This topic contains a solution. Click here to go to the answer

Author Question: Which of the following is the product of the first step of the reaction catalyzed by pyruvate ... (Read 28 times)

OSWALD

  • Hero Member
  • *****
  • Posts: 580
Which of the following is the product of the first step of the reaction catalyzed by pyruvate dehydrogenase?
 
Question 2

9OeLvPUMa9uBHnFdKPF9S5m3AvABAUp9Xip94uYtdGTpR3pY8gtrcy2uRmA/CBimqRb37B3NzGXDtNPo9cfle78Lh0z+eBfTJ+zzdaNfSBdjGE7K5m6h4B9fEze6K4RCVCzdSsqfxhB7bDdM06cnrhuNaPRGjGg34rJd5K/ktQ3L2VFZSq+EFC7uMRyP3c3Kgq2UBQOMTu2myCenqoTvCnZwasdeio+ahIj0OqPo/ZJoyX6VCDSgrZhmAAAgAElEQVRIRvUh0lyLXmWBq1oEmV1J6byNynMu/qTe0N5NCH/1gtgm6Yjqq5gOaxEEImQkrGItZpUFruKwEgAqMc2g9T2Qb4DpVTJZ8VyEzKrqAckhfw80GbVIe+tCNAKNRWC/c0aNzehQ4qmOxZDOx+SnqmyY1JPQpJ78VLlNjYxtqgezFjweSjk67eFHIEIiqjVN8Yzz8d6mheyqyFPCWeF+MMVEF44t8cwqZaaVkEgeh782WgKNgEagqRBoAjLazLSxGRjXzz8kmQxTdl+IY+Y7M9myagObf8ji4/dmAeLSrTugQwI3yhLXJhM7S3ZtpVDNCdV+YxFP7bAoq4oWRyOgEWgiBBp2YKinkAnP7arj1dSdKYt2MaWeuAceZOB2e3DYHQSNIDFuWfSor9aNgEmMy4lN7UfYumuqa6cR0AjsG4Em0Iz2nfmhvdkzu3Bo+ejU0Y6A7DmnL42ARuDXjUDUkZFQkEVDuoP69Xw1pcV1e/962lvXVCOwNwJRR0Z7i6hDNAIaAY2ARqC1I6DJqLW3sK6fRkAjoBH4BSAQPWSkDjQSF15BLXyonmWv+wXAqEXUCGgENAIagUNBIHrISI56xYbP5yUUMgmFAupezyUcSvPqtBoBjYBG4JeBwAG7djdPtawJbNMs48KLz6Nzl87KjSEtXY6GLm+eIlsyV3VarVbzWhJyXZZGQCPwy0IgSshIQJPtYVzExLh44rGpVFX5OeOMU2nfoUt4qxgrzi9HUwqTj2FXGh/4o9JjLEKREV82a1jQ8l/iSPktX7IuUSOgEYgGBKLETGeA4SHrpywuOv9KAgGT1NR2XH3VDbz3zntgJIax+gV0WWruK9ylG26yftrM449MAyMmqo5Pj5CQACuo1nxu6S+moc6HOJwStHSNdXkaAY1AXQSiSDOKYdq0aZx2+qnc8ud7lJyjRg2moHA3UKVO/MQULSPKOy0192WCIbtHJBIyg6xbl6XulXZklIEpm4IePmKNiIghO8HJRqV+a4PSwyKVgcNux2V31v1u6meNgEbgV4RAdJCRbJIaKmfz5myuvvpyoBTMCoYMG6GawjTLsY6cjnIiqv7ixPDdim9Ys3YzOTt3krsrn//+5xWCIS8nnngsqWmpYIYPEKxO03I3ShMx3ATw8/HP3zI8rQudPRkKc1N2T1d7pjctXUZarhYFGx58po8VhTsYWJhN14QMMLxg7jFpSrpaaVoOJl2SRkAj0IIIHD4yEnOWDNGVBmHHNCuRzZntjpoiSYet9nEGI946bE0dKxDl3ZNhJycnh5U/rqa0rIyS0gpWr/6JYLCKsWNHheeQWlY7sshA5uVEA3Hy+c41vLP5WzzOeD7etpaR6V25MvMoHNIeZqX6CjYVEUSISDJVZCcmSxzMyl7J+5u/4+iMPizM2ciKvC1c1288nWPTgApCdY7aivJWb8GfrS5KI9D6EDjg84yaBgIxY8kZNrEsXfI5ZaWlnHjyOVx+6QWcesopXHbF9co0tytnCyXFxWT26sv//vce/fr2oU+/kUBJrdFz08jUlLlI/TzKNLchazl/f/wZ/jn9JWUOg+Kwma6lp+tsSqaNpTt5bu0CvMEAv+07lsFJmRT4CpixbgEbi3ZzUeYRnNihn3IasQ40bBoKUMSmnDliWFW0nRfWLcRm2Lm23xj6Jor3ZECR48c//8hR6T24ss9o3DanOjqiqUixVgvr84xqwaEfNAKHGwH7PffcY03Q7CVJc7hUSydtB6MtOTk7mfbkU6xYvoLx48eTntGONolxPPTQ43TuksGO7Bxu+N0UOnXqxMDBI8jPz+elF15lY9Y6+g8YTExMW8uko+aQmqbD3AuCgwqI6AFBMIJkb9/Gyh9XceqEYwCZL5L3LUxERiylQR//XP2F6vAndBrAlIEnkuFJQEygsQ4H4zIG0qNNMm9tXMZn2WvplphGqjtF1eGQ5+lkbsqIpcBXwVOr5zH759Wc3X0Yv+t3HKkxbkyzAoMg/ZO6cFyn3nyTu4WX1i9Rc0m923TAUDt6W1ryQTVJfYmMuPpCdZhGQCNwmBBoQDPaZREHYh6TORw5CE2sZuLZVhk+/Ky2Q4Gp3LPFBCM/dIkvHa90wNIxC2Ek4PdX8Pqrb7L8m+WccuopnHHW6eEdF8RJoQ2ffjKTd/77nuqIJkw8hTPPPssyGxkJBANVvPXGf1m8eDEnnnQC55x3jjWjYFaEZxZC4QmGGuQk1kB5q7zcpAJCBEFlIjT3Ozsi5GnlJRxSI1cLi0b89/sDVFZWkZiYUMf5QklVbw7yRi5loDRsyrnAepZAwVx2qJC6ikRi1pQwcUIIYRomUlUlqzKH2Xhvy3d8uDWscfQ+Co89RmG6p5zwndJWHXyavYq3N62gb9t2TO47hjbOxPB8kpWvsq5GEluiqv+RsiWWvFb/DTfyvXhjwzfMyV7Nse17c3mvUTgMR7U5MCxtuJ2kfdxklexgxrqF+EJ+JvcZz4Ckrup7FyKEHLZofddqmnQFXsEl3GaRxjIlZqSEGsJqzagGGPpWI3D4EWiAjPIpKyvjww9nc845p+OJ9YBp4713P2DYsMF079EzbHaK/NSlE4gje/sWnp/+MoWFRYw8ajiXXHaBMsdgOJk393M+eP9D+vfvy2+umkRcXBKW2UqIS+aPBBAhv0hPIs9ChPIp+UtH1ZbcXT/z0ksvk7crn0suvYQRRw4Hs0SZ/taVGXy726RtjMHJGSEcRqTjdrK0wMZPpX6GtXUwuI2JaQYiM1L7aAk7q0qho9skyXmQI3NFGPawaW4fxdQTLFX2hUKUeL2kuj2KTEWCgqoKEpwe3A4xc8J3hdsp9lcxPLkjiY5YzJAPwyadtIdv8jfxyk+LaBPjZnK/8XSJy1BzMdbAoibGdQQw3HhDPl5dv5QluRs5ufMALuouziSSxmf193WSWN+CyP/I3JSLhbt+4vUNS2kXm8R1/cbRTrQtNXhQjVonlxqPkbmtHat5feNyerRJY3LfsaS62oQHQybFfh853jICoRBxDifd4sQxJKRIOYCJzbBIy17j+1Rda01GNcDWtxqBw4/AvsmIInZmb+OC86/ifx++QUqa7IZg48yJ53LDjddyysQzwCwLj/aFSFzs2pnLpEuu4ZRTT2DAoGE8NXUqo8ccwR1338ujDz9CRXkJV11zJd179A/P+9SdxBfCkU7KFiagegASckEm4dvw4/df88rLr9Krdy+u+921vLbZxz/W+xia5GRTeQjphN4e5yDRafLXH4N8mROifxsbS/MDXNbDzu39hCREa5Nywt1UpI80TDZVuBgws4zbB7i5e6D0bAdJSPVUo6Eg1aUbLpYVbOFv33zCuydfQ4xhUBkMcN68F3j8qHPVJP/1S99Qpq84Wwyby/KZOvJsxmf0ZVtFAS+sW0ROZQmTeh3FuPRegFeRr1XPiL9c/VJY5QsesWRX5DFj7QJyq8q5svdojkrLDDuSSNvtuVQaeVTkG8uWsl1MX7eAcp+XK/qOYURy92oZwi4pexLXexfOUbz+zAAvb1jGgp3rObVjX87uNhSPPZa/fPsuM7etoX9Ce3J8xfROTOXZ0ZOYuXk5ed5KcquKmdxvDBnueHWkfTURKTnl+6wvjYBGIFoQqGPnqC2WYTNIaptCUnKy0kjkbUpKKg6HkIGYifaYiGQk/urLrzJwUF9uuV2moQKMHjOQVSvXYIZKOPe8CfTuM9DaTcEsCHf+tboHK0wtgpGSpDOSq04cM2xmYzeDhw7l8aEDyFq3Bn/Iz4NrfEwblcBJKT5lvrr9uyrK/DZWltj433aTBSd7SHEEWVFk561NPvwhG06bnU1lBkVek6EpNmyGmLuku7Tz2sYqTunsZnFekNJADAmOYL1aQVjQJvyQupv4TZP8oJcYZT4zibEb5IV8eJwuXtm8mN2+Sj454VYVd+raj/g272dGpvbkn6vmMSi1E/cMnxAmdjFjirYiViwxTu77ipCKFa+MjrEJ3DviPKVl/Xv9EmZuXcnk/uPpEvZ4E0AiaTBiqQhW8uK6z1ixeytndRvM2V2Gh82K5SLBfjTRsFxqwGFYWJuVOAyDa3qNZWLngTyzah72kMmFvY4nu6qUq/uN4/96T8BHKcP/9xCf7lxJrq8cl9ODw+skNUa0b2/jyt03LPqNRkAj0MwISM++j8vE6XBSUlLCX/78Nx6456/cf/ft/LQ2C7db5oViKS8rY93a1eF5GAerV61n9JgjrUWq5m7aJiUz7ujjsNvt9O7Tt8ZcU0PdYUQcidNQPOlZxckiQK++/bEbJkPa2rnvhwr+vcVgS3mIh4fF0iHWxgfbghyX4SDFIUTjZ0TbII8Nd+K0GUxbF+T277y8vCnEpEVecqpcGIQoDtj5YleIp0e4SXCEeC9bNDLRtULVNBmRtKk/Lc3BwIkNLwFWFGWzpjiH5YU7CYbUbAmdY5PZUJLLvzfOZ1PZZm7udxJTBp6MAy/3HnEal/YYZXkcKld4kVDw2j8ZRBC3PsPaoFnOkamdeWbMRQxN6cxdy2fyzLr5VIVEk3Vb7uJGDO/9/B03LvyPct9+euzFnN1lhPKGw5TBgVWrRmElAw4la0Ru4dIK2rs93H/E2ZzdfbDSzsTbbkdFEVkl21mWv5XuccmkuuIZndqN0amdubDHMOxSkci4plGF60gHhsBsrlMOKuKkUuPvutkHlk2t2BuYNlbyuo76cpl9nYExdhobaqWJ3ocN08ZWYzN2Wj1Sz76OPXBZeO55jt56NbVkDWpGMjq2O2xkZnajTaK1Jc+XXyzE7fHww/dLuO/eB2jfvhMul8F9DzyAwykT6RF+i/QA0huIw0DkuYmroBwrfNgweX2sg0fXBHl5o4/H1oQYlxrk6SNiKA8ESHRL+TI2j6xvCrCqxMlLm4J8epKHDKfJNcvgiXU+Hhvq5L1tJsmxMXSKgeM7xfLmVi9XdJV5GjHVSV6RbruJ61MjO6fdQU5VCfd8Nwu3YafCDJDrLcEb8HFmpyOpDPh4bt1Cpq6ZR3t3Io8deS4D22ZgV84MVU0roSIUOL/7CE7u3I9/rVvE7xe9zcU9R5LmSeDFdQuJdbq4c/ipdE9or+amxEvugEioRt33vg0TIyFc4bVoLqeTD7b8wM6CQhYVbuSiHiMYlSpmxKo9XothItw7Px3SJAhsWM8qxjA1axFTBPomvWYw8bqzMaeLhv9LvWbz2M2LGTM1i0X1AjSb6ybOgFnTf6kVbDK5GyAjk0AgSGxsLFddMwmHM0VpBrNmz8XnraK4uJTf3ziZ4084m8svPZfl3yxi6NAhfL1kGRde8lswUsnP28jatesZf/ToPd54TSZ6zYxMfCEbK4uC3N7fpv5y/U7Gzylj7i4X/RINlhaKZuMIuyoblPidbCgzSXcbiojElDMyzcW87V7lzfWfn6vYUhbkki+97A7CkgI768oN+sbJqF3yav6rKugnMzaF/x53NW5slJt+TprzT7ymn7yqXM7tMoiLuo2kwFfGHT98zP8tf585J94QdixpevlUrc1KEh12/m/gKawv3cHz6xZS4qtiUq+RjE8X7VfmpkRjFa0pTNtNOg6JuEeaVPq9XNN3HH/pexqrSjfy2wWvs6t/PhkxCZjKcSXYtITc9JD+8nPMWsNiBnJHkxMRMGYMY2bcz7RbJzQD0bUs9AN7NwdALVuH5i4tosbUU47Y7EMUFRVTXFRqebVRQmFBkSKi4088izFjjuTOv/4Rt9vNEUeO4vwLz2X58u+Z+sQDfDRzJpdddh1fL/s27CFXTxFNFST+EzYb1y718vA6G+VBG4VVJi5sxDtMzuzk4Otdfj7dZackEMODa2HKsjIGt3WR5zWVx1yQOObuCDA2w8G3RSa5FUHePjqWO4e5+OdID6d2sDNtXVXYjboB2JqgTtYsjDW/UxUMYFdaZRBbKIQvGCTBGcf7P3/PSXOfw2sGSHa1pZ07gRjl9m0J0Bx6m9Ra1Vy5UJfROyGVx448m+ljL2R8ek/LbKo8FEUGyywobtjNdcnCXTMojhQ+BiakYxo21pXmqzayjJnNWHhzVeoXlu+G9atg8tk0i+4y8A5engo3P1afsa4OULOvqzaFibmwtjksYvqqbVKsawqraU7bO4865dV83FfZG6Yx1pjIDGDGxHrMjnXf1zQ9rpe0e8yeByyryntPeqnPAedRs44tcN9ArxoiITGeG278LbFxLsuTzPRz5dUX0advD2Wucjqd9B84EIfDxZbNm8lo35V/v/ocefl5zP9sFjfc8FtuueWPYAqZNeNlGjiNEI8fGcvHO7yc+5Wf3y+r4vpeTo5OC9I11s+jw2K5f1UZ5y308U1+kP8bkEiPWB9/7u/i3h+8XL+0gk4ek9/1cvHlzkqu7uFgcEKQ/okhMuND3NLPTklliKqgOAKIqa75rsjsisfmoLtHXJlFJ5GO1aSLJ4FA0M8F3UaSFOPhzLn/5Oz5/2B57mYePeLMsINIhM6aT0aLbPzheSlxn5d5oT2XkGFzEKKUYFGMSYeYOFKcsiGt4GNnSJt27CgtVJRpKEeY5pJgTz1/7XdZaxYzZtX9DRDBoSGUOeUOJs+YuFdHWitXIYOJM5g8S5ZryN8sBt7cC6NO7ztj4v30z7LiZE0dw4yJY4lM4QgR9boZpobfm1nCgr3qkFqtUq2HhsrOnMIicxaTISzb9NqkXff9oilE9KcZN7/NhQcrqxBRr5sZWI2HiTlrsiLECCQHXd96IGiyIHNfVyjHNM1c0zQrrU95VmHlpmlWmW+/+Zw559N3VOrrfnu5+a8Zf1fhpllkmqbPNE2vaZoVNdLuMs1Q8/2FwvL6zXxze2W+WRbMM00zT5UZCu00TTPfrAzlm9kVu03TlL8cMxTcpeQr8uea2yrkXsJ3mZWBcFpzZzi9yJ1r+oK7TX9QwgSL5quL5B0K7TIDgRyz1JdtBsPP8lnmyzZ9AWkbkbXAXFO0xlxTtMqqq1lghqRe4fjNLePhzr/cn21W+ndU17fcv8Ms9W43Q6Hc/bfPvr73OvwAEJhlTpaxwZipZlaNVLMmY46ZWjOkxstG3WaZU8dgSg8uV9bUMbXKkPz3lGnF3au8WZNNGGNaYlhy1oqTNdUcA6ZVRD3vpWCVx2TTkqI+wRtfdrgq9WRilb3nfT2yHKis+5W7njIaVd96xG/CoAY0IxmCyhhU9lKz7P/WaFjWFvnp1Lkr0599gd9NvoK4uBjOOe9sazGjKZPHhWAWWRqRyqMlRqiWWdFhBunoDhJnE6eJoFqpL8YlWeDqNgJ08ATUaN4Sy0rTxhGik0fMSgFVVbdKK4snLXgs6UM4bT7shj08Mm+y8cA+M7LbDOKdYmyUy3LJjnO6lBeg1Ec8Cfu1yaBfm/aqjWQvObX5bDNqJfsUtoVfyDcz1uHCbd8z7RnrcBLvEk/PiO7UwkL96oqbwHTRRGqM6AWCCWdPZvHNj9XrCXcwEGVOeZmp3MwVETWmZiYbPubtxbDXnEyv/oxhMWvk9JbwVStOZm9koYm6Zn/ADMZw4WkRvSQcrvKYwQf7shIeQNnhHBv9cUiyTjibycxg4j68ETnY+jZa+oOLuOeXvFf6MIFE1v1EPiWeWcbosWN4bfggcnPz6NK1W3gtieXCu1dWLRBgSRuRWQqsFRKew4gIEjGESacVnmUPd2A1U4VzCyey5kAiG91Ecmquz+qyw84SEYkjzhPqvWLUPYtPq+M0l1BRlK9Vf8uRZG+sLEGrw6NI7l+FKKoTv5kPZk9nQpNMJmUy5Y7J3DzxMWZPaaTXWU2yaRToi7m5l8HN9cStJq163tUbdMBl15tLA4H7k1UGCVn0H9uLiYbMWFmXmDH3OCbuL49Iqpb7bFgz2qcc0jFX4va46dJV9gyTEbl0ivrnv0/I9AuNwK8KgTH0l40/muqaMJ1Zk2dwf33aUX1lKJfz+l7sK0zc0yNzTrU/93Tg+0pbJ/yAy66Tfr+PjZE1kymL9tRj1mRxotgzR4Zyx9/z3pprs54PuL77lbdxEQ6ejJRGIaYwmcSOFKbJKIKE/tQItHoEwh5bkUnx6vqG3b2b2pt5wq3iVHAF96+qLgkyT+PCMbBqfZ3FpEqGRhKiMmvVNunVKGHft01R9r5zr//NQco6Ybo4UoTreJB51C9Q04UeJBlVs08dSfYVXieaftQIaAR++QhkTuEOGXHXmVSZ/cEMxky9tbbnWFPUVpW3mMWLa2ZmmfAW39yrhsddeCHp5DsauT5pArfW8a6TEtROD0ZNbaJmuXLfFGVbee5FpnWLqn5uhKzK1byO3OF5IktbbUQe1eW13E0Dc0YNCaE1oIbQ0e80Ar8WBCZMN5kl2/PU6BJkbmJR9VyRbO3Ti5sHzmqSnRTUCH+GtXanGuMJ0zFngTHRUGt6JFx2PDDr3fGgOlWtm8wpi8hiLL1qzRtNZpZZxx27Virx1jjUsidwthC6uKK/PZWsRb3rlrDX835lzRSZrsOoVZfau2TsN4+9Sm3+gH3v2m3mNn/pugSNwOFCQB8hcbiQ1+VqBOpF4CDNdPXmpQM1AhoBjYBGQCNwUAhoMjoo2HQijYBGQCOgEWhKBDQZNSWaOi+NgEZAI6AROCgENBkdFGwtlagh78SG3jVGvrrp6z7Xl0dj4tSXTodpBDQCGoGGEWgaMlJHhTdBR6VO+GxY4KZ9W8MFSGVc97lpSzvw3EQe+RNs6+J7qLLWTV/3uT5pZXv0unLUF0+HaQQ0AhqBA0PgIF276xQiWwWp4wvkAD7Z0Vr2s5M4jengauQV3guuRoh1q0hKeLOtOi9HTv2svlTnGA/InmRySfkl4X319lW+7LUXq06rhVJQp6FKXNleZl9pwtm3yIeAF5bD8ISPrZCCRb5Kawd1hbfUQc5fknC5r7DeHYiMKn85I0iOx5CrRtnhkNofsWHRpA2kveX8IjnIr2nGNbXLqvkkx9zL4YZSz7JwPQUjaUsJl927pS33J3/NPPW9RkAjEC0I2O+555576hdGDkhr5GU4KC4sZuq0qWzespEhgweDIpDGduzSoSSA4UA2+5SzN2pdhoHfH+TZZ/6J31tFl249w6QjJBjPj9+v4MH7H+KDd98lGKyib79+4eSKEWtlZXVecSxbspjnnn2G1JQkdfSF2tIoQgB1UrT8o1V/2aJj+bIVrPrxB35at5qSkgLad2iPYcRSVVnGnE8/w2aYxLgdLPhiASkpbXG748LktB+phcQNO98sW8Hu/DwyMjIaQcZ2vv/ue3bu3EFaagqfzJ5DKBQgJbUdhhoE7KfMQ3rtZMeOnXw+73My2qWG6ynt6yRn506+Xvo17Ttk4HQIMdXX7nUKNwQnfWkENALRgkATDWfjmTNnPn/5ywP89da/sSN7pxrByuF8GE4wksBIVJ2fKaN4FZYMRhtLozKS+WzOLJ59+jkMm4TL6DshPOoVEVNU//Lwg39n3rwF4dGxKA+xfLt8GSedeC67dxeRlJzCJRdcxX13PxzOQ8qWMtqCEd7NWWkUBo8+/BT3PzSNp6Y9rzo0a9VeHRI8nK2kDtay86c/3s3VV/2Bhx58movOv5qTjz+fbT9vJxAwufeuh1iy+Bu2bsnm7DMuZcOGrWAIfnL8u5CN28Ja3dvCz/IpmIo2mcBfbruHRx56Ktw+MZaWIZqGaBiSj3Taoj3JAMHwcP99j3PvXY/g98F99zzM5/O+xFADCUkreEt8q3x1qlJ1HvI+DKgiQpEtXqVR1CEySRsZchqv5CF5SZlyL+FuVq1cw+2338327TvDckp4MosXfcN551xBXm7BHvnDeTeKmA5nO+uyNQIaAYXAoZvplBbj56033+eqSZewevU6Zn88h2sm/x7DFmL37nxef/U50tNTOe/8M3G6EtiVs503Xn+atIwUJk26hKWLv+LWP91DKBSkX//+xMTY8XorOfb44ygvK2bunNkMGz6YtPR2eGLFbBW57Dz99PMkpSTz2ptCKm2RA/+2bN2qjleoKK/krTdepbikiPPOP4suXeVQQMhav4o1P/3En27+PbNmzyM/bzOpaaIZ+CMZR8Gn1XMHAj7OOus0npn+HD+t/Y4Jp5zP7bf9hdffeplXXp9ORrv2bMhaT5s2bSkrq2Dpkvn07dOVtsmpbNywnsQ28aSmpimNcuvWjXTr1hmnK55lXy8hJSWNxLZxxMa6KS8vpqQ4B5crhsKCYjJ798XvL2fxws9ISkpi8NDh6tA6d4ybilAlnrg4/v3q06SmplNY8DNVVRUEg0G2bN7G2HFHYticyC7iXm8Vixd9QVp6GgMHSh5iDnSwdfMm1q3LYsQRQ0hN60B52W4KdhcS43az/qcNDB8xhNi4WBYt/IJevbqTntGFUaNH8M47/6Z7jy5qAJG9fT3Z2UWKNxMT48O7AMSxI3sda9esY+RRR5CQmGQdbdLsZsQo+MpoETQCv2AEDp2MiGHrlp9Y/s33fPHVRzw//RXeefdjrpl8PWXl5Vx4wVWqU9mUtZEFX3zFfQ89wPnnXsqIEUcx65P5LF/+A6NGHonXH8Q0/axfn0V5WRmPPPwE23PWM3/eV1x/3RS+XjYfm92uZkcU3oYNM1TG2rUbOHLEsPCcUS73PXi36jRLSws4/5zLsNkMOnbsyPPTz+e/777KgEGjeOedj+jUsSP33P9XPvhwFp/NXcDFl/7G2n28evgeJa1qgM0mp8sa9O0/kklXnM+br7/Lrh3ZXD7pem64aTJjxw7HZrfx/HP/Znv2dkpKy/hkzgf8/YmnWb9uI3M//4q3/vMMjz0ylaVff8btf/6L0mSHDhvIDz/+xMUXD+CbpYu54YZb8cS6OOP0idw05UYuvvAyQiYUFRRxyqnH8cDDj2OzO3A6HWqX9osvup5b/3wjDpuDW265g/FHjyZr/Sa6duvEm2+9Rk7ODi6fNBmXw0Ze/m7OOHMi9973ILNmvsPf7nlEkcVddz7EqwIKPokAAAy1SURBVK8/j7eqgjNPv5Sx40ayedMWPB4P48YfxYIvl7AzZxcffvQ2JcVFnH/OFXy1aBZbv13DtdfcQP8BfSgrqSTWE09CQgKLvvqU2267g/btOnLf357gXy/+g8xevWrMiUVJu2oxNAIagVoINIGZzs1HM+ficLkoL/eTnpGqCKawYCffr1jB8q9X8M+nH+Oz+TOZdMWVzP74Q1auXE/7DumkJqfx6stvccGFZzBu/BEMGjSEyddP4dLLzsFmc7Lgy6/45JN5nHHG6XTt3hOv16tG21YNxIwkd7LtuXWujRUg2o2LefPns2jxcp7711P866VXMAwbr732lpprmv3RHHp070n2tgI6dmjPB+/L6VmSX8SOVAujw/tgGpjCCEprCxCfkEDAH1QaR0VFFV6fODDYqCgv59rJl/PuB6+zcePPLPt6GVdddRk//rCGndlr+GjmHCZMmMDWLdt47tmXeP6Facz417O4YzwEAkFFZlu2bOWGm37LLX/+fzz59yfZsiWbuZ99zNRpD/LU1OmsXbOcuLh4MC0zXFlFBT5/CDG9lpSWcN+DdzLz4zf5bO5XzJ0zixeff5m83Dw+nTeHBx+5l8efeJrVq5cxYNAQLrnsYgYO7K/kWbTwK5wuJ4UFJdz0h2sVOX311VJ69OjGp599QHFhOYsXLMTutFPhraC8opK/3fsQRxw5gnfen8XRx4yivKIcny/A448+RZwnnquvuZIfflzJ9Ode3GPWPbwtqUvXCGgEGkDg0DQj1XnLRPrnBAMhfvOb3yKnk4YCXj6b+wUdO2ZgGiaGzSA2Lp64uATKSqtw2FzYnYYioOHD+uLzBakqK8cWpsaM9j04+dTjeeKJ59iVk8Ojj4qPhYEM0w3lLSU1Em0hkYED+7BgwZKwV1kaf77lD1RUVHLMCWOVyc6tTv6044pxY7PZ2LZlJZs2bqGsopJLLplEVZWX7B3Z5ORspl27juF8GkCshV+FCOKMkfkuMU/6WbLwG9p3aEdKWqoiAamT8KjL5aJd+wzaJHpITkpV2tHpZ5xLj55dmfrkM2St28Ddd93G9uwduJxOevbojMedSreuXfD5/ARDQZKTkjh94inExSWycdPPdOrcEcOWQI/MrthsdnbuyMGhvjFCQAZ2uwObgUqblp5Oj+5iBg2SlNSGrVt2kL19O927dlKebr16dVOn5BYWFPLN19/xwYcfcsG5ZxPricWQeSIzhCc+hox2acS4Y0hMakO37l0VSbVtK84tTvUdcDjFpFjBjpw8xh8zXrXGoKGDhI8pLy+nqLCMQMDL3E/ncPHF59OvnxyqU9nCraaL0whoBA4UgUPUjGJZtvRr5n7yBS+8+CTzP/+UufPmcuJJx/L3x59h4KAB9M7syb13P8bJJ5zJY48+wPEnHkNcrAu7abB25Wq2b8vGE9uO2Nh4Fi5YykcfvqHmFK66+hIWfLEIl8PF0ceMI+Avobi4mMpK6VjEFVmqGuTGm66jrKSUC8+9kj/e9DueenI6PXp05uSTJ9Kteydu/dMd3Hf3n8nPzeOySRfy1NTnSM9I5rN5M5n3+ce8+97L7MrZzdtvfRju8A8UwuaILxqaoYjcH4BFS5bx1FNPcMkF5zFvzufcetsfiIvzUFxYit/rJxj0U1BYRFWVT2kHRUX5VFXKqbtuLrz4HP7x1AtqzmbAoKH06Z2J0+Xg+Rmv8cmst1i4aKGqgN9vUlxcRFmZeFGaTJhwAit/WM3cT95jxnOvkpTclqHDhrM7v5jyigq13Ehw93m9xLg87NyZx0svvcKrL/2Hgt27GX/0KI47frzSkud/9iH/mv4yGelp9O8/iLfeeIe4uDYMHT6I/Pw8/H6pg0lxUQlerw+/L0BRQYkaKIjbenFxKT5/lZqTknmltm3bcPS4Ubz/7gcsXDCfl196g/LSCmTeqGv3jrg9Hq645iqVPrOXEKTg2QgPu+ZoSp2nRkAj0CgEDs2127Art9oBg/pw4cVn4fG4cbtj6dOnq5onGjduJKdOPIkfvv+R4cOHcOddt9Gpc0+OGj2YhQsWk5ySyu9vvJY2SQn06d2ViqoqYmNj1OR1WmpbXn7xP5x1zkROPPlMQqFy2iQmMnrMkXTu0kE5KIg7drv2XTnttOPZumUrfn+AO+7+I5dfcSkxMR7OOO0kNm7YSFFhIQ89chdDho5gZ3Y2F11yDv0GDMHjtpOWlkbnzu1p1y6dPn3Cx6c3CrrmjBQ2QZomubtyw44BWaQkp/DQo/dw6sTT8XpL+fnn7WqOpVOn9uTszGXiaSeqDlmwOOaY0XTrnklaegLTp7/CVddcwthxx9M2KZHefbrz5hvvE/D7GHnUcPr370Wf3j0pLS1mwsQTiIuPYfDggSTEu3npxVcoKi7liakP0LvPEH7eupEuXTswZuyRbNm8laOPHkd+Xi6rV/5Ex47pzJw5mz/96SZOmXgqAwaKM4qLf7/4shpEPPHkA2T2GkTnTmksWLCIgvx8jj52NEOHDaJjx3bk5uYyYeJJuN0x7MjO5uRTjiMjI51NmzYzbuwopRHKoOK000/mhBOP4/tvV7Jk4SLGjjuCjh3S1bzW+GPG8f133/Huf9+jc5fOnH/+OcTGilZVZw2ZeOnpSyOgEYgaBBo4QmJXI4SUTlMWG8pCRFloKj94cd2WZw+YhWGX6ogHnCxW9FluxEgHIaPVCmvRpFp8KR2EjOhNPp83l3POuIT5Cz5i+BGjABmxy6LXKnXkuTXaFRFFBilPTFkyApbjz8vDC0Ol3EjZcjR6meXqLXHkPuJhJW7nsk5GhUXTvFGkbhEFVmxkETmluhG8pM5yLxhJG0h9xGvNzcz/vcuFF13Fd98tpG+/AeE44jYvc2sy9yN/kYWzgpW0kbShhIv7t2ii0lZiDiy13LxFazMrLJduYnn8kbt48onp/LxjJXaHtIWY3YpruJBLHrL+R5qrPCy3LE6Wekne8l7qIHJJu8j3QsoOL+IVN20lo6SR/GXBrWAhf1IP+Q6GLK85Zc5zWg4LCh/JQ+LUaVd9hITVHvq/RiBKEFAzAPXLUufHW28kwyIX1VFEIkiYdC7yJ/2KdIqR1f2Sp3RqkQ5HnmX2QdLUiGe46NAhjTfffkGNmq0dF6SDKowUEu6wJH2d8qpjRPIUOSJ1kbCScAzpCMOmG+k4q69wWPXz4boJ1y2Co6pnXdmEdMPyGUIici9rc2QnAvkMqDmdBx+4k76RuRMJF9JSkNRw/JC0Ko9whmZ4Jwu1JkkIMKJZWG1pISrkF2DsuNEYNpsyF9od3rArtWAteQmBSWzZOUIVEiYNCRNza/h7okSP7KBQRxZFkJF6Sp1FliAYMnCRbPx7mlh205BwkVvIU4FiSbsHrHBe+kMjoBGIGgQa1oxkYlmNtEXeyOg8Irt0LBLmDy+QjPzgI7//cMej4si9XNJBSUciI/4ID4afq6OEOyk1khZtp+bWL5F34ez0Rx0EIm1ggSmLTmW3BktzKAz3xZE4NZNGwK8ZVvO+Idwj2pu0VUQ7rpn2AO8je98p0jzAtLWiR+q5j7oZ7WrF1g8aAY3A4UWgATIqo7S0BKfLhc/nI+APKG80caOWn7d4cXmrqtSiS8tcEvnRC0EJwUAw6FXpHA5HOK2JzS7mJC+lJZY2EhcXh80uJhyL7GShpcPuwLBJWGREbuUdKSHSNUY+paz93dftmuo+R5qhZnh995F48inyROLUfa75rqH7SH5185HwSFgkvXxGwuu/N8TRvRYW8mD17/JOLnmv9kZQJUgZkfyttypSddk1w+S+rkwqRAoICxTJK/xYK37N9FYp1clUvJppIveReJG0NcPryhJ5F6lT3TS14qsdPmrmru81AhqBw4nAPskoEAjw6KOPMmTIEDp16sTixYvVRHr79u3VItL09HQWLVqE7J+WmNiGiopy1R/ZDAOHw6ncqnv27MHyFcuJccWoNUKhUIhgMET//v0UwRUWFlJaWkpKSoqy4JSVlZKdnY3kbXc46NmjB6NHjz6c+OiyNQIaAY2ARqAFENgnGQlx/PDDj6SmpigCKS+X9RsBRJPp2LGTWoUvZLJrVy6VlRVq9bu46Aq5yJqXxMREkpOTFQlt3LiRrVu3MnLkSPLy8sjMzFRVy8/fTSDgV8Qk2lNVVRXyKbsNyGd6egYdO4rnnL40AhoBjYBGoDUjsE8yas2V1nXTCGgENAIagehCoK5XQnRJp6XRCGgENAIagV8FApqMfhXNrCupEdAIaASiGwFNRtHdPlo6jYBGQCPwq0BAk9Gvopl1JTUCGgGNQHQjoMkouttHS6cR0AhoBH4VCGgy+lU0s66kRkAjoBGIbgT+P7ti6HFJTpvtAAAAAElFTkSuQmCC />"

Question 3

Which of the following best describes the role of NAD+?
  1.It is used as an electrophile in metabolic processes.
  2.It is used as a Brnsted Lowry acid in metabolic processes.
  3.It is used as a reducing reagent in metabolic processes.
  4.It is used as an oxidizing agent in metabolic processes.
  5.It is used as a nucleophile in metabolic processes.

Question 4

Under aerobic conditions, what happens to pyruvate after it is formed in glycolysis?
  1.It is excreted from the body.
  2.It is converted to ethanol.
  3.It is converted to lactic acid.
  4.It is converted to acetyl-CoA.
  5.It is converted to NAD+.

Question 5

The product of the following reaction is:
 



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

ambernicolefink

  • Sr. Member
  • ****
  • Posts: 359
Answer to Question 1



Answer to Question 2

2

Answer to Question 3

4

Answer to Question 4

4

Answer to Question 5

3




OSWALD

  • Member
  • Posts: 580
Reply 2 on: Aug 23, 2018
Wow, this really help


matt95

  • Member
  • Posts: 317
Reply 3 on: Yesterday
Great answer, keep it coming :)

 

Did you know?

Methicillin-resistant Staphylococcus aureus or MRSA was discovered in 1961 in the United Kingdom. It if often referred to as a superbug. MRSA infections cause more deaths in the United States every year than AIDS.

Methicilli ...
Did you know?

Eat fiber! A diet high in fiber can help lower cholesterol levels by as much as 10%.

Did you know?

Thyroid conditions may make getting pregnant impossible.

Did you know?

A strange skin disease referred to as Morgellons has occurred in the southern United States and in California. Symptoms include slowly healing sores, joint pain, persistent fatigue, and a sensation of things crawling through the skin. Another symptom is strange-looking, threadlike extrusions coming out of the skin.

Did you know?

Eating food that has been cooked with poppy seeds may cause you to fail a drug screening test, because the seeds contain enough opiate alkaloids to register as a positive.

For a complete list of videos, visit our video library