNywnsQ28aSmpimNcuvWjXTr1hmnK55lXy8hJSWNxLZxxMa6KS8vpqQ4B5crhsKCYjJ798XvL2fxws9ISkpi8NDh6tA6d4ybilAlnrg4/v3q06SmplNY8DNVVRUEg0G2bN7G2HFHYticyC7iXm8Vixd9QVp6GgMHSh5iDnSwdfMm1q3LYsQRQ0hN60B52W4KdhcS43az/qcNDB8xhNi4WBYt/IJevbqTntGFUaNH8M47/6Z7jy5qAJG9fT3Z2UWKNxMT48O7AMSxI3sda9esY+RRR5CQmGQdbdLsZsQo+MpoETQCv2AEDp2MiGHrlp9Y/s33fPHVRzw//RXeefdjrpl8PWXl5Vx4wVWqU9mUtZEFX3zFfQ89wPnnXsqIEUcx65P5LF/+A6NGHonXH8Q0/axfn0V5WRmPPPwE23PWM3/eV1x/3RS+XjYfm92uZkcU3oYNM1TG2rUbOHLEsPCcUS73PXi36jRLSws4/5zLsNkMOnbsyPPTz+e/777KgEGjeOedj+jUsSP33P9XPvhwFp/NXcDFl/7G2n28evgeJa1qgM0mp8sa9O0/kklXnM+br7/Lrh3ZXD7pem64aTJjxw7HZrfx/HP/Znv2dkpKy/hkzgf8/YmnWb9uI3M//4q3/vMMjz0ylaVff8btf/6L0mSHDhvIDz/+xMUXD+CbpYu54YZb8cS6OOP0idw05UYuvvAyQiYUFRRxyqnH8cDDj2OzO3A6HWqX9osvup5b/3wjDpuDW265g/FHjyZr/Sa6duvEm2+9Rk7ODi6fNBmXw0Ze/m7OOHMi9973ILNmvsPf7nlEkcVddz7EqwIKPokAAAy1SURBVK8/j7eqgjNPv5Sx40ayedMWPB4P48YfxYIvl7AzZxcffvQ2JcVFnH/OFXy1aBZbv13DtdfcQP8BfSgrqSTWE09CQgKLvvqU2267g/btOnLf357gXy/+g8xevWrMiUVJu2oxNAIagVoINIGZzs1HM+ficLkoL/eTnpGqCKawYCffr1jB8q9X8M+nH+Oz+TOZdMWVzP74Q1auXE/7DumkJqfx6stvccGFZzBu/BEMGjSEyddP4dLLzsFmc7Lgy6/45JN5nHHG6XTt3hOv16tG21YNxIwkd7LtuXWujRUg2o2LefPns2jxcp7711P866VXMAwbr732lpprmv3RHHp070n2tgI6dmjPB+/L6VmSX8SOVAujw/tgGpjCCEprCxCfkEDAH1QaR0VFFV6fODDYqCgv59rJl/PuB6+zcePPLPt6GVdddRk//rCGndlr+GjmHCZMmMDWLdt47tmXeP6Facz417O4YzwEAkFFZlu2bOWGm37LLX/+fzz59yfZsiWbuZ99zNRpD/LU1OmsXbOcuLh4MC0zXFlFBT5/CDG9lpSWcN+DdzLz4zf5bO5XzJ0zixeff5m83Dw+nTeHBx+5l8efeJrVq5cxYNAQLrnsYgYO7K/kWbTwK5wuJ4UFJdz0h2sVOX311VJ69OjGp599QHFhOYsXLMTutFPhraC8opK/3fsQRxw5gnfen8XRx4yivKIcny/A448+RZwnnquvuZIfflzJ9Ode3GPWPbwtqUvXCGgEGkDg0DQj1XnLRPrnBAMhfvOb3yKnk4YCXj6b+wUdO2ZgGiaGzSA2Lp64uATKSqtw2FzYnYYioOHD+uLzBakqK8cWpsaM9j04+dTjeeKJ59iVk8Ojj4qPhYEM0w3lLSU1Em0hkYED+7BgwZKwV1kaf77lD1RUVHLMCWOVyc6tTv6044pxY7PZ2LZlJZs2bqGsopJLLplEVZWX7B3Z5ORspl27juF8GkCshV+FCOKMkfkuMU/6WbLwG9p3aEdKWqoiAamT8KjL5aJd+wzaJHpITkpV2tHpZ5xLj55dmfrkM2St28Ddd93G9uwduJxOevbojMedSreuXfD5/ARDQZKTkjh94inExSWycdPPdOrcEcOWQI/MrthsdnbuyMGhvjFCQAZ2uwObgUqblp5Oj+5iBg2SlNSGrVt2kL19O927dlKebr16dVOn5BYWFPLN19/xwYcfcsG5ZxPricWQeSIzhCc+hox2acS4Y0hMakO37l0VSbVtK84tTvUdcDjFpFjBjpw8xh8zXrXGoKGDhI8pLy+nqLCMQMDL3E/ncPHF59OvnxyqU9nCraaL0whoBA4UgUPUjGJZtvRr5n7yBS+8+CTzP/+UufPmcuJJx/L3x59h4KAB9M7syb13P8bJJ5zJY48+wPEnHkNcrAu7abB25Wq2b8vGE9uO2Nh4Fi5YykcfvqHmFK66+hIWfLEIl8PF0ceMI+Avobi4mMpK6VjEFVmqGuTGm66jrKSUC8+9kj/e9DueenI6PXp05uSTJ9Kteydu/dMd3Hf3n8nPzeOySRfy1NTnSM9I5rN5M5n3+ce8+97L7MrZzdtvfRju8A8UwuaILxqaoYjcH4BFS5bx1FNPcMkF5zFvzufcetsfiIvzUFxYit/rJxj0U1BYRFWVT2kHRUX5VFXKqbtuLrz4HP7x1AtqzmbAoKH06Z2J0+Xg+Rmv8cmst1i4aKGqgN9vUlxcRFmZeFGaTJhwAit/WM3cT95jxnOvkpTclqHDhrM7v5jyigq13Ehw93m9xLg87NyZx0svvcKrL/2Hgt27GX/0KI47frzSkud/9iH/mv4yGelp9O8/iLfeeIe4uDYMHT6I/Pw8/H6pg0lxUQlerw+/L0BRQYkaKIjbenFxKT5/lZqTknmltm3bcPS4Ubz/7gcsXDCfl196g/LSCmTeqGv3jrg9Hq645iqVPrOXEKTg2QgPu+ZoSp2nRkAj0CgEDs2127Art9oBg/pw4cVn4fG4cbtj6dOnq5onGjduJKdOPIkfvv+R4cOHcOddt9Gpc0+OGj2YhQsWk5ySyu9vvJY2SQn06d2ViqoqYmNj1OR1WmpbXn7xP5x1zkROPPlMQqFy2iQmMnrMkXTu0kE5KIg7drv2XTnttOPZumUrfn+AO+7+I5dfcSkxMR7OOO0kNm7YSFFhIQ89chdDho5gZ3Y2F11yDv0GDMHjtpOWlkbnzu1p1y6dPn3Cx6c3CrrmjBQ2QZomubtyw44BWaQkp/DQo/dw6sTT8XpL+fnn7WqOpVOn9uTszGXiaSeqDlmwOOaY0XTrnklaegLTp7/CVddcwthxx9M2KZHefbrz5hvvE/D7GHnUcPr370Wf3j0pLS1mwsQTiIuPYfDggSTEu3npxVcoKi7liakP0LvPEH7eupEuXTswZuyRbNm8laOPHkd+Xi6rV/5Ex47pzJw5mz/96SZOmXgqAwaKM4qLf7/4shpEPPHkA2T2GkTnTmksWLCIgvx8jj52NEOHDaJjx3bk5uYyYeJJuN0x7MjO5uRTjiMjI51NmzYzbuwopRHKoOK000/mhBOP4/tvV7Jk4SLGjjuCjh3S1bzW+GPG8f133/Huf9+jc5fOnH/+OcTGilZVZw2ZeOnpSyOgEYgaBBo4QmJXI4SUTlMWG8pCRFloKj94cd2WZw+YhWGX6ogHnCxW9FluxEgHIaPVCmvRpFp8KR2EjOhNPp83l3POuIT5Cz5i+BGjABmxy6LXKnXkuTXaFRFFBilPTFkyApbjz8vDC0Ol3EjZcjR6meXqLXHkPuJhJW7nsk5GhUXTvFGkbhEFVmxkETmluhG8pM5yLxhJG0h9xGvNzcz/vcuFF13Fd98tpG+/AeE44jYvc2sy9yN/kYWzgpW0kbShhIv7t2ii0lZiDiy13LxFazMrLJduYnn8kbt48onp/LxjJXaHtIWY3YpruJBLHrL+R5qrPCy3LE6Wekne8l7qIHJJu8j3QsoOL+IVN20lo6SR/GXBrWAhf1IP+Q6GLK85Zc5zWg4LCh/JQ+LUaVd9hITVHvq/RiBKEFAzAPXLUufHW28kwyIX1VFEIkiYdC7yJ/2KdIqR1f2Sp3RqkQ5HnmX2QdLUiGe46NAhjTfffkGNmq0dF6SDKowUEu6wJH2d8qpjRPIUOSJ1kbCScAzpCMOmG+k4q69wWPXz4boJ1y2Co6pnXdmEdMPyGUIici9rc2QnAvkMqDmdBx+4k76RuRMJF9JSkNRw/JC0Ko9whmZ4Jwu1JkkIMKJZWG1pISrkF2DsuNEYNpsyF9od3rArtWAteQmBSWzZOUIVEiYNCRNza/h7okSP7KBQRxZFkJF6Sp1FliAYMnCRbPx7mlh205BwkVvIU4FiSbsHrHBe+kMjoBGIGgQa1oxkYlmNtEXeyOg8Irt0LBLmDy+QjPzgI7//cMej4si9XNJBSUciI/4ID4afq6OEOyk1khZtp+bWL5F34ez0Rx0EIm1ggSmLTmW3BktzKAz3xZE4NZNGwK8ZVvO+Idwj2pu0VUQ7rpn2AO8je98p0jzAtLWiR+q5j7oZ7WrF1g8aAY3A4UWgATIqo7S0BKfLhc/nI+APKG80caOWn7d4cXmrqtSiS8tcEvnRC0EJwUAw6FXpHA5HOK2JzS7mJC+lJZY2EhcXh80uJhyL7GShpcPuwLBJWGREbuUdKSHSNUY+paz93dftmuo+R5qhZnh995F48inyROLUfa75rqH7SH5185HwSFgkvXxGwuu/N8TRvRYW8mD17/JOLnmv9kZQJUgZkfyttypSddk1w+S+rkwqRAoICxTJK/xYK37N9FYp1clUvJppIveReJG0NcPryhJ5F6lT3TS14qsdPmrmru81AhqBw4nAPskoEAjw6KOPMmTIEDp16sTixYvVRHr79u3VItL09HQWLVqE7J+WmNiGiopy1R/ZDAOHw6ncqnv27MHyFcuJccWoNUKhUIhgMET//v0UwRUWFlJaWkpKSoqy4JSVlZKdnY3kbXc46NmjB6NHjz6c+OiyNQIaAY2ARqAFENgnGQlx/PDDj6SmpigCKS+X9RsBRJPp2LGTWoUvZLJrVy6VlRVq9bu46Aq5yJqXxMREkpOTFQlt3LiRrVu3MnLkSPLy8sjMzFRVy8/fTSDgV8Qk2lNVVRXyKbsNyGd6egYdO4rnnL40AhoBjYBGoDUjsE8yas2V1nXTCGgENAIagehCoK5XQnRJp6XRCGgENAIagV8FApqMfhXNrCupEdAIaASiGwFNRtHdPlo6jYBGQCPwq0BAk9Gvopl1JTUCGgGNQHQjoMkouttHS6cR0AhoBH4VCGgy+lU0s66kRkAjoBGIbgT+P7ti6HFJTpvtAAAAAElFTkSuQmCC />"

Question 3

Which of the following best describes the role of NAD+?
  1.It is used as an electrophile in metabolic processes.
  2.It is used as a Brnsted Lowry acid in metabolic processes.
  3.It is used as a reducing reagent in metabolic processes.
  4.It is used as an oxidizing agent in metabolic processes.
  5.It is used as a nucleophile in metabolic processes.

Question 4

Under aerobic conditions, what happens to pyruvate after it is formed in glycolysis?
  1.It is excreted from the body.
  2.It is converted to ethanol.
  3.It is converted to lactic acid.
  4.It is converted to acetyl-CoA.
  5.It is converted to NAD+.

Question 5

The product of the following reaction is:
 



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

ambernicolefink

  • Sr. Member
  • ****
  • Posts: 359
Answer to Question 1



Answer to Question 2

2

Answer to Question 3

4

Answer to Question 4

4

Answer to Question 5

3




OSWALD

  • Member
  • Posts: 580
Reply 2 on: Aug 23, 2018
Thanks for the timely response, appreciate it


steff9894

  • Member
  • Posts: 337
Reply 3 on: Yesterday
Wow, this really help

 

Did you know?

Oxytocin is recommended only for pregnancies that have a medical reason for inducing labor (such as eclampsia) and is not recommended for elective procedures or for making the birthing process more convenient.

Did you know?

Thyroid conditions may make getting pregnant impossible.

Did you know?

Interferon was scarce and expensive until 1980, when the interferon gene was inserted into bacteria using recombinant DNA technology, allowing for mass cultivation and purification from bacterial cultures.

Did you know?

Opium has influenced much of the world's most popular literature. The following authors were all opium users, of varying degrees: Lewis Carroll, Charles, Dickens, Arthur Conan Doyle, and Oscar Wilde.

Did you know?

Drugs are in development that may cure asthma and hay fever once and for all. They target leukotrienes, which are known to cause tightening of the air passages in the lungs and increase mucus productions in nasal passages.

For a complete list of videos, visit our video library