This topic contains a solution. Click here to go to the answer

Author Question: Assign priorities to the groups in each set. (a) -CH2OH and -CH2CH2OH (b) -CH2OH and ... (Read 29 times)

cdr_15

  • Hero Member
  • *****
  • Posts: 546
Assign priorities to the groups in each set.
  (a) -CH2OH and -CH2CH2OH
  (b) -CH2OH and -C(CH3)3

Question 2

Each molecule has one chiral center. Draw stereorepresentatio ns for the enantiomers of each.
  Each part has a tetrahedral chiral center. The chiral centers are labeled with an asterisk.


 
 

Question 3

Following is the structural formula and a ball-and-stick model of cholic acid, a component of human bile whose function is to aid in the absorption and digestion of dietary fats.
 
Question 4

faqp7x6SDfGtcJnnrrtttvSndhtVip7sYzGeSBkIGU+aTRBGyAw5zzzhB0m3J4CoKLgqRPayCr9kksuCf/4xz9qVoeZRCJBgClmcMcAMcPY86pdYsK3AfLxxx+fghUgzUa0RUVZYPXQQw9NQYU9C23TwzR03HHHpVn/swkNbYpqFwCbOLdSADFJC+tl/NZnbSqtfCWQDcQBSJjMeoL9OffccyvuZF7v2Hq/M61WY08rHatsUXOsbVdsPm7nA3tKag9ZzGVeb2dfzN9X6QOU10jm89ghl4arwlJhn8EPhjeX2Dgs/eap4YQbjwjddHJHAAAgAElEQVRrfX+B0AnIcfzLV4fjDnwwfLrrj41/3gtPjUvCwpl7aOvb8S+Hq487MDz4WQXDe0+NC0nHVLCt2unzFzdJWN0yW2y88caTmZUwQrIe27XcBBAHakyAjUqb2dLBthF/Oul3acbmVvmG9EQj2ktPlmQMBMYDu5P3h5E9GPDBONgOI4otMZj6sEAmonYIHyy7r5vwAVdtyU+pqPDfcr/AnT+C/bnqqqvC/vvvn5o58+fSnwClVorNWpnaACztYbfxvAA/O+20U3p/gE4lAdawWEy4N954Y5oVu1I5ma2Zem1QDcC3Wmy5wTdLVu4ioo85ppYwcwF+5513XmqKxNRi/TCQzLh2avc8W4BoHybedkonzOPtvP8a1/4gPHDRw+GLq/QPw59/Prz4/mJhi3VCuOm3l4TnxtU4rAd/mm7ZfcIV9zyUOjlydHzo1pPCerP068Ea1LnUdMuGfa6457P6PXRrOGm9WUIH1bDODZQ/d5cGbLJrhc5ksckmm0wGflzzq1/9arjppptSXwnmkyiPPvpooW0GYvnsK1OMjUHtAdabGCD3wPxgI1MTCFaHGRAYtNUMfxqboZr0+cpEsBjvPZrB4ueefuXzom4E8OFHxcxZVGz1seKKK05WnJMznZhY8/erIAYiDxInO0ETH7A59MuRF2j405/+lLIaTgWQ2dyaozBnX2xdrY1Z7YAOBAE4fGtszeFe/HHct60G/zYbph5wwAFN1Lb+IQBaIz49ylYDda4G/LivG264IfW547wOMNEHQOR5xp5ZfNCN7UuAynY66ZcAqEo/mfD6jeFvr28Vfrnb9mH77f3tHA48eocw/yN/CGc+8tneVlUOL78uNTDVasDO4p4JE7HJDetglWqgKyJWyehxESUmw2oi6oa/iJXim2++mToDo8+b3UvOccxEzAqV9gCrVo9O+X6llVYKN998cxrtRG90YuJlIqN75oVKztnaqWjbdNe92qMMg8WUh6nC+pns64lJ1d5he++99xRFARGslok1K44Bru0x1mqhX+cG4IF3/V8/9ed7TBdwV4kdytdl6623Tvdpcw8AIlYTaAPssF42Wq103/nzNPuZnxRWRp+qJyL5tCE2r5rsuOOOqS+foAP+T5Gl84rtveaaa9Jz0J2939yb6DILIPu/tUNKAFRB6xPffzycu/+vw41vvx5eeGf8pyUmjglvjJg1zJm8HE7b++hw/asdQgNVqH/5VamB7tCAQZkzMZ8OZig+O2jxyy67LPUzsZmjHb7rCfOBCbyIH49JwATOfMWvBQBqxHySrYv6m2SEsLebes/Wq9H3/KMAThtoHnPMMWl71DIJtpsBcn/qd/nll6fMjCgwk6JNQ2uBIL/tu+++Yf755099fvJ6wsiceOKJwcRrcgZ8RF5hKQAVE3x3iOtiLoBz9wGI6luYKtesxEhVqweGhFmTX5QIM5v02myV/xv/me4UKRYsQvjfAXPVBGO60UYbpYzXvPPOW7HYCy+8kLKTwI+FBr0APBgx7OQbb7yRgiLPsQ28/WGCMF3azoLKONLTUvoAVdB4/9lXCjtf/GKYLNtB/1nCkpsdGwYnn9nXKxzagq8mhjHDHgmPvDQmTHS2fv3DtDPOET6/9LJh0dnL5mqBgstTNKEBAzzgQ0TdZCdcPiZMAnx2DHYmCL4Z1YR/j1VfEeHkalXMb8IEKhpq+PDhFf0+Kp3PJKr822+/Hd566610xR5DxCuVnxq/A4BqTXA9dc/aUYSaCC4Tn8nXhG+HeJF6WQEIOD0zWfKT0acqCT8akVnKipQy+QJEzFPNMoWVrlPtO0CrkZw+1c7j+1ab7GpdK/4GyHmuttpqqxSQ8N9heqNv/kGnn356atrDwsU8WvHY7CuGh5ky3sM999yThrwz0WK0AFOgx/WOPPLItA8AjvrCkksumbbVdtttl/pFWaD0lJQMUE9puvB1+oeZ5v986H/bHmG99XYL1zz/enjp0UHhsA2XCKv87KLwYko8zRhWHPhMGPfUQWGZbDbBubYIN44eGQZt0nMdqNptzbjiwPDMuKfCQZNXMGxx4+gwctAmof01rFbz8vtKGkDvSyBosMyCn2xZq1nRLQZDg2c1kU+liInA8QZSEyRHYA6VJk5RYDEaBSNUKSoHYON0K+8MxonZy2SrPMdq/kB8aLojwVy1+27X953AAGXvHQuALcEsmGiXXXbZwBxkgjQ5YlGAVGYlfk/1JkS5gkyk+oFIIyA5RsFlr1u+r6wBPmTC2wEYDI7n2983vvGNVPf8k6LzeaUzWGQAs4AT8ezddddd6TOKZcLgRVP366+/npbxTDOJesWYyQ+kLL+onpQSAPWktgteq/+MC4TlVlsqzDLD58Pam/8gbLvbkeHP5+wYxpx3eDjriSkzixY8bVms1EBTGjDAGZiOOOKIquAnnhgIkpjOyrGaoNEbSc7HfyVGMDG9WTHySRAl4zr5JIEAFodUvhhMJAZ4YbgGWw6mVqHrrLNOOmgb9AG7vDgH0McZWxSLCZWJjx6KJsPLn7OnPzMJAX9A4+DBg1PQSfcmKpE4zZoSW3UfdMofRF/ACKov0VbaXNs2wq5gfCr5QLWqvlPzeSRaxOB6PgAY/R9rw1fPM11LgE59iT8UsfDg5wfARh+t6OgcQVL2fLGMVAna3HjTU1ICoJ7SdBevM+HDD8K4/rOGOWaapotnKg8vNdCYBp588snUx4d5q4hwcgVAqgk/Is6wMhwXEaHyokui8H1hSrHqtHIEiqLIecNpGmtgcsVI2S6D/Oc//wm77bZb+hmIkkuGAze2ATMUBTMhgzQfD4yESUH+IdfFXGCPmPE6WUTLuTc+NNpNyLjVNyAk+oYzKx1hWNotgJD6MJfwh2HCagT4tLv+U9v1MTLYmKLiOc6WB4g8Z4cffngKSJnIo4kTqCJ+EymXLYMR8hw6vqekBEA9pelmrjN2aLjg8L3Dbj/ZJKz9g1vCumdeGvZaboZmzlQeU2qgaQ2w1Yu4qeaHkT8xp2VhyNFMlf8duOAAXYTuNkEbNOVeiQKwmCCtOplTsk6nGA+giBmFGU4SPf4/xErTdeNnbAiGh3nNOfmNMKWg/pnHhPNiJqyO/QlZ5rApY7XBWjRcJ4rVNtBjRc9fi2+MvdNE5piIhNADdswaTB58bEopNdCsBgBpjBHWhxgnPC+eH87c0USNiWXmJJ5bz3C2jOP00RIApSoq/4UZlgk/OeqP4Y8nnxiO3nWhcPNBe4ST7n+/VEypgR7VANNCUbZGxQAfg1kWmOQrLKMu/xxgIivob/4DkvnFxHcm7GjawPDY/JRghu68886U6eHXg+HgywCoWHUCQPxLRNUQgAcAyn7mZGszSP5BTEX8jFyvlsOn6BVgScK7nqTr05uo80+0Dcdg+WqswrUDB+g48QB4THiA3ZlnnpmuwkVN+b6UUgPNaMD4YKEBbBOfmcH0Oayp/pbtd/EasV/GMhYUwBIQ1FNSMkA9pekuXGeGeZcPm+03MPxoxjvD7/9wXyghUBeUWR7asAbkzOFzkzUT1ToJ1kZUmMm3mjDPMCehwAEKzM0ZZ5yRAhYAh8mGjw8HXmwMkxXnVowFp8zrrrsuNZWIFgKmvJr05VMxAMsNY/Up5BogIL7D3GQ/KyOCyHdAAX8fkTD1hBkP+AHAOknkArKyloSukmSdT/0uTNnWIxihUkoNNKsBUZ8RRHuGhMVnJd/vsr/F985hr7CeBEBTZVy1lWcnR3dYzUaHv9j4U7wmE0PWFWzimNfDyx+EMN8XF

Question 5

wjdbQSD2GtNXlPUtfxiqtYA50aOqRgXuVvqSdy406QKsFTLZ+J7q0abWGIrUOgclH0fGR/X8qzww+HQzLQm7Dk6U3rWTfb+gCU5coj3fH74/8QkgL4DgLKfYxmOnvyW+C8V8T/xfGCA+DKpcyeI3CuAI0dSbBgdxfDjyFQBnJzUReZky3BYVTZG63TC/ZR16D0awJgCMBhVJm7+PZzbmcNJtt/FuQVDFPulMp47YDz+3hN3P81vIjfaE1frxmvwUzBocsayUnVbaO0NNthgssG0G6tQ99QGexPCfffdlyaGQvWzi04esjkxjH7u1nDBn84I1z72anhv9Ijw5L8uDWecfHF4c41Dw5+P2iwsMmP1lXXdStQoYABFRxogUZoydQKS7Lu10rrXOGX501SiAT5ATEVrrbXWpEGt0q0xa2FahDULmfccYmtQ2wbD/OrOik+fw+AwxUhQmB8AfQbCRGxhhTgkb7PNNlM81zbbZPLSV03oTF38fpjNiO9M8NnPsYz68Z2R66hIgkbnY2669957u2Wn7kq6rfcdx2xZfZm26AwTpr2MMRyfORiLmAMwfZ8tA2TST9F9oerVpfy9b2nAQkSf8rx7hoEZZmnmaL5+GORsv9MnY7/07MmgLehAYENPzjW92gTGmRFbAXVy7oMyiTTrQAZand3fCrOdYtUqGsNKccSIEWkHsQID2Dhf+i0OyiH0D7Mu9Y2w50WvhiR5J/zrtOPDb0/5S7jq7sfC3efvFVabvfVNBoVLTW71zAyx++67p9S+AdRqkg6tdNUdqCyl72nANgwYEtsLiLISKpsViw6DGN8YkVcmW9FUcvZwyGVq4pxsQYJJiv1If+MLANBUyy8UrwMsASiyT6PU8yK3UNbBuYgPUCzjOOcH9ouKsjHxW9FjurMcBieuqCWOtIcas170wTA5+YtJEbNlvAfoiooxTZQdk5s9omJ7Fj2+LDf1aUBqCYsdcwmfQf1MH5QdPtvvMMPZfgm4S7RoIcR5uiel9bNpD9UeJQ5poswgSxR9tO2rgtBYA+XZZ5+dAgyTu8G4JwWl7/rqJ9LC6pijlwHJ4Ok7qf5NGCh4A0ocwHqqniYp4cCof4hctIjcD1aDBK3JR4N+TXDAkNU6MBS9/nuqruV12qsB6fBFQQFAzEk777xz6mMjygjtrV/oy5H2xjBgFJiumJ385jkUneTZBaawNgBSUSCB4VUPky7Wwt8dd9yRmtAkO4y5SJi29FfO1AZmEsPgs59jGQOvOuX3laqlcWWjKa5WuZ76zaqbAzrTlqzXdJP1vcB+RRNXvoxtCzBHWF8TGIBTTaQgwAi6f6DVlihSAzhHKX1bA0zO5lmA2nhgjrO4x8QS/Y7EfvnTn/40XfxYOFl497T0S3p6xu3CHXqo0fBSawM+0ndzuJTIzOqtmhgIoE4IE00n4VJskGrHdPV7g63cFoCOqBLOmAZvdTHYq+9nrE9IkbMO4Hs0oHp2p1ixmYjQjih/q3I0eTURmmiCEPJopSltOeSOXRNKXErf0gBKmwMwEynwIExd5FURYWo1iUb2h19R1uen3jk8Q5hJQIbjpYEWeGci0x85MXPcBn74C3ll0mUec4xVafzsN4AOM2UQBgAsSqIvUbW6MLk7B2dPTp+dIHwu7HIPCGHEARQglT8G36e487dFmT8stDLGKWy5sdWzDagySxhnpQRgxhAdhxFmfgT6nDM7Rlk4cUAHRnvjRrOd0H5TUx3MzeY7zyWzLFOxZ9xcrU/+/e9/T0G659EiqF1zSMcDIAOllQn/AIOs/AFCXdG1Bl/AxkBaREzikmxBpV7RbrVCdYucM1/GvkMa2ICArhfBAg1H4cNg9UTUPzIt8XemAuYDg7nN4eKKLf7e1VcrRPct6RiThGy3dFpEOFjyY5JjxWTC5ABIxXBkbSQtfSmlBopogOmX3w1Gp4gAPhYWosD47gAeTDAYKLl8MJL6tIlY3/S8A2mAPhOXY4AEv8fPBmDAwPMKVGGqPHci1KrR8cABCh8o8Hx3krgfvoXGDbrFigFrwE58zo0vTBKxjJ24mSmMq1g7YwR9yKRNDwChhZnVPcbn/9u7FrCqqrT9AgoIIuIV856OKGpeJu+Zd1MzGytHyWc0NVNBsxqzmmzsZjhjNtaTjmXmbxqlFahpav/kJUnKSxcvYf1eBskLIgqCCIfDWf/zLtx4QA6dI4fDOfB9zwNnn33WXpd377X2t74rJdoljZv1ElcykkJVFwHOD2oKKGig5oDEucn3Lp9J2rzSFpCZ4J39fnMUdbdUgREoLlIEkrsOTlDu2jg5ucOj5ISLFXec9jI/BIagf/bZZ1pEx0WCUiBjV+QocMXLs0/cPdKmh0wVVUvsozXzw2toc2CQETfB+M5PjpMLNRcZ7kLJVHDH7AwiM0nVBZksugzzRWIsivbUT5UFJW+8loJDesHQ9mPOnDnaRogvHS62fDmQ6xcSBEpDgC9LSivsJT5zlPZQykGmiZ+0NaDNHzdCfL6ZPJVznPOMkh2q49gOifPdOhAiv1PaQSkS01zQk4WLNl3uqZajNKO4gJwqbK5NnJvcubob0Q6SasDIyEiNLec3MWbAOYO4KycDRPU211caq8+ePVuvryxDZoc7coYHoHqLmxxufmhWQIaqa9euRlVFPqnuJIMpVLURoB0QpT/WJil8J1KAweeO2hBKHSua+eFdcj4DlJ+G79Ysw4cHLxdkM7/+LOSe3ITl736BJMN20pKJxNiFmBlxP+4dNQ6RC9bjcEZBLhhyiFzMqDriZCUTQNErxWZc9LhzNDjLW3nUKLpmoCYukMxvRP01GaJbIS6QtN2hDQ93m0zeyMXGljrAmgGi8XZJxIeHTAbF69yRkpsuacdV0rUlnaO9FMXZ3ClTPUApla04ISVdX/wcbYSIP207iB8ZVT7sffr00QwSxepchC2ZiYhdOBMR99+LUeMisWD9YVy/xdwTIO27NVj24UFcLrjtBc3knsSm5e/ii8IHpXjr8r2yIOCI2otj5iJquNXzRcsNBJkbMjKUDvFZ5AJLlQ2lF5R6UK3DDQWJ88gIhMh5S3E81wB6qdBgk14rnMdkoKi6njBhAmj8Tfs4ekaSmeAconif85GSaarvGECRubWsVdoVdY/IGFLyTFstY+PEsREXknVAOjJJXFu53jIMgS2ilJqSXY6ZLzFbayXPc20VqtoI0KyCKld77foqFC3aADmVrv2k/v6H6io8OlHlWlWcFjdMBQaPVlsuK6XM59WWqDaqenB3NXXhSrX2/UVqxl0hqnrLKeqzM3n6qokTJyovLy917NgxlZmZqWrXrq2aNWum8vPzrWot+6HZbFYLFixQNWvWVL1791bJycl2V7pnzx7VvHlz1bhxY7V582a7rps+fTrD++i/F1980a5r9u/fr1q1aqVCQ0PVxo0b7bqGhYhbRESECggIUJMmTVK5udZ3xO5qbBZMSkrS9ygoKEhlZWWpvXv36nGNGDFCmc9vUVFtqqvg7lPVwpVr1fuLZqi7QqqrllM+UwW3+Jr66e9/UNXDo1WidbfS4tSwwGA1Wj8oNpuWHyoBAnPmzFE9e/ZUnAf2/k2ePFmFhISotWvXKpPJdBMK+/btU23atFHh4eGqadOmys/PT82cOVP/DRkyRD+f/H7bbbepunXrqtjY2Jvq+Prrr1WfPn102V69eqkXXnhBLVu2TG3btk1duXJFRUZG6vVo7Nix6rXXXlOvvvqqGjlypK7v+eefV1xTKpIsFot6+umnVVhYmFq9erVin7jmkO677z593K1bN439Qw89VCKOtvp/9uxZPc64uLgiRbZu3arPnzp1qsh5+VK1EOB7oEaNGqr48+GuKBTMCmf2zg4GKH3nFBXq1UrN2XvlRstZ+9W8tt4qJGKzSstX6vLly4ov1i5duihO6C1btmhm4+rVqzeuceIR23v44Yc1I/SXv/xFldbOmTNn9AJZq1YttXjxYod60b9/f70AcUEaN26cQ9euWbNG1alTR3Xo0EEdOnTI5rXE6+WXX1aBgYGK7aWkpNgsW5Yf2E7fvn31y4GLfqdOnXSbmZm/qZ1TQpVXqzmq6C2ep9p6h6iIz

Question 6

WkqXwkDVBbsK8O1R48e1fNt3rx5djFAUVFR+vnnxqM04vPesWNHtWTJEs3gcA5w88D1pF69enpOcCNR2maKzzY3NayHGzGuCT///LMaPHiwIuNz7ty5m7pw4sQJNWDAAF3WHZigmJgYzQRxHRgzZoyaOnWqGjp0qMaga9euatWqVSovr2DDedNgSjnBDVmTJk00A8U6ySwS3/j4+FKukp+qAgLr1q3Tczo7O9sjhut8FdjvyrMycWBlHFK7zEZkNyv9f2AXTH2qOzI3rUB8BrS3EUXMzGpMcS7tSijyLm40/LvN2VmA3k2Mc0IRMd3naUxJewKK1g2iSJkiY+r/jRxDtNlxhOxRgdmqj55XdCOkWzrVTRRL0zPOmqirp+iftlI0GKWNgy11nPV1t3JMmywaSVLNQK8SqhXpVlxTHcPKuFR0mR2Jord4Kp7qnolNK+IlncetAF7JrqG3EN3nbamCiw+XdnW0W2HYhtKIzztzjNGwlyobzgHOGxpFU2XG70y3UZoKjs825xnVYvQko3qH6neq27hO0COyOFGVTvsH2slQHVeRxP4zthLXG46Bjgtctxigkp6zNHKmCzLtfRwleoHRJIFjpN0PVYBU1XNNEqraCFD9xTnnymCGZUHc8affrtYUriYdRPzuFPhcL5+VeAl5aAzkp+HYkXTUvbMz6hdp3Qd1O3ZHw2vbceS8CaNCfPUEpscSJxvp9wKl2dW13ylEHTaZINrxUPdPI2nmGuJCsmDBAu0Cyv7cClPB2BrWwca48JPBKm0hLt5dYkDjSxqS0S6BOZXGjRunjcrInJEhovE17QBcQbRXItFmgm6xzz33HPKTluFIel3c2bk+it7iuujYvSGubT+C86YCbzF1NQkH43cj5caDgkt54JMiVAUQoFF9VFSUNlYuzSCa9jV8adMO0B6ioS69LRmbpiz2bpybNI6mUTBf/GT0S/Mc5QaN9kC0NeJmgI4BFU1kMvnnTCLjRC8eIUHAQIBzlOEUuGHwFCryfnJep804vSEac/f7F1aZf/koTIoMUC6umrzgG+R3kwW2T40g+CEP2bkFUhfuYijFMF6yhZW54IASJ7qsM3ghF2j2gTtHLmy3SsV3unxguFs0Asc5Ui+lPFzc+VIg48MXAw2c6Q3jCEPlSJullaUkjEbrvGf5uVdh8vJFkF9xAaMPagT5AXnZ4C3mr+bTGxA9dz8Kn5T8yzhqUsIAlQZ2JfqNzDulvJTY8Dm2xTDQ25CbEyPQoT0QMLYPPR3LwgAZ7dBYmv0rjUkzytLTklIqRk9nSAwhQaAqIEChAdd/T2KMy4kBqo52sz/F3mfbwvf6nb+0YTiaPUIfy2CE1vbClWRKhIpS3qVkpCMYjWoXSBX4a0UwP0av2Da9PMhYOEP1Zq3+MtogU3QrDJBxPRkyLvKUwDijj0a9t/Jp3KtqwaGo7XUFyRTlFKE8XEpOB4Ibgbf4Cu9vu9n4dO+zaHvjQcFw/aAUuVC+VGIEKNFkTCx6UzK2DtUqdM82KC8vT6uljefLOP97nyzPep1BR44c0ZIge+tizBwGixQSBCojAnzfMAQNBRTctFAlzPRTFBx4ivqL96X4Fr3875V3CLoMuR2ZezfhcJZ1c9k4tmUXLjUegO4NDH2I9e8Vd+wsxqIkBqikc46OlFy3s/roaNsllfcO6YIht2di76bDKHqLj2HLrktoPKA73OwWlzQMOeciBPj8MoM8432R2aHKmdHQ6Y5OKQrj/ND+jok8+bu9RJshBkh0BjE4oCMMGMs60ldn9FHqEATKGwGacdDmk+EiOEdpO8v4UAxKStMRRgin0MBT0iS5ngGCH9pNehb3ZK7EE69/i3St7bIg88CbmL00Ff3mzkCngjRU5X0vXV5/ScxOSedc3jFnN+jXDpOevQeZK5/A69+mF8SDsmTiwJuzsTS1H+bO6IRKeoudjWSVqY9MEJMFM34PJSeMNUUVNO1oqCJjBFkaTZMpsodoa0eRPA2BnUFkpOgcYS+xLF8SQoJAZUGATgS08+RGhNIexpci88NgpFT5MpI443QxsCZV257ABFUAAwRUaz4BH2x8FrWW9kWLdj3Rv1c4mvdaBK/HY/HxjNaFarPK8uAY4yhuA8TzJZ0zynvuZzU0n/ABNj5bC0v7tkC7nv3RK7w5ei3ywuOxH2NGa0Pf5bkjlJ6XHwLMSTdmzBidkoH2O/ReIjEAKtMtGIENbfWAjgX0TGLQQlvpLGxda+s87X9oAG3tFWqrLJMdM6I0jaeFBIHKgACD3XKDwmCgjPLPOcnnnPk1GWSTzBDV1swWwGMmy2a6qeKR1N0Ni4rNBWZKxdFv9+H4lUDc3q0XOja8ofd3N6DK2h8+CIy8ajKZdPoI7lDpVsvotO4YUr+s4zWuN6Uexbf7juNK4O3o1qsjKvEtNoYsn05CgGpdMjuGepdziF6G9DRhpPiSQulT7UTvSO5GWY7pb5xBbJuLP9O/cB6XRvRsY/R1ugQLCQKVAQFKZJlmhY43DCFBYmgJekYygS6ZINqjMgI01WB0QOBvVF+7dX5Ij4hWJJ0UBASBKocAI8oWD0jKAIWMvBwcHKwYLf7LL7/UQUETEhJ0xOZGjRrpaMeMSOts+uWXX3QAwBUrVujgrMXrZ2DF+fPn6yjU5RV8tHib8l0QKG8EGNSzRYsWOugvn2tGbWcgX0ZTZ2Rwg/jb559/rgPvGmUYcNOdqWIlQJWBNbZnDMyPFrMOx8MjEPHHkELLc+ZHW/Wfahj+yAg0F62QPUhKmSqEQHEJkPXQGdCQ8Xa4I2WyTnqiMFbP9OnTdUJi67LOPGYwVgZ6o2SJ4TGYK4xqMdpEMAs63eQZDJFhKoQEgcqAAG3pKFVlyBYSkwRTzcVnneeZ8Ns4xzAsRhkG3KRDA+dMSdJaXbCC/wkD5IobkHMI8++4E59OPoQfbgoNUAPr/xuLEbVd0RFpQxDwHARKY4AqchQ07ty6datOWExDbcbdCgsL08wX3d9p0C0kCFQWBAz1l7U9DwPu7tu3Tw+RibbpEk81WPEyAwYM0IF5aT/kjlROcYDccfIgqwMAAA2CSURBVKjSJ0FAEBAEyo4AI0FTCsQ/IUGgsiPAgL2U8tDmh0TJD5kf2vuQaPPDc5TyFC/DUBT0HnNXqhAvMHcFQ/olCAgCgoAgIAgIAjcQYAgIMjs0ajbSwdz4teCIqjCGqihehtJQ5s9zVxIJkMvuTCn50VzWB2lIEBAEBAFBQBCwH4FBgwbhlVdeQUpKir6I7u9Ue1HyQ+IxJUT8o0cYiWVoB0dbOdrJuSsJA+SyO1NKfjSX9UEaEgQEAUFAEBAE7EeAOfg6dOiAPn364I477kD//v11MnB+MjYW81HymHY+tAMi8TvzU06ZMqUwjIX9LbqupDBALsO6lPxoLuuDNCQICAKCgCAgCDiGABNdMwUGA5GSGSIZgRCNOEDt2rXTsYAoEeK5lStXFhpKO9aa60qLDZDrsJaWBAFBQBAQBAQBj0Pg/vvv13ZA9957L+gBZhANpA0yDKPXrVuHYcOGaelQq1atjJ/d8lMkQG55W6RTgoAgIAgIAoKA+yDwzjvv6GjQTINBzy7a+MyZM0fnBmP8HzJAZJQYMfqtt97Cgw8+6D6dt9ETkQDZAEZOCwKCgCAgCAgCgsANBGgM/dVXX2lGh0zQ0qVLdQLj1q1bg8bSbdq0wY8//ogJEybcuMiNjyQQohvfHOmaIFCVEXDXQIhV+Z7I2AUBA4G0tDTMnj1bf2Wi4vDwcLc2eDb6bf0pEiBrNCrbsfkSju2OQ8yaddi85zDOZl5AYmIKLiTuwIadp2Gyc7z5mSew5+P3sflkrr7CfH43Vn90AJctdlbgQDHbdZtw4dB2xO0+Y3e/HWhWigoCgoAgIAg4gEDdunV1CpouXbro+D9G0mIHqqjwosIAVfgtKI8OWHA5YRFGd+6Hv+3MRsM/tEBAciyiOjbBgFc3IOZvEXjsnV9wzZ6mLVdx+sBGLJgxB2tP5OgrcpO+wrpP4nHWXg7Knnaul7FVt/n8XrwfeT8eW3sKeQ7UJ0U9CwGK1f/1r3/pjNO5ubk6k/STTz6JS5cuedZApLeCQ

Question 7

BVAgPM1ODjYY0cqDJDH3jrbHTcnf4RJI19BemQcPn5xPAb17IGBD8/Hx1v/id6BjdG7Ryjszr3qHYiWvQbij/WrFzYY2ONlfBH7BNr7F55y2oGtuquFdkf/zvXg6yOPrNPAdqOK8vLyMHPmTDRt2lQnFh0/fjyYhJHh9ZcsWQJ6kzz66KOw9jpxo+5LVwSBKolARkaGRzNA4gVW6R7bXBxb9So2mgdj07jWRRgdv7BJWDDlAvJ2Asp8FtsXTMaHCSbcOWsRnrunEfgwmM/uwIrVB3A17wJ+8+mNmU8+gNbWPIflKpK+icXarVcwcl4UOgXkIyX+A3z0fRauJSch8L65iLq7AXyscTWfwba3/we/BIYg4/9y0e/px9Gvvg/yU+LxwUffI+taMpIC78PcGX/EtW+t6wbyL8Tj/Q++R75/Do4dyoIl3LpiOa4MCJjNZpDhSUpKwuTJkzUTRHdbRpb19/dH+/btMW3aNNDOYMSIEdi+fTv8/Pwqw9BlDIKARyPg6QyQ9avNo2+EdN5AIAuJu04AjbuhdU3j3PVP72C069EcvshHxrEf4PPQYrw19iKWPL4UR6jdytiNJ4fNx7UHnsCceXMx8Odp6DYuBmfyrepRFlgyvsa/392pVWBZ372EqTF1EBE1C9P7JyN6yuv44UZoCH1h+pezMHF1Tdw3+REMzVmOJ1b+ClPWd3hpagzqRERh1vT+SI6egte/zypSN67uwwujFyD/gUhMj3wEdwWZUQ5mR1aDk8OKQIDMTXp6OoYMGaKlPYsXL9ZB1vbv368/yfSEhoZi7dq1SE1NRe/evYtkna6IPkubgkBVRoDqabq6cz5GR0cjJibGI+ekMECV8Sn2AqAsUMrW4LwQ0GowBoaFoGHHO1Ev6xQu5gLpu/+J1Rm90a+5L+DdAINnPQz/z1/HZmsOyCcIt7VojCAt4knHrkXrUH14PzT0AULujcF/D7+GOwOKtlt70HIkbBoL0+6N2JV0BWlJl5C6axHWVR+OfgUXIua/h/Faj4ZWdQPpe/6BFZnDMax5NcC7Jpq0rK2lVEVrl2+ejMDhw4exdetWxMXFoXr1G2pWjokut0zCyE9StWrV8MADD2g3W7riCgkCgoDrEcjPz9fzkLnA3njjDUyfPh0LFy7EM8884/rOlLFFYYDKCKD7XV4T4QPbAEl7cMgeNy0vL3ihgFMyZaUhy5QD83Uxi3+zDmjolYXLOTY4KUs2zp++gEsZOdclMz7w879Zq2pOS8DSJ+ZjT51BGBxeCz6w4Nr507hwKQM519vy8fO/ibm5dvYE0nLNsNho3v2wlx45isDbb7+Nc+fOaXUXr1VK4cyZM2jUqJEOqMZFloHVmFWaf2SCuOiuWrXK0aakvCAgCDgBgW3btuk5Sxu9kSNHYuzYsdi1a5eek6dOnXJCC66rQhgg12Htopb80HbySxgXtAPz/7ELadY6o5xT+M/nPyPr+otGd+g6c8GP2p1Hoe3FL7EjqcC9Ky81Cdea34N+jYsxNRQtKQXlHYz23QPxTfSbSEi3APmpSFizHolFVGDZ+OGNp7DWbwzGda4Jc3YeLBYv1GrfHYHfROPNhHRYkI/UhDVYzwuNugHUatsT9X5dg7iT7I+C2ZQPS771gFwEqTRTLghYLBasX79e2/YwiSITKJKysrI0k8MFNigoCN26ddNJFo0yDLJGxoi5iIQEAUHAtQjEx8dj9OjRRSS2derUwcCBA5GQkODazpSxNWGAygigO17u0+hBvLfjHdy9dzL6DJuG+YvewML5z+GZVzcgp6UJ+75OxsXEHdh76hx+2rkXv53/CTsPpMA3fDY+jG6JtVHz8dH/bsDbb/6CsaueRZNDX+Dr0xdwZOc3OJmWhIRte3A69Qh2xKeg/fOr8FTwctzVqAnC+sxCfOshCCuiAvNFaKcOMH00FgPH/R1fmgKQuuVNfOz1OFY+FYzldzVCk7A+mBXfGkOap1nVfRLoNh8rHs3G8717Y/SUZ/D+T9nIOboZXyUVxCNyR+ylT/YjQBdaSnzo9k47HzI0ht0P7YDI8HBnSWKofaPM8ePHERISUiQnkf2tSklBQBAoCwK0xztx4sRNVXBe8jdPIokE7Ul3y+G+5iMr+RgSz+YhpGVb3N7AH/ZwvKa04zh6yoTQDm3RyN+eKyzIvpwB7+AQlFzcgtyMDOTXDEGAjxk5uV7w9yvwE7NkX0aGdzBCSr4QgAU5qeeRUaMB6lazwNvf164xOAyVXOByBJhUkdFjL168qOP+UKpDm5/33ntPJ1NMSUnBY489pv+oEhs1apSW/LBMYmIiNm3aBGagFhIEBAHXIcD5ynlL9fWYMWNAm6BFixZpJwXa9Hl72/POcF1/S2upmG6jtKLym+ch4IOaTdujW1PHeu5btzW61HXkGm8EhISUcoE3/IKN36vB38qD2TsgBMYvJVfgDf/6t6EcQg6V3JycdRkCtWvX1gEO6VFiTfXq1QPtDLiwvvvuuzrKLO2CDKLUiGH4KQUSEgQEAdciwPm5efNmTJw4USdDzcnJQVhYmJ6znsT8EDWRALn22ZHWBAFBwAoBJk986aWXwGSKlPgwqmzXrl11iH0W429UhZHpoXqMZWhoSSPogwcPasNoq+rkUBAQBFyEAOfkr7/+qmNytWjRwkWtOrcZz5FVOXfcUpsgIAi4AQJkbpYvX64NnSnx+dOf/qTVXzSEJtEwmmVINIamUfSyZcv07pNeYUKCgCBQMQhw/lHy46nMD1ETCVDFPDvSqiAgCABgCgwuon/96191LJHffvsNDRo00LF+eEyJT8OGDTXzQ8Docrtx40YdgI3MkJAgIAgIAreKgNgA3Spycp0gIAiUGQEGP6S7OzNKm0wF4RcY64fEAIiGYTQNnrds2aKDJu7evVtLgsrcuFQgCAgCVRoBYYCq9O2XwQsCrkWAdgOffvqpVnudPXtWe3GRCaIhdEBAAO6++24dF4jutAyAOHXqVB10jeJ2X19f7NixAz169HBtp6U1QUAQqJQIiAqsUt5WGZQg4J4IzJs3D7Gxsdq4ma60e/bs0YzOn//8ZzD2D3MK8fPkyZM6ESpVZMwIz0zwkZGRhRGj3XN00itBQBDwJASEAfKkuyV9FQQ8GAHG7hkwYAAYK6R+/fqFI/nxxx8xePBgnD59WkuBKCViclRmmq5VqxboLu9p7rWFg5MDQUAQcFsExAvMbW+NdEwQqFwIfPLJJxg/fnwR5ocj7Ny5Mzp16gQjwSnVXYzxQ+8ShtgX5qdyPQcyGkHAXRAQBshd7oT0QxCo5AjQzseW5xbPM6CakCAgCAgCrkJAGCBXIS3tCAJVHIFBgwaBUiCz2VwECYbWp2dX3759i5yXL4KAICAIlCcCwgCVJ7pStyAgCBQiQPufZs2aISIiAozxQzpy5AiGDx+OadOmeVwixcKByYEgIAh4JALCAHnkbZNOCwKehwBte+gBxsSmHTp00HY+Q4cO1QkVo6OjPW9A0mNBQBDwaATEC8yjb590XhAQBAQBQUAQEARuBQGRAN0KanKNICAICAKCgCAgCHg0AsIAefTtk84LAoKAICAICAKCwK0g8P+/XDl5DTmIlAAAAABJRU5ErkJggg== />
 

(a) What is the conformation of ring A? of ring B? of ring C? of ring D?
   (b) Are the hydroxyl groups on rings A

Question 8

z+8UEv6nPaxGoMg6lVWWaUtauvVjBCrzUKJFlLNkjWQNZA1UE8D6gqh2C3FA7RY1Ng2afPf+973pgKjeiDI70499dTgblN/yGrzUni5h1ioBtxPf/rTRYZaPUu23rX1te05db6vPbG+d72yxXbZZZdYffXVi4QHAMcL8PFOgB8YoNY+Fk9PMYDtuPteywhZ/4eP8Le//W1R4fStR/4YV09aNzZeZtZ23Hc+RtZA1kA/08CZZ54ZSyyxRHhvxpWuMCOgI4vls5/9bLH2n1omCjOqSeT9rrvuir/+9a8F66TWibFJZev+IsDdNddcU7gYf//73xeusd/97nfxta99rb/cYr6PXqQBxRPFCe25557x7LPPFgAI4FlwwQWLau8Y3Zlnnrkomrrddtt9YB+uW/21XdIrGSGB0d///veLBRU333zziBgfN/xg19jp4L/G/3LMdLuefT5O1kC/0YAsMXVGsMfNgCCD6VprrVUEZLJSDc6WlqguzGhQ3n///ePtt9+OO++8s2CcDMZ9Xdw/tyEXhXs27oqvosMtt9wyZp999iKolYswS9ZAuzSJG93xAAAgAElEQVSgr3FZlwUTyy3N0EhMbvl7/6d9xAelZIjqfVr53CtNGrUCKOSGG24oBqjJz/8lTvn98/HiuyfGZU99JXZepFdediv6z7/JGsgaaIMGLJfBgNp+++2bOpoMFTVK1l133aIuUVqhvnqpDvFCtv3sZz8rqPtTTjml2F8gdl8Vk9FXvvKVwrKWqgwQibv4/Oc/H9ggJQauu+66+OUvfxm33XZbEb8x00wz9dXbzdfdizSgv8kS07YwstxgaW077RJLpF/OPffcH9jHeoKyPxtNeGjktnsdomBxoaIFNrLUIibGk3++OoYu+6GI2/8ZJ5/3YGx3+MgY2sjd5X2yBrIG+r0GuHW4wwRZWpG+UWFV3nTTTUUMkUG4mcKM2BJg6OGHH+6R1bEbvadG9zP5rLPOOkW9pYMOOqgobGfsHTVq1NRJSUFFmXbAj0mLfi+44IJiwmr0PHm/rIFaGrBchqzERRZZZCrIBoa0MS8FFRM4AswFUXvZJhlCSQwus3ZJr3ONnXHGGfH0008XabDFTb49Ji6/bbU44uQdY+GIeOjs0+Nfr7Xr9qfvcaTmagzZypq+zyGfvW9rAGvBnfOd73ynqRsBZJZaaqliYm92FftZZ521GKyBiL4oypKIgwLksD8kFbIzESUx+ViGROD5Cy+8EH31ftP95PfeoYE555yzSGrA6lhUVZC0tkbqtUP7YH4VQm13AlWvAkLjx48vKkzuuOOOscwyyxRKmXDHpfHoGl+K5VbZKb4te/W538ZJf/lv9OVQIf723XffvbBeVcvcYostimwV1DsRNZ8KSaEJk3zjG98otluht5ZMfOGOuGHMK7W+inj9kbj+1ucie/prqydv7f0awPxw3QhU1m8MnDKcsEEWUF1xxRUbvolx48YVx7GoIykXXUyf1ScSk5BiEar30W9Vte5r8TPiqY455piici+dNlLI7qqrrorjjjsufvzjH4dA1yxZA13VgJg7CQjmOPF2nbVD7dZLP//ud7/b1dNP8/teBYRYHgaVVDsgYlzc+Kt/xfh/nRIHHHRuPLXoYhHxWvzphN/FE304TlFBqJ/85CdFqq+S4RCwpQIUgLvnnnuKRqGIJClX1E7BZRpDtbz10C/joNP+HQstOkf1V1M+D1skFn3mrDjw7PvifWhVe9e8NWugN2kAEyGIV9VoxoA4IPEstuk/+gwg1MwErQCjlPmvfvWrxa2K9ZEmXy7CaD2jvffee5pt5X0cQz/Vd/uS7LfffkUxO6VJytJZITs65spIDFL5t/n/rIFmNTD//PMXRr/4O9mJ6gaSWu3wvvvuK2LX9HeV4aXPt1N6TYyQ4Cd1PMQHURCZ9NSf4uIZ9ojTT10/5gYK/rdGPHfdJnHZ6JPirDt3iONX6Xup9ILAr7322sIdJihcYag33nijqFHiYVsVm3tQam61ywxLVFNeuyUO3+GiWPqiK2LxmWvuERFDYsRGu8ZKX90kDl766jh5rTnr7Zi3Zw30Gg2ce+65hcuLC1msgLo+5awwsS76zcUXX1y8uMkMlp3JM888U2REGYSJxVqbiRFKvxGvgF3qSwK4WbBWvAXBQGPXuMTStmSMps9pH5llmOutttqqL91yvtZeqgFz/T//+c+CocS+zjHHHPGtb32rAOoSF6xMr3QF1pdRsscee0zT/9t1W72GETr44IOLCPF99tmnuLfJ40fHj7+9f/z5kdFx3UMTYnK8Ho/+8954swCCT8Qpux0alz/d9xw9anQISlxooYUKEORmxRvw2avkessttxRR9I0/4EnxzGWHxNnjV4mVh1PO5Hjt3vPj0H2PiGMP2zk2+NJ2cfS1z0VBoA2aN0at+Xacd/DvYuykxs+Q98wamB4aOO200+Lb3/52rL/++kUq92qrrVZM2tzmqZia2BXACLMDABlMGym9z8goF2VrNkaIPvxG+rl4h74kxhnBqMBNegE+/ifAT71Cdlg3IQxZsgbapQHgR1V4scGyyWSLI0UwQ1zXJ510UhHPpjBqu5mgdA+9ghFiiclG+OlPfxqzzTZbcW2D5vpU7HPlczEFFk253KU2OTT+vEnt+BiWoeBjdUB6swA63F0G7LIo6IaqZ2FCwsSgY8CS0ULuv//+4n3aP6/ErRfdHK/OtV0Mt9vEJ+O8Hb4Zx8xyZjz8ly1ihlWWif23GRqrP3p2rDXb4Jh7kXnjzdG/iVvG7RQjhk97pPwpa6C3aMBSGVxff/jDH4p+jcVIKe2pyGHaZtzwHWDCbSwl3GeB0LUEA2s/KbqqRT/22GPF/uk46bjlgoppW3kf6eX6LDapLwm22UQjIwwAaqaQnXiOMiPXl+47X2vv1gCArt9PD5nujJBgPQMeK2+HHXZoSgfAjwArcQPDhw+Pe++9t1gfqKmD9PDOKY6heh0fsQYAEveXwTWJOAQAqDYIAnxejMefejMGzTJLFBU+Bs8f6+59aOy37ciYMPrvcfdLEfHS2Bj3Hnk2aOhsMeSdZ+ORF95Op8jvWQO9SgPGhB/+8IcFGyRxQoE1Ul3kMG1TfC3tg8kQeKneTxLHw3YI9EW1q01irAGULMZa6ziNnAsTJG5JEHVfEtdbLgbJKGu0kJ2K/4mN60v3nK81a6AjDUx3Rsjia/z6AE0jJeu5lQQ2CtiTscFCUQ/jhBNOKAZKVmFvlhT/JG21LGKkMD+AEqowyc033zx19Wu1S1JAWfo+Bg2LOWeJmDxpclSKjYNj1mFvx+1H7RJP7n54LCm4qhTCUJk8MSbF0Jh9lvYGm029nvxP1kAXNXDppZcWLJC+joHprMhh9T7/93//F4ccckgRQI1mN8bILuOOVhtHPIy1yICgBJgwSNXHwQhJ4AAUUkHFtI8Abm7uBKS6eMs9+nNrPKnCTc/WXmu0kB3jzTh13nnn9ej15pNlDXS3BmaoMJemk2A+PvGJTxTUMjBULxjYgCjNTkAkwMT9tfbaa4flN1huvR38lNXLBcjKRS8///zzU0GOgVtKq3sRTI2yx3gJxJRVRr7whS8U6wEJGFMDZYq8Ebfus0ysccMB8ejo3WLEq5fHRh/dKC4fvl/cdtc345pVl40DH/9C/P65v8Qmc0f899drxML7Lh1/feyc+MwUL+R7x8lvWQO9QwOrrrpqEXejDzQj3F1cWFjUxx9/vOhjirICP14m/fIYY1zBJGOJLLbajAjgZKRYE6m74haauZ5m9zV+igWytpN3gdIAIuYsfXbM8jZZq5dcckkR3Nrs+fL+WQO9WQPTlRFiWWA4BDeWBygKS+AnMT8J/KhlAfwYwPqiyNYQqClOgVUqSFrWi/uig5133rnJ25o1Rm63fXz88rti7JsRI4YMjyU+IhXk5Nhqyxdi1NAhEe88EFdcMzY22WLeGHv3S/GxbXeOlTMIalLPefee0oC6PYAJo+Dqq68Oad7icHzG3Oj/3tO2tA8QxD3OcBBzhwHCetQTTMgvfvGLYmFVFamBmkbOxUABggRz9kUQRB9igwSmYqAtMwII0Vs5c8x+gJD7lDoPY

Question 9

ObU+XqtKW/vyxqYbjFCXFoKA3L3KOtOgB/F0rbddtsC6Gy88cYhzRVIMEhhStC6fRUEuUdxBeIZuAGt38NSVddD/SQUvOw5IvA7xRMVGyKKlML0f/l95o/vFads/r+47JZxMXnYp+P4e56Lh8c8Frdd8Yv41U1j49HH7oyfbDEiJr98e1z2+FfilANWjmHlA+T/swZ6kQaMDamMvkm4XNCwoyKH+o/6QoAKd/mrr77a6V1tuummxWSfJnwuNCKOpvpcxh3XYzu3PFalr8pnPvOZwsUlXkqVXo4BgIgejMGMMq+ddtqpYIGAIKCSXrNkDfQ3DUw319hRRx1VsCGKoaGxE/MDAHz2s58tCiwZpPoy6OmosaCZBW9iw6zwjAkCioj0VGXHie2pnpDYKBkuK6ywQkglnkYmPhvXnHF+PL/2d2KbkVNcadN8//oD8etTroo5tt4zNhgxZJqv8oesgd6kAbWCTNRiUritUoyQIF1ghyGR4nZsq7WPRUTt02gWCoDDMEv96yMf+UgBdFRUlsgB/Mhu5cpnmLm+/iDip3bdddciTZm+1DXjst96662L2wMIGW3qORmXs2QN9EcNTBcgxMKTsbHYYosVKazAj4ElxfzMN998/VHXPXJPgqYHzViD6Js8KSbFjFHrqx65sHySrIEGNQDYqM/DddyKYDfOOuusYgmJZtckEqsI6IwePbpwXzs/QCbFXBC2+KX+JphngFGBV8xPWmjV+AwcYuZzynx/e+r5fsoamC5AiLWB8VhjjTWKCqWYnwx+yo8l/581MHA1INNLEUUp9Gr1NBK3U94HuywrE5PUSCbqwNV0vvOsgawBGpguQMjCidbxEfOTJWsgayBroFoDI0eOLECMsUJgtEBoK8xXFzm0TeXZtI/9MM7LLrts4c6pPm7+nDWQNZA1UK2BGj6U6l3y56yBrIGsgZ7VgLpg4nUAmlQssbMih8pxiG9JxRN79orz2bIGsgb6qgYyEOqrTy5fd9ZAP9aAmlkpVRvAUXUd61Mucuj2bVPkUOapGjf/+c9/CiCUam/1YxXlW8sayBpokwamax2hNt1DPkzWQNZAP9SAoGlZW5tttllRSHTFFVcsqiBbXFWlZ0HRyk6oiWMJGkttyILKIKgfNoZ8S1kD3aiBDIS6Ubn50FkDWQNd04AsLSyPuj1nnnlmEVuonIQaN7KdgB71fNQPEleUJWsgayBroFkNZCDUrMby/lkDWQM9qgGgRwq3l6KrltLYa6+9CjD0q1/9Kqd29+jTyCfLGuh/GshAqP8903xHWQP9VgOWxVBkVfG/c845py0gaNL4e+KKy++Ilya9p7YZZoyhs38kll11jfjEgjNH3UDKyePj3iuuiNvHTY7Zl1ktFnvhX3G3/5dbPzb+1PBo5+A6+eX74srLb4sXJ84Ycyy/fmw8at5oadnk1x+Ki069NN798h6x1cgPVd3b5Bh/7xVxxe3jojLnyPjKRivHPC2dpMnmN/nluO/Ky+O2FyfGjHMsH+tvPCrm/cB537+2ybMvF+tv/KkY3pCCJ8bzN10Q51/3fAwdsXpsvsUasUBH9WRLz3TYkl+Mr66xQMfPsbT/+8/99XjoolPj0ne/HHtsNTI+VLcBNamntHutZ9iQDtMBar13fM2Tx98bV1xxe4ybPCyW/OJXY40FGlL+lBNV62jUTPFg6jfd0Fdq3V2n2yy62tNy5ZVXVj73uc/19Gnz+bIGsgb6iQb+8Y9/VGaeeebKxIkT23BHEysvXrdHZeGISgxdu3LO/Q9XLv/OIpWIuf+/vTMBi6rq//iXAZRNQRTBDVSQRZRU0FdcUFL7p1m9mWZpab6a5KvmimiRC65kiqaJuYWGpZWZ+waK5QK44QZGQKCyyzoDyDLz+z/nDjPMDDNsJurbuc/DM/eee875/c7nXOaeOduXhq27RUU6LUgp6+AoMgfI5qMISlKe/0ZinWkaekNKmb+8Rc0BajfjEknqkU35/YO0cqu8HOKIydQaIPMxJyhfSx7SrIM0yhyEDrMpsj5GtORVnyBp5i/0VnMQ2s2gSzrsKn2z+Yh+qyPgouv+5AIjGrp9N71lbkh9t/5Vq1t5YZPJBiCLsSe1MlLPQPUZqKx3cQRNbg2C+Rg6oQ2yegb1vtJVh3VhqNOYNp/L79PBlVvplvAPkEdhk20IsKCxJ+tbKE1Gmtc6vWq0G393W7XWhhePwAlwApzAkxJgSvJMU4wtsX/yQx8WnZzQimVk1Art2jnC+91X0Ra5OLNpD+4W67IggrGlJYyE26rnuuI/SXjD8pcVRGH1OxOw5Vo+ZADMPAPw454QHPjSG+Za3BEZW8JSXiAtd59eUF3s1iWOuocVeBj+K+JgiGZWvTB5WSD8hrVRj6LlysiyNUy0hGsP0lIvZp4I+HEPQg58CW9tkLVnVOdQXXVYfz4qJjV9lhUgavU7mLDlGvLZgwMjWLauOxWVnAFoMtK8Vo/9LK7q0b/1LNzjNjkBToATqE6AiRd36NABt2/fFuR6qsd4khAZSrLSwCRbbQYMhJ0RIBPfQujaPfjL1BSpF6JR2m8e1vgOhRZVP92GZWLcCl2LPX+ZwjT1AqJL+2Hemnlwv78NvssP4WGLwRjrHIsdP9wEev0XW4P/C9fyKwievxAhsabo2VOCUgCGOiyU/rUfn316Gk26tUdBXCpcfP3RPmg0FkeKoZ+7FvMCizDa6CdsOPIQFtk94DnXASl7l2H1OUKr4jhkv+SL9R/rKXOn4nv4+Ytl+PaONV6btRBTvWyUw0SyvChsWbAChx5YYMj4bojdthc3qAd81s2C2e4F2HihDN2nB




Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

Pamela.irrgang@yahoo.com

  • Sr. Member
  • ****
  • Posts: 323
Answer to Question 1

(a) The -CH2OH group has higher priority because the FIRST point of difference is the underlined O atom of -
CH2 OH that takes priority over the underlined C atom of -CH2CH2 OH.


(b) The FIRST point of difference is the underlined O atom of -CH2 OH that takes priority over any of the carbon
atoms bonded to the central carbon atom of -C(CH3)3.



Answer to Question 2




Answer to Question 3



Answer to Question 4



Answer to Question 5



Answer to Question 6



Answer to Question 7

 B

Answer to Question 8



Answer to Question 9



Answer to Question 10



Answer to Question 11



Answer to Question 12

 B

Answer to Question 13



Answer to Question 14



Answer to Question 15



Answer to Question 16



Answer to Question 17

 B

Answer to Question 18

The less stable molecule will have the larger (more negative) heat of combustion. Because these molecules are
constitutional isomers with virtually identical ring strain, any difference in energy between them must be the
result of differences in conformational stability. As listed in the answer to Problem 2.39, the cis isomer has two
chair conformations of equal energy, each one with one axial and one equatorial methyl group. The trans
isomer has chair conformations of different stability, the more stable of which is the diequatorial conformation
that has no diaxial interactions. By virtue of having diaxial interactions in both chair conformations, the cis
isomer is higher in energy and thus will have the larger (more negative) heat of combustion.






 

Did you know?

Stevens-Johnson syndrome and Toxic Epidermal Necrolysis syndrome are life-threatening reactions that can result in death. Complications include permanent blindness, dry-eye syndrome, lung damage, photophobia, asthma, chronic obstructive pulmonary disease, permanent loss of nail beds, scarring of mucous membranes, arthritis, and chronic fatigue syndrome. Many patients' pores scar shut, causing them to retain heat.

Did you know?

The people with the highest levels of LDL are Mexican American males and non-Hispanic black females.

Did you know?

Most women experience menopause in their 50s. However, in 1994, an Italian woman gave birth to a baby boy when she was 61 years old.

Did you know?

The Food and Drug Administration has approved Risperdal, an adult antipsychotic drug, for the symptomatic treatment of irritability in children and adolescents with autism. The approval is the first for the use of a drug to treat behaviors associated with autism in children. These behaviors are included under the general heading of irritability and include aggression, deliberate self-injury, and temper tantrums.

Did you know?

A cataract is a clouding of the eyes' natural lens. As we age, some clouding of the lens may occur. The first sign of a cataract is usually blurry vision. Although glasses and other visual aids may at first help a person with cataracts, surgery may become inevitable. Cataract surgery is very successful in restoring vision, and it is the most frequently performed surgery in the United States.

For a complete list of videos, visit our video library