This topic contains a solution. Click here to go to the answer

Author Question: Assign priorities to the groups in each set. (a) -CH2OH and -CH2CH2OH (b) -CH2OH and ... (Read 36 times)

cdr_15

  • Hero Member
  • *****
  • Posts: 546
Assign priorities to the groups in each set.
  (a) -CH2OH and -CH2CH2OH
  (b) -CH2OH and -C(CH3)3

Question 2

Each molecule has one chiral center. Draw stereorepresentatio ns for the enantiomers of each.
  Each part has a tetrahedral chiral center. The chiral centers are labeled with an asterisk.


 
 

Question 3

Following is the structural formula and a ball-and-stick model of cholic acid, a component of human bile whose function is to aid in the absorption and digestion of dietary fats.
 
Question 4

faqp7x6SDfGtcJnnrrtttvSndhtVip7sYzGeSBkIGU+aTRBGyAw5zzzhB0m3J4CoKLgqRPayCr9kksuCf/4xz9qVoeZRCJBgClmcMcAMcPY86pdYsK3AfLxxx+fghUgzUa0RUVZYPXQQw9NQYU9C23TwzR03HHHpVn/swkNbYpqFwCbOLdSADFJC+tl/NZnbSqtfCWQDcQBSJjMeoL9OffccyvuZF7v2Hq/M61WY08rHatsUXOsbVdsPm7nA3tKag9ZzGVeb2dfzN9X6QOU10jm89ghl4arwlJhn8EPhjeX2Dgs/eap4YQbjwjddHJHAAAgAElEQVRrfX+B0AnIcfzLV4fjDnwwfLrrj41/3gtPjUvCwpl7aOvb8S+Hq487MDz4WQXDe0+NC0nHVLCt2unzFzdJWN0yW2y88caTmZUwQrIe27XcBBAHakyAjUqb2dLBthF/Oul3acbmVvmG9EQj2ktPlmQMBMYDu5P3h5E9GPDBONgOI4otMZj6sEAmonYIHyy7r5vwAVdtyU+pqPDfcr/AnT+C/bnqqqvC/vvvn5o58+fSnwClVorNWpnaACztYbfxvAA/O+20U3p/gE4lAdawWEy4N954Y5oVu1I5ma2Zem1QDcC3Wmy5wTdLVu4ioo85ppYwcwF+5513XmqKxNRi/TCQzLh2avc8W4BoHybedkonzOPtvP8a1/4gPHDRw+GLq/QPw59/Prz4/mJhi3VCuOm3l4TnxtU4rAd/mm7ZfcIV9zyUOjlydHzo1pPCerP068Ea1LnUdMuGfa6457P6PXRrOGm9WUIH1bDODZQ/d5cGbLJrhc5ksckmm0wGflzzq1/9arjppptSXwnmkyiPPvpooW0GYvnsK1OMjUHtAdabGCD3wPxgI1MTCFaHGRAYtNUMfxqboZr0+cpEsBjvPZrB4ueefuXzom4E8OFHxcxZVGz1seKKK05WnJMznZhY8/erIAYiDxInO0ETH7A59MuRF2j405/+lLIaTgWQ2dyaozBnX2xdrY1Z7YAOBAE4fGtszeFe/HHct60G/zYbph5wwAFN1Lb+IQBaIz49ylYDda4G/LivG264IfW547wOMNEHQOR5xp5ZfNCN7UuAynY66ZcAqEo/mfD6jeFvr28Vfrnb9mH77f3tHA48eocw/yN/CGc+8tneVlUOL78uNTDVasDO4p4JE7HJDetglWqgKyJWyehxESUmw2oi6oa/iJXim2++mToDo8+b3UvOccxEzAqV9gCrVo9O+X6llVYKN998cxrtRG90YuJlIqN75oVKztnaqWjbdNe92qMMg8WUh6nC+pns64lJ1d5he++99xRFARGslok1K44Bru0x1mqhX+cG4IF3/V8/9ed7TBdwV4kdytdl6623Tvdpcw8AIlYTaAPssF42Wq103/nzNPuZnxRWRp+qJyL5tCE2r5rsuOOOqS+foAP+T5Gl84rtveaaa9Jz0J2939yb6DILIPu/tUNKAFRB6xPffzycu/+vw41vvx5eeGf8pyUmjglvjJg1zJm8HE7b++hw/asdQgNVqH/5VamB7tCAQZkzMZ8OZig+O2jxyy67LPUzsZmjHb7rCfOBCbyIH49JwATOfMWvBQBqxHySrYv6m2SEsLebes/Wq9H3/KMAThtoHnPMMWl71DIJtpsBcn/qd/nll6fMjCgwk6JNQ2uBIL/tu+++Yf755099fvJ6wsiceOKJwcRrcgZ8RF5hKQAVE3x3iOtiLoBz9wGI6luYKtesxEhVqweGhFmTX5QIM5v02myV/xv/me4UKRYsQvjfAXPVBGO60UYbpYzXvPPOW7HYCy+8kLKTwI+FBr0APBgx7OQbb7yRgiLPsQ28/WGCMF3azoLKONLTUvoAVdB4/9lXCjtf/GKYLNtB/1nCkpsdGwYnn9nXKxzagq8mhjHDHgmPvDQmTHS2fv3DtDPOET6/9LJh0dnL5mqBgstTNKEBAzzgQ0TdZCdcPiZMAnx2DHYmCL4Z1YR/j1VfEeHkalXMb8IEKhpq+PDhFf0+Kp3PJKr822+/Hd566610xR5DxCuVnxq/A4BqTXA9dc/aUYSaCC4Tn8nXhG+HeJF6WQEIOD0zWfKT0acqCT8akVnKipQy+QJEzFPNMoWVrlPtO0CrkZw+1c7j+1ab7GpdK/4GyHmuttpqqxSQ8N9heqNv/kGnn356atrDwsU8WvHY7CuGh5ky3sM999yThrwz0WK0AFOgx/WOPPLItA8AjvrCkksumbbVdtttl/pFWaD0lJQMUE9puvB1+oeZ5v986H/bHmG99XYL1zz/enjp0UHhsA2XCKv87KLwYko8zRhWHPhMGPfUQWGZbDbBubYIN44eGQZt0nMdqNptzbjiwPDMuKfCQZNXMGxx4+gwctAmof01rFbz8vtKGkDvSyBosMyCn2xZq1nRLQZDg2c1kU+liInA8QZSEyRHYA6VJk5RYDEaBSNUKSoHYON0K+8MxonZy2SrPMdq/kB8aLojwVy1+27X953AAGXvHQuALcEsmGiXXXbZwBxkgjQ5YlGAVGYlfk/1JkS5gkyk+oFIIyA5RsFlr1u+r6wBPmTC2wEYDI7n2983vvGNVPf8k6LzeaUzWGQAs4AT8ezddddd6TOKZcLgRVP366+/npbxTDOJesWYyQ+kLL+onpQSAPWktgteq/+MC4TlVlsqzDLD58Pam/8gbLvbkeHP5+wYxpx3eDjriSkzixY8bVms1EBTGjDAGZiOOOKIquAnnhgIkpjOyrGaoNEbSc7HfyVGMDG9WTHySRAl4zr5JIEAFodUvhhMJAZ4YbgGWw6mVqHrrLNOOmgb9AG7vDgH0McZWxSLCZWJjx6KJsPLn7OnPzMJAX9A4+DBg1PQSfcmKpE4zZoSW3UfdMofRF/ACKov0VbaXNs2wq5gfCr5QLWqvlPzeSRaxOB6PgAY/R9rw1fPM11LgE59iT8UsfDg5wfARh+t6OgcQVL2fLGMVAna3HjTU1ICoJ7SdBevM+HDD8K4/rOGOWaapotnKg8vNdCYBp588snUx4d5q4hwcgVAqgk/Is6wMhwXEaHyokui8H1hSrHqtHIEiqLIecNpGmtgcsVI2S6D/Oc//wm77bZb+hmIkkuGAze2ATMUBTMhgzQfD4yESUH+IdfFXGCPmPE6WUTLuTc+NNpNyLjVNyAk+oYzKx1hWNotgJD6MJfwh2HCagT4tLv+U9v1MTLYmKLiOc6WB4g8Z4cffngKSJnIo4kTqCJ+EymXLYMR8hw6vqekBEA9pelmrjN2aLjg8L3Dbj/ZJKz9g1vCumdeGvZaboZmzlQeU2qgaQ2w1Yu4qeaHkT8xp2VhyNFMlf8duOAAXYTuNkEbNOVeiQKwmCCtOplTsk6nGA+giBmFGU4SPf4/xErTdeNnbAiGh3nNOfmNMKWg/pnHhPNiJqyO/QlZ5rApY7XBWjRcJ4rVNtBjRc9fi2+MvdNE5piIhNADdswaTB58bEopNdCsBgBpjBHWhxgnPC+eH87c0USNiWXmJJ5bz3C2jOP00RIApSoq/4UZlgk/OeqP4Y8nnxiO3nWhcPNBe4ST7n+/VEypgR7VANNCUbZGxQAfg1kWmOQrLKMu/xxgIivob/4DkvnFxHcm7GjawPDY/JRghu68886U6eHXg+HgywCoWHUCQPxLRNUQgAcAyn7mZGszSP5BTEX8jFyvlsOn6BVgScK7nqTr05uo80+0Dcdg+WqswrUDB+g48QB4THiA3ZlnnpmuwkVN+b6UUgPNaMD4YKEBbBOfmcH0Oayp/pbtd/EasV/GMhYUwBIQ1FNSMkA9pekuXGeGeZcPm+03MPxoxjvD7/9wXyghUBeUWR7asAbkzOFzkzUT1ToJ1kZUmMm3mjDPMCehwAEKzM0ZZ5yRAhYAh8mGjw8HXmwMkxXnVowFp8zrrrsuNZWIFgKmvJr05VMxAMsNY/Up5BogIL7D3GQ/KyOCyHdAAX8fkTD1hBkP+AHAOknkArKyloSukmSdT/0uTNnWIxihUkoNNKsBUZ8RRHuGhMVnJd/vsr/F985hr7CeBEBTZVy1lWcnR3dYzUaHv9j4U7wmE0PWFWzimNfDyx+EMN8XF

Question 5

wjdbQSD2GtNXlPUtfxiqtYA50aOqRgXuVvqSdy406QKsFTLZ+J7q0abWGIrUOgclH0fGR/X8qzww+HQzLQm7Dk6U3rWTfb+gCU5coj3fH74/8QkgL4DgLKfYxmOnvyW+C8V8T/xfGCA+DKpcyeI3CuAI0dSbBgdxfDjyFQBnJzUReZky3BYVTZG63TC/ZR16D0awJgCMBhVJm7+PZzbmcNJtt/FuQVDFPulMp47YDz+3hN3P81vIjfaE1frxmvwUzBocsayUnVbaO0NNthgssG0G6tQ99QGexPCfffdlyaGQvWzi04esjkxjH7u1nDBn84I1z72anhv9Ijw5L8uDWecfHF4c41Dw5+P2iwsMmP1lXXdStQoYABFRxogUZoydQKS7Lu10rrXOGX501SiAT5ATEVrrbXWpEGt0q0xa2FahDULmfccYmtQ2wbD/OrOik+fw+AwxUhQmB8AfQbCRGxhhTgkb7PNNlM81zbbZPLSV03oTF38fpjNiO9M8NnPsYz68Z2R66hIgkbnY2669957u2Wn7kq6rfcdx2xZfZm26AwTpr2MMRyfORiLmAMwfZ8tA2TST9F9oerVpfy9b2nAQkSf8rx7hoEZZmnmaL5+GORsv9MnY7/07MmgLehAYENPzjW92gTGmRFbAXVy7oMyiTTrQAZand3fCrOdYtUqGsNKccSIEWkHsQID2Dhf+i0OyiH0D7Mu9Y2w50WvhiR5J/zrtOPDb0/5S7jq7sfC3efvFVabvfVNBoVLTW71zAyx++67p9S+AdRqkg6tdNUdqCyl72nANgwYEtsLiLISKpsViw6DGN8YkVcmW9FUcvZwyGVq4pxsQYJJiv1If+MLANBUyy8UrwMsASiyT6PU8yK3UNbBuYgPUCzjOOcH9ouKsjHxW9FjurMcBieuqCWOtIcas170wTA5+YtJEbNlvAfoiooxTZQdk5s9omJ7Fj2+LDf1aUBqCYsdcwmfQf1MH5QdPtvvMMPZfgm4S7RoIcR5uiel9bNpD9UeJQ5poswgSxR9tO2rgtBYA+XZZ5+dAgyTu8G4JwWl7/rqJ9LC6pijlwHJ4Ok7qf5NGCh4A0ocwHqqniYp4cCof4hctIjcD1aDBK3JR4N+TXDAkNU6MBS9/nuqruV12qsB6fBFQQFAzEk777xz6mMjygjtrV/oy5H2xjBgFJiumJ385jkUneTZBaawNgBSUSCB4VUPky7Wwt8dd9yRmtAkO4y5SJi29FfO1AZmEsPgs59jGQOvOuX3laqlcWWjKa5WuZ76zaqbAzrTlqzXdJP1vcB+RRNXvoxtCzBHWF8TGIBTTaQgwAi6f6DVlihSAzhHKX1bA0zO5lmA2nhgjrO4x8QS/Y7EfvnTn/40XfxYOFl497T0S3p6xu3CHXqo0fBSawM+0ndzuJTIzOqtmhgIoE4IE00n4VJskGrHdPV7g63cFoCOqBLOmAZvdTHYq+9nrE9IkbMO4Hs0oHp2p1ixmYjQjih/q3I0eTURmmiCEPJopSltOeSOXRNKXErf0gBKmwMwEynwIExd5FURYWo1iUb2h19R1uen3jk8Q5hJQIbjpYEWeGci0x85MXPcBn74C3ll0mUec4xVafzsN4AOM2UQBgAsSqIvUbW6MLk7B2dPTp+dIHwu7HIPCGHEARQglT8G36e487dFmT8stDLGKWy5sdWzDagySxhnpQRgxhAdhxFmfgT6nDM7Rlk4cUAHRnvjRrOd0H5TUx3MzeY7zyWzLFOxZ9xcrU/+/e9/T0G659EiqF1zSMcDIAOllQn/AIOs/AFCXdG1Bl/AxkBaREzikmxBpV7RbrVCdYucM1/GvkMa2ICArhfBAg1H4cNg9UTUPzIt8XemAuYDg7nN4eKKLf7e1VcrRPct6RiThGy3dFpEOFjyY5JjxWTC5ABIxXBkbSQtfSmlBopogOmX3w1Gp4gAPhYWosD47gAeTDAYKLl8MJL6tIlY3/S8A2mAPhOXY4AEv8fPBmDAwPMKVGGqPHci1KrR8cABCh8o8Hx3krgfvoXGDbrFigFrwE58zo0vTBKxjJ24mSmMq1g7YwR9yKRNDwChhZnVPcbn/9u7FrCqqrT9AgoIIuIV856OKGpeJu+Zd1MzGytHyWc0NVNBsxqzmmzsZjhjNtaTjmXmbxqlFahpav/kJUnKSxcvYf1eBskLIgqCCIfDWf/zLtx4QA6dI4fDOfB9zwNnn33WXpd377X2t74rJdoljZv1ElcykkJVFwHOD2oKKGig5oDEucn3Lp9J2rzSFpCZ4J39fnMUdbdUgREoLlIEkrsOTlDu2jg5ucOj5ISLFXec9jI/BIagf/bZZ1pEx0WCUiBjV+QocMXLs0/cPdKmh0wVVUvsozXzw2toc2CQETfB+M5PjpMLNRcZ7kLJVHDH7AwiM0nVBZksugzzRWIsivbUT5UFJW+8loJDesHQ9mPOnDnaRogvHS62fDmQ6xcSBEpDgC9LSivsJT5zlPZQykGmiZ+0NaDNHzdCfL6ZPJVznPOMkh2q49gOifPdOhAiv1PaQSkS01zQk4WLNl3uqZajNKO4gJwqbK5NnJvcubob0Q6SasDIyEiNLec3MWbAOYO4KycDRPU211caq8+ePVuvryxDZoc7coYHoHqLmxxufmhWQIaqa9euRlVFPqnuJIMpVLURoB0QpT/WJil8J1KAweeO2hBKHSua+eFdcj4DlJ+G79Ysw4cHLxdkM7/+LOSe3ITl736BJMN20pKJxNiFmBlxP+4dNQ6RC9bjcEZBLhhyiFzMqDriZCUTQNErxWZc9LhzNDjLW3nUKLpmoCYukMxvRP01GaJbIS6QtN2hDQ93m0zeyMXGljrAmgGi8XZJxIeHTAbF69yRkpsuacdV0rUlnaO9FMXZ3ClTPUApla04ISVdX/wcbYSIP207iB8ZVT7sffr00QwSxepchC2ZiYhdOBMR99+LUeMisWD9YVy/xdwTIO27NVj24UFcLrjtBc3knsSm5e/ii8IHpXjr8r2yIOCI2otj5iJquNXzRcsNBJkbMjKUDvFZ5AJLlQ2lF5R6UK3DDQWJ88gIhMh5S3E81wB6qdBgk14rnMdkoKi6njBhAmj8Tfs4ekaSmeAconif85GSaarvGECRubWsVdoVdY/IGFLyTFstY+PEsREXknVAOjJJXFu53jIMgS2ilJqSXY6ZLzFbayXPc20VqtoI0KyCKld77foqFC3aADmVrv2k/v6H6io8OlHlWlWcFjdMBQaPVlsuK6XM59WWqDaqenB3NXXhSrX2/UVqxl0hqnrLKeqzM3n6qokTJyovLy917NgxlZmZqWrXrq2aNWum8vPzrWot+6HZbFYLFixQNWvWVL1791bJycl2V7pnzx7VvHlz1bhxY7V582a7rps+fTrD++i/F1980a5r9u/fr1q1aqVCQ0PVxo0b7bqGhYhbRESECggIUJMmTVK5udZ3xO5qbBZMSkrS9ygoKEhlZWWpvXv36nGNGDFCmc9vUVFtqqvg7lPVwpVr1fuLZqi7QqqrllM+UwW3+Jr66e9/UNXDo1WidbfS4tSwwGA1Wj8oNpuWHyoBAnPmzFE9e/ZUnAf2/k2ePFmFhISotWvXKpPJdBMK+/btU23atFHh4eGqadOmys/PT82cOVP/DRkyRD+f/H7bbbepunXrqtjY2Jvq+Prrr1WfPn102V69eqkXXnhBLVu2TG3btk1duXJFRUZG6vVo7Nix6rXXXlOvvvqqGjlypK7v+eefV1xTKpIsFot6+umnVVhYmFq9erVin7jmkO677z593K1bN439Qw89VCKOtvp/9uxZPc64uLgiRbZu3arPnzp1qsh5+VK1EOB7oEaNGqr48+GuKBTMCmf2zg4GKH3nFBXq1UrN2XvlRstZ+9W8tt4qJGKzSstX6vLly4ov1i5duihO6C1btmhm4+rVqzeuceIR23v44Yc1I/SXv/xFldbOmTNn9AJZq1YttXjxYod60b9/f70AcUEaN26cQ9euWbNG1alTR3Xo0EEdOnTI5rXE6+WXX1aBgYGK7aWkpNgsW5Yf2E7fvn31y4GLfqdOnXSbmZm/qZ1TQpVXqzmq6C2ep9p6h6iIz

Question 6

WkqXwkDVBbsK8O1R48e1fNt3rx5djFAUVFR+vnnxqM04vPesWNHtWTJEs3gcA5w88D1pF69enpOcCNR2maKzzY3NayHGzGuCT///LMaPHiwIuNz7ty5m7pw4sQJNWDAAF3WHZigmJgYzQRxHRgzZoyaOnWqGjp0qMaga9euatWqVSovr2DDedNgSjnBDVmTJk00A8U6ySwS3/j4+FKukp+qAgLr1q3Tczo7O9sjhut8FdjvyrMycWBlHFK7zEZkNyv9f2AXTH2qOzI3rUB8BrS3EUXMzGpMcS7tSijyLm40/LvN2VmA3k2Mc0IRMd3naUxJewKK1g2iSJkiY+r/jRxDtNlxhOxRgdmqj55XdCOkWzrVTRRL0zPOmqirp+iftlI0GKWNgy11nPV1t3JMmywaSVLNQK8SqhXpVlxTHcPKuFR0mR2Jord4Kp7qnolNK+IlncetAF7JrqG3EN3nbamCiw+XdnW0W2HYhtKIzztzjNGwlyobzgHOGxpFU2XG70y3UZoKjs825xnVYvQko3qH6neq27hO0COyOFGVTvsH2slQHVeRxP4zthLXG46Bjgtctxigkp6zNHKmCzLtfRwleoHRJIFjpN0PVYBU1XNNEqraCFD9xTnnymCGZUHc8affrtYUriYdRPzuFPhcL5+VeAl5aAzkp+HYkXTUvbMz6hdp3Qd1O3ZHw2vbceS8CaNCfPUEpscSJxvp9wKl2dW13ylEHTaZINrxUPdPI2nmGuJCsmDBAu0Cyv7cClPB2BrWwca48JPBKm0hLt5dYkDjSxqS0S6BOZXGjRunjcrInJEhovE17QBcQbRXItFmgm6xzz33HPKTluFIel3c2bk+it7iuujYvSGubT+C86YCbzF1NQkH43cj5caDgkt54JMiVAUQoFF9VFSUNlYuzSCa9jV8adMO0B6ioS69LRmbpiz2bpybNI6mUTBf/GT0S/Mc5QaN9kC0NeJmgI4BFU1kMvnnTCLjRC8eIUHAQIBzlOEUuGHwFCryfnJep804vSEac/f7F1aZf/koTIoMUC6umrzgG+R3kwW2T40g+CEP2bkFUhfuYijFMF6yhZW54IASJ7qsM3ghF2j2gTtHLmy3SsV3unxguFs0Asc5Ui+lPFzc+VIg48MXAw2c6Q3jCEPlSJullaUkjEbrvGf5uVdh8vJFkF9xAaMPagT5AXnZ4C3mr+bTGxA9dz8Kn5T8yzhqUsIAlQZ2JfqNzDulvJTY8Dm2xTDQ25CbEyPQoT0QMLYPPR3LwgAZ7dBYmv0rjUkzytLTklIqRk9nSAwhQaAqIEChAdd/T2KMy4kBqo52sz/F3mfbwvf6nb+0YTiaPUIfy2CE1vbClWRKhIpS3qVkpCMYjWoXSBX4a0UwP0av2Da9PMhYOEP1Zq3+MtogU3QrDJBxPRkyLvKUwDijj0a9t/Jp3KtqwaGo7XUFyRTlFKE8XEpOB4Ibgbf4Cu9vu9n4dO+zaHvjQcFw/aAUuVC+VGIEKNFkTCx6UzK2DtUqdM82KC8vT6uljefLOP97nyzPep1BR44c0ZIge+tizBwGixQSBCojAnzfMAQNBRTctFAlzPRTFBx4ivqL96X4Fr3875V3CLoMuR2ZezfhcJZ1c9k4tmUXLjUegO4NDH2I9e8Vd+wsxqIkBqikc46OlFy3s/roaNsllfcO6YIht2di76bDKHqLj2HLrktoPKA73OwWlzQMOeciBPj8MoM8432R2aHKmdHQ6Y5OKQrj/ND+jok8+bu9RJshBkh0BjE4oCMMGMs60ldn9FHqEATKGwGacdDmk+EiOEdpO8v4UAxKStMRRgin0MBT0iS5ngGCH9pNehb3ZK7EE69/i3St7bIg88CbmL00Ff3mzkCngjRU5X0vXV5/ScxOSedc3jFnN+jXDpOevQeZK5/A69+mF8SDsmTiwJuzsTS1H+bO6IRKeoudjWSVqY9MEJMFM34PJSeMNUUVNO1oqCJjBFkaTZMpsodoa0eRPA2BnUFkpOgcYS+xLF8SQoJAZUGATgS08+RGhNIexpci88NgpFT5MpI443QxsCZV257ABFUAAwRUaz4BH2x8FrWW9kWLdj3Rv1c4mvdaBK/HY/HxjNaFarPK8uAY4yhuA8TzJZ0zynvuZzU0n/ABNj5bC0v7tkC7nv3RK7w5ei3ywuOxH2NGa0Pf5bkjlJ6XHwLMSTdmzBidkoH2O/ReIjEAKtMtGIENbfWAjgX0TGLQQlvpLGxda+s87X9oAG3tFWqrLJMdM6I0jaeFBIHKgACD3XKDwmCgjPLPOcnnnPk1GWSTzBDV1swWwGMmy2a6qeKR1N0Ni4rNBWZKxdFv9+H4lUDc3q0XOja8ofd3N6DK2h8+CIy8ajKZdPoI7lDpVsvotO4YUr+s4zWuN6Uexbf7juNK4O3o1qsjKvEtNoYsn05CgGpdMjuGepdziF6G9DRhpPiSQulT7UTvSO5GWY7pb5xBbJuLP9O/cB6XRvRsY/R1ugQLCQKVAQFKZJlmhY43DCFBYmgJekYygS6ZINqjMgI01WB0QOBvVF+7dX5Ij4hWJJ0UBASBKocAI8oWD0jKAIWMvBwcHKwYLf7LL7/UQUETEhJ0xOZGjRrpaMeMSOts+uWXX3QAwBUrVujgrMXrZ2DF+fPn6yjU5RV8tHib8l0QKG8EGNSzRYsWOugvn2tGbWcgX0ZTZ2Rwg/jb559/rgPvGmUYcNOdqWIlQJWBNbZnDMyPFrMOx8MjEPHHkELLc+ZHW/Wfahj+yAg0F62QPUhKmSqEQHEJkPXQGdCQ8Xa4I2WyTnqiMFbP9OnTdUJi67LOPGYwVgZ6o2SJ4TGYK4xqMdpEMAs63eQZDJFhKoQEgcqAAG3pKFVlyBYSkwRTzcVnneeZ8Ns4xzAsRhkG3KRDA+dMSdJaXbCC/wkD5IobkHMI8++4E59OPoQfbgoNUAPr/xuLEbVd0RFpQxDwHARKY4AqchQ07ty6datOWExDbcbdCgsL08wX3d9p0C0kCFQWBAz1l7U9DwPu7tu3Tw+RibbpEk81WPEyAwYM0IF5aT/kjlROcYDccfIgqwMAAA2CSURBVKjSJ0FAEBAEyo4AI0FTCsQ/IUGgsiPAgL2U8tDmh0TJD5kf2vuQaPPDc5TyFC/DUBT0HnNXqhAvMHcFQ/olCAgCgoAgIAgIAjcQYAgIMjs0ajbSwdz4teCIqjCGqihehtJQ5s9zVxIJkMvuTCn50VzWB2lIEBAEBAFBQBCwH4FBgwbhlVdeQUpKir6I7u9Ue1HyQ+IxJUT8o0cYiWVoB0dbOdrJuSsJA+SyO1NKfjSX9UEaEgQEAUFAEBAE7EeAOfg6dOiAPn364I477kD//v11MnB+MjYW81HymHY+tAMi8TvzU06ZMqUwjIX9LbqupDBALsO6lPxoLuuDNCQICAKCgCAgCDiGABNdMwUGA5GSGSIZgRCNOEDt2rXTsYAoEeK5lStXFhpKO9aa60qLDZDrsJaWBAFBQBAQBAQBj0Pg/vvv13ZA9957L+gBZhANpA0yDKPXrVuHYcOGaelQq1atjJ/d8lMkQG55W6RTgoAgIAgIAoKA+yDwzjvv6GjQTINBzy7a+MyZM0fnBmP8HzJAZJQYMfqtt97Cgw8+6D6dt9ETkQDZAEZOCwKCgCAgCAgCgsANBGgM/dVXX2lGh0zQ0qVLdQLj1q1bg8bSbdq0wY8//ogJEybcuMiNjyQQohvfHOmaIFCVEXDXQIhV+Z7I2AUBA4G0tDTMnj1bf2Wi4vDwcLc2eDb6bf0pEiBrNCrbsfkSju2OQ8yaddi85zDOZl5AYmIKLiTuwIadp2Gyc7z5mSew5+P3sflkrr7CfH43Vn90AJctdlbgQDHbdZtw4dB2xO0+Y3e/HWhWigoCgoAgIAg4gEDdunV1CpouXbro+D9G0mIHqqjwosIAVfgtKI8OWHA5YRFGd+6Hv+3MRsM/tEBAciyiOjbBgFc3IOZvEXjsnV9wzZ6mLVdx+sBGLJgxB2tP5OgrcpO+wrpP4nHWXg7Knnaul7FVt/n8XrwfeT8eW3sKeQ7UJ0U9CwGK1f/1r3/pjNO5ubk6k/STTz6JS5cuedZApLeCQ

Question 7

BVAgPM1ODjYY0cqDJDH3jrbHTcnf4RJI19BemQcPn5xPAb17IGBD8/Hx1v/id6BjdG7Ryjszr3qHYiWvQbij/WrFzYY2ONlfBH7BNr7F55y2oGtuquFdkf/zvXg6yOPrNPAdqOK8vLyMHPmTDRt2lQnFh0/fjyYhJHh9ZcsWQJ6kzz66KOw9jpxo+5LVwSBKolARkaGRzNA4gVW6R7bXBxb9So2mgdj07jWRRgdv7BJWDDlAvJ2Asp8FtsXTMaHCSbcOWsRnrunEfgwmM/uwIrVB3A17wJ+8+mNmU8+gNbWPIflKpK+icXarVcwcl4UOgXkIyX+A3z0fRauJSch8L65iLq7AXyscTWfwba3/we/BIYg4/9y0e/px9Gvvg/yU+LxwUffI+taMpIC78PcGX/EtW+t6wbyL8Tj/Q++R75/Do4dyoIl3LpiOa4MCJjNZpDhSUpKwuTJkzUTRHdbRpb19/dH+/btMW3aNNDOYMSIEdi+fTv8/Pwqw9BlDIKARyPg6QyQ9avNo2+EdN5AIAuJu04AjbuhdU3j3PVP72C069EcvshHxrEf4PPQYrw19iKWPL4UR6jdytiNJ4fNx7UHnsCceXMx8Odp6DYuBmfyrepRFlgyvsa/392pVWBZ372EqTF1EBE1C9P7JyN6yuv44UZoCH1h+pezMHF1Tdw3+REMzVmOJ1b+ClPWd3hpagzqRERh1vT+SI6egte/zypSN67uwwujFyD/gUhMj3wEdwWZUQ5mR1aDk8OKQIDMTXp6OoYMGaKlPYsXL9ZB1vbv368/yfSEhoZi7dq1SE1NRe/evYtkna6IPkubgkBVRoDqabq6cz5GR0cjJibGI+ekMECV8Sn2AqAsUMrW4LwQ0GowBoaFoGHHO1Ev6xQu5gLpu/+J1Rm90a+5L+DdAINnPQz/z1/HZmsOyCcIt7VojCAt4knHrkXrUH14PzT0AULujcF/D7+GOwOKtlt70HIkbBoL0+6N2JV0BWlJl5C6axHWVR+OfgUXIua/h/Faj4ZWdQPpe/6BFZnDMax5NcC7Jpq0rK2lVEVrl2+ejMDhw4exdetWxMXFoXr1G2pWjokut0zCyE9StWrV8MADD2g3W7riCgkCgoDrEcjPz9fzkLnA3njjDUyfPh0LFy7EM8884/rOlLFFYYDKCKD7XV4T4QPbAEl7cMgeNy0vL3ihgFMyZaUhy5QD83Uxi3+zDmjolYXLOTY4KUs2zp++gEsZOdclMz7w879Zq2pOS8DSJ+ZjT51BGBxeCz6w4Nr507hwKQM519vy8fO/ibm5dvYE0nLNsNho3v2wlx45isDbb7+Nc+fOaXUXr1VK4cyZM2jUqJEOqMZFloHVmFWaf2SCuOiuWrXK0aakvCAgCDgBgW3btuk5Sxu9kSNHYuzYsdi1a5eek6dOnXJCC66rQhgg12Htopb80HbySxgXtAPz/7ELadY6o5xT+M/nPyPr+otGd+g6c8GP2p1Hoe3FL7EjqcC9Ky81Cdea34N+jYsxNRQtKQXlHYz23QPxTfSbSEi3APmpSFizHolFVGDZ+OGNp7DWbwzGda4Jc3YeLBYv1GrfHYHfROPNhHRYkI/UhDVYzwuNugHUatsT9X5dg7iT7I+C2ZQPS771gFwEqTRTLghYLBasX79e2/YwiSITKJKysrI0k8MFNigoCN26ddNJFo0yDLJGxoi5iIQEAUHAtQjEx8dj9OjRRSS2derUwcCBA5GQkODazpSxNWGAygigO17u0+hBvLfjHdy9dzL6DJuG+YvewML5z+GZVzcgp6UJ+75OxsXEHdh76hx+2rkXv53/CTsPpMA3fDY+jG6JtVHz8dH/bsDbb/6CsaueRZNDX+Dr0xdwZOc3OJmWhIRte3A69Qh2xKeg/fOr8FTwctzVqAnC+sxCfOshCCuiAvNFaKcOMH00FgPH/R1fmgKQuuVNfOz1OFY+FYzldzVCk7A+mBXfGkOap1nVfRLoNh8rHs3G8717Y/SUZ/D+T9nIOboZXyUVxCNyR+ylT/YjQBdaSnzo9k47HzI0ht0P7YDI8HBnSWKofaPM8ePHERISUiQnkf2tSklBQBAoCwK0xztx4sRNVXBe8jdPIokE7Ul3y+G+5iMr+RgSz+YhpGVb3N7AH/ZwvKa04zh6yoTQDm3RyN+eKyzIvpwB7+AQlFzcgtyMDOTXDEGAjxk5uV7w9yvwE7NkX0aGdzBCSr4QgAU5qeeRUaMB6lazwNvf164xOAyVXOByBJhUkdFjL168qOP+UKpDm5/33ntPJ1NMSUnBY489pv+oEhs1apSW/LBMYmIiNm3aBGagFhIEBAHXIcD5ynlL9fWYMWNAm6BFixZpJwXa9Hl72/POcF1/S2upmG6jtKLym+ch4IOaTdujW1PHeu5btzW61HXkGm8EhISUcoE3/IKN36vB38qD2TsgBMYvJVfgDf/6t6EcQg6V3JycdRkCtWvX1gEO6VFiTfXq1QPtDLiwvvvuuzrKLO2CDKLUiGH4KQUSEgQEAdciwPm5efNmTJw4USdDzcnJQVhYmJ6znsT8EDWRALn22ZHWBAFBwAoBJk986aWXwGSKlPgwqmzXrl11iH0W429UhZHpoXqMZWhoSSPogwcPasNoq+rkUBAQBFyEAOfkr7/+qmNytWjRwkWtOrcZz5FVOXfcUpsgIAi4AQJkbpYvX64NnSnx+dOf/qTVXzSEJtEwmmVINIamUfSyZcv07pNeYUKCgCBQMQhw/lHy46nMD1ETCVDFPDvSqiAgCABgCgwuon/96191LJHffvsNDRo00LF+eEyJT8OGDTXzQ8Docrtx40YdgI3MkJAgIAgIAreKgNgA3Spycp0gIAiUGQEGP6S7OzNKm0wF4RcY64fEAIiGYTQNnrds2aKDJu7evVtLgsrcuFQgCAgCVRoBYYCq9O2XwQsCrkWAdgOffvqpVnudPXtWe3GRCaIhdEBAAO6++24dF4jutAyAOHXqVB10jeJ2X19f7NixAz169HBtp6U1QUAQqJQIiAqsUt5WGZQg4J4IzJs3D7Gxsdq4ma60e/bs0YzOn//8ZzD2D3MK8fPkyZM6ESpVZMwIz0zwkZGRhRGj3XN00itBQBDwJASEAfKkuyV9FQQ8GAHG7hkwYAAYK6R+/fqFI/nxxx8xePBgnD59WkuBKCViclRmmq5VqxboLu9p7rWFg5MDQUAQcFsExAvMbW+NdEwQqFwIfPLJJxg/fnwR5ocj7Ny5Mzp16gQjwSnVXYzxQ+8ShtgX5qdyPQcyGkHAXRAQBshd7oT0QxCo5AjQzseW5xbPM6CakCAgCAgCrkJAGCBXIS3tCAJVHIFBgwaBUiCz2VwECYbWp2dX3759i5yXL4KAICAIlCcCwgCVJ7pStyAgCBQiQPufZs2aISIiAozxQzpy5AiGDx+OadOmeVwixcKByYEgIAh4JALCAHnkbZNOCwKehwBte+gBxsSmHTp00HY+Q4cO1QkVo6OjPW9A0mNBQBDwaATEC8yjb590XhAQBAQBQUAQEARuBQGRAN0KanKNICAICAKCgCAgCHg0AsIAefTtk84LAoKAICAICAKCwK0g8P+/XDl5DTmIlAAAAABJRU5ErkJggg== />
 

(a) What is the conformation of ring A? of ring B? of ring C? of ring D?
   (b) Are the hydroxyl groups on rings A

Question 8

z+8UEv6nPaxGoMg6lVWWaUtauvVjBCrzUKJFlLNkjWQNZA1UE8D6gqh2C3FA7RY1Ng2afPf+973pgKjeiDI70499dTgblN/yGrzUni5h1ioBtxPf/rTRYZaPUu23rX1te05db6vPbG+d72yxXbZZZdYffXVi4QHAMcL8PFOgB8YoNY+Fk9PMYDtuPteywhZ/4eP8Le//W1R4fStR/4YV09aNzZeZtZ23Hc+RtZA1kA/08CZZ54ZSyyxRHhvxpWuMCOgI4vls5/9bLH2n1omCjOqSeT9rrvuir/+9a8F66TWibFJZev+IsDdNddcU7gYf//73xeusd/97nfxta99rb/cYr6PXqQBxRPFCe25557x7LPPFgAI4FlwwQWLau8Y3Zlnnrkomrrddtt9YB+uW/21XdIrGSGB0d///veLBRU333zziBgfN/xg19jp4L/G/3LMdLuefT5O1kC/0YAsMXVGsMfNgCCD6VprrVUEZLJSDc6WlqguzGhQ3n///ePtt9+OO++8s2CcDMZ9Xdw/tyEXhXs27oqvosMtt9wyZp999iKolYswS9ZAuzSJG93xAAAgAElEQVSgr3FZlwUTyy3N0EhMbvl7/6d9xAelZIjqfVr53CtNGrUCKOSGG24oBqjJz/8lTvn98/HiuyfGZU99JXZepFdediv6z7/JGsgaaIMGLJfBgNp+++2bOpoMFTVK1l133aIuUVqhvnqpDvFCtv3sZz8rqPtTTjml2F8gdl8Vk9FXvvKVwrKWqgwQibv4/Oc/H9ggJQauu+66+OUvfxm33XZbEb8x00wz9dXbzdfdizSgv8kS07YwstxgaW077RJLpF/OPffcH9jHeoKyPxtNeGjktnsdomBxoaIFNrLUIibGk3++OoYu+6GI2/8ZJ5/3YGx3+MgY2sjd5X2yBrIG+r0GuHW4wwRZWpG+UWFV3nTTTUUMkUG4mcKM2BJg6OGHH+6R1bEbvadG9zP5rLPOOkW9pYMOOqgobGfsHTVq1NRJSUFFmXbAj0mLfi+44IJiwmr0PHm/rIFaGrBchqzERRZZZCrIBoa0MS8FFRM4AswFUXvZJhlCSQwus3ZJr3ONnXHGGfH0008XabDFTb49Ji6/bbU44uQdY+GIeOjs0+Nfr7Xr9qfvcaTmagzZypq+zyGfvW9rAGvBnfOd73ynqRsBZJZaaqliYm92FftZZ521GKyBiL4oypKIgwLksD8kFbIzESUx+ViGROD5Cy+8EH31ftP95PfeoYE555yzSGrA6lhUVZC0tkbqtUP7YH4VQm13AlWvAkLjx48vKkzuuOOOscwyyxRKmXDHpfHoGl+K5VbZKb4te/W538ZJf/lv9OVQIf723XffvbBeVcvcYostimwV1DsRNZ8KSaEJk3zjG98otluht5ZMfOGOuGHMK7W+inj9kbj+1ucie/prqydv7f0awPxw3QhU1m8MnDKcsEEWUF1xxRUbvolx48YVx7GoIykXXUyf1ScSk5BiEar30W9Vte5r8TPiqY455piici+dNlLI7qqrrorjjjsufvzjH4dA1yxZA13VgJg7CQjmOPF2nbVD7dZLP//ud7/b1dNP8/teBYRYHgaVVDsgYlzc+Kt/xfh/nRIHHHRuPLXoYhHxWvzphN/FE304TlFBqJ/85CdFqq+S4RCwpQIUgLvnnnuKRqGIJClX1E7BZRpDtbz10C/joNP+HQstOkf1V1M+D1skFn3mrDjw7PvifWhVe9e8NWugN2kAEyGIV9VoxoA4IPEstuk/+gwg1MwErQCjlPmvfvWrxa2K9ZEmXy7CaD2jvffee5pt5X0cQz/Vd/uS7LfffkUxO6VJytJZITs65spIDFL5t/n/rIFmNTD//PMXRr/4O9mJ6gaSWu3wvvvuK2LX9HeV4aXPt1N6TYyQ4Cd1PMQHURCZ9NSf4uIZ9ojTT10/5gYK/rdGPHfdJnHZ6JPirDt3iONX6Xup9ILAr7322sIdJihcYag33nijqFHiYVsVm3tQam61ywxLVFNeuyUO3+GiWPqiK2LxmWvuERFDYsRGu8ZKX90kDl766jh5rTnr7Zi3Zw30Gg2ce+65hcuLC1msgLo+5awwsS76zcUXX1y8uMkMlp3JM888U2REGYSJxVqbiRFKvxGvgF3qSwK4WbBWvAXBQGPXuMTStmSMps9pH5llmOutttqqL91yvtZeqgFz/T//+c+CocS+zjHHHPGtb32rAOoSF6xMr3QF1pdRsscee0zT/9t1W72GETr44IOLCPF99tmnuLfJ40fHj7+9f/z5kdFx3UMTYnK8Ho/+8954swCCT8Qpux0alz/d9xw9anQISlxooYUKEORmxRvw2avkessttxRR9I0/4EnxzGWHxNnjV4mVh1PO5Hjt3vPj0H2PiGMP2zk2+NJ2cfS1z0VBoA2aN0at+Xacd/DvYuykxs+Q98wamB4aOO200+Lb3/52rL/++kUq92qrrVZM2tzmqZia2BXACLMDABlMGym9z8goF2VrNkaIPvxG+rl4h74kxhnBqMBNegE+/ifAT71Cdlg3IQxZsgbapQHgR1V4scGyyWSLI0UwQ1zXJ510UhHPpjBqu5mgdA+9ghFiiclG+OlPfxqzzTZbcW2D5vpU7HPlczEFFk253KU2OTT+vEnt+BiWoeBjdUB6swA63F0G7LIo6IaqZ2FCwsSgY8CS0ULuv//+4n3aP6/ErRfdHK/OtV0Mt9vEJ+O8Hb4Zx8xyZjz8ly1ihlWWif23GRqrP3p2rDXb4Jh7kXnjzdG/iVvG7RQjhk97pPwpa6C3aMBSGVxff/jDH4p+jcVIKe2pyGHaZtzwHWDCbSwl3GeB0LUEA2s/KbqqRT/22GPF/uk46bjlgoppW3kf6eX6LDapLwm22UQjIwwAaqaQnXiOMiPXl+47X2vv1gCArt9PD5nujJBgPQMeK2+HHXZoSgfAjwArcQPDhw+Pe++9t1gfqKmD9PDOKY6heh0fsQYAEveXwTWJOAQAqDYIAnxejMefejMGzTJLFBU+Bs8f6+59aOy37ciYMPrvcfdLEfHS2Bj3Hnk2aOhsMeSdZ+ORF95Op8jvWQO9SgPGhB/+8IcFGyRxQoE1Ul3kMG1TfC3tg8kQeKneTxLHw3YI9EW1q01irAGULMZa6ziNnAsTJG5JEHVfEtdbLgbJKGu0kJ2K/4mN60v3nK81a6AjDUx3Rsjia/z6AE0jJeu5lQQ2CtiTscFCUQ/jhBNOKAZKVmFvlhT/JG21LGKkMD+AEqowyc033zx19Wu1S1JAWfo+Bg2LOWeJmDxpclSKjYNj1mFvx+1H7RJP7n54LCm4qhTCUJk8MSbF0Jh9lvYGm029nvxP1kAXNXDppZcWLJC+joHprMhh9T7/93//F4ccckgRQI1mN8bILuOOVhtHPIy1yICgBJgwSNXHwQhJ4AAUUkHFtI8Abm7uBKS6eMs9+nNrPKnCTc/WXmu0kB3jzTh13nnn9ej15pNlDXS3BmaoMJemk2A+PvGJTxTUMjBULxjYgCjNTkAkwMT9tfbaa4flN1huvR38lNXLBcjKRS8///zzU0GOgVtKq3sRTI2yx3gJxJRVRr7whS8U6wEJGFMDZYq8Ebfus0ysccMB8ejo3WLEq5fHRh/dKC4fvl/cdtc345pVl40DH/9C/P65v8Qmc0f899drxML7Lh1/feyc+MwUL+R7x8lvWQO9QwOrrrpqEXejDzQj3F1cWFjUxx9/vOhjirICP14m/fIYY1zBJGOJLLbajAjgZKRYE6m74haauZ5m9zV+igWytpN3gdIAIuYsfXbM8jZZq5dcckkR3Nrs+fL+WQO9WQPTlRFiWWA4BDeWBygKS+AnMT8J/KhlAfwYwPqiyNYQqClOgVUqSFrWi/uig5133rnJ25o1Rm63fXz88rti7JsRI4YMjyU+IhXk5Nhqyxdi1NAhEe88EFdcMzY22WLeGHv3S/GxbXeOlTMIalLPefee0oC6PYAJo+Dqq68Oad7icHzG3Oj/3tO2tA8QxD3OcBBzhwHCetQTTMgvfvGLYmFVFamBmkbOxUABggRz9kUQRB9igwSmYqAtMwII0Vs5c8x+gJD7lDoPY

Question 9

ObU+XqtKW/vyxqYbjFCXFoKA3L3KOtOgB/F0rbddtsC6Gy88cYhzRVIMEhhStC6fRUEuUdxBeIZuAGt38NSVddD/SQUvOw5IvA7xRMVGyKKlML0f/l95o/vFads/r+47JZxMXnYp+P4e56Lh8c8Frdd8Yv41U1j49HH7oyfbDEiJr98e1z2+FfilANWjmHlA+T/swZ6kQaMDamMvkm4XNCwoyKH+o/6QoAKd/mrr77a6V1tuummxWSfJnwuNCKOpvpcxh3XYzu3PFalr8pnPvOZwsUlXkqVXo4BgIgejMGMMq+ddtqpYIGAIKCSXrNkDfQ3DUw319hRRx1VsCGKoaGxE/MDAHz2s58tCiwZpPoy6OmosaCZBW9iw6zwjAkCioj0VGXHie2pnpDYKBkuK6ywQkglnkYmPhvXnHF+PL/2d2KbkVNcadN8//oD8etTroo5tt4zNhgxZJqv8oesgd6kAbWCTNRiUritUoyQIF1ghyGR4nZsq7WPRUTt02gWCoDDMEv96yMf+UgBdFRUlsgB/Mhu5cpnmLm+/iDip3bdddciTZm+1DXjst96662L2wMIGW3qORmXs2QN9EcNTBcgxMKTsbHYYosVKazAj4ElxfzMN998/VHXPXJPgqYHzViD6Js8KSbFjFHrqx65sHySrIEGNQDYqM/DddyKYDfOOuusYgmJZtckEqsI6IwePbpwXzs/QCbFXBC2+KX+JphngFGBV8xPWmjV+AwcYuZzynx/e+r5fsoamC5AiLWB8VhjjTWKCqWYnwx+yo8l/581MHA1INNLEUUp9Gr1NBK3U94HuywrE5PUSCbqwNV0vvOsgawBGpguQMjCidbxEfOTJWsgayBroFoDI0eOLECMsUJgtEBoK8xXFzm0TeXZtI/9MM7LLrts4c6pPm7+nDWQNZA1UK2BGj6U6l3y56yBrIGsgZ7VgLpg4nUAmlQssbMih8pxiG9JxRN79orz2bIGsgb6qgYyEOqrTy5fd9ZAP9aAmlkpVRvAUXUd61Mucuj2bVPkUOapGjf/+c9/CiCUam/1YxXlW8sayBpokwamax2hNt1DPkzWQNZAP9SAoGlZW5tttllRSHTFFVcsqiBbXFWlZ0HRyk6oiWMJGkttyILKIKgfNoZ8S1kD3aiBDIS6Ubn50FkDWQNd04AsLSyPuj1nnnlmEVuonIQaN7KdgB71fNQPEleUJWsgayBroFkNZCDUrMby/lkDWQM9qgGgRwq3l6KrltLYa6+9CjD0q1/9Kqd29+jTyCfLGuh/GshAqP8903xHWQP9VgOWxVBkVfG/c845py0gaNL4e+KKy++Ilya9p7YZZoyhs38kll11jfjEgjNH3UDKyePj3iuuiNvHTY7Zl1ktFnvhX3G3/5dbPzb+1PBo5+A6+eX74srLb4sXJ84Ycyy/fmw8at5oadnk1x+Ki069NN798h6x1cgPVd3b5Bh/7xVxxe3jojLnyPjKRivHPC2dpMnmN/nluO/Ky+O2FyfGjHMsH+tvPCrm/cB537+2ybMvF+tv/KkY3pCCJ8bzN10Q51/3fAwdsXpsvsUasUBH9WRLz3TYkl+Mr66xQMfPsbT/+8/99XjoolPj0ne/HHtsNTI+VLcBNamntHutZ9iQDtMBar13fM2Tx98bV1xxe4ybPCyW/OJXY40FGlL+lBNV62jUTPFg6jfd0Fdq3V2n2yy62tNy5ZVXVj73uc/19Gnz+bIGsgb6iQb+8Y9/VGaeeebKxIkT23BHEysvXrdHZeGISgxdu3LO/Q9XLv/OIpWIuf+/vTMBi6rq//iXAZRNQRTBDVSQRZRU0FdcUFL7p1m9mWZpab6a5KvmimiRC65kiqaJuYWGpZWZ+waK5QK44QZGQKCyyzoDyDLz+z/nDjPMDDNsJurbuc/DM/eee875/c7nXOaeOduXhq27RUU6LUgp6+AoMgfI5qMISlKe/0ZinWkaekNKmb+8Rc0BajfjEknqkU35/YO0cqu8HOKIydQaIPMxJyhfSx7SrIM0yhyEDrMpsj5GtORVnyBp5i/0VnMQ2s2gSzrsKn2z+Yh+qyPgouv+5AIjGrp9N71lbkh9t/5Vq1t5YZPJBiCLsSe1MlLPQPUZqKx3cQRNbg2C+Rg6oQ2yegb1vtJVh3VhqNOYNp/L79PBlVvplvAPkEdhk20IsKCxJ+tbKE1Gmtc6vWq0G393W7XWhhePwAlwApzAkxJgSvJMU4wtsX/yQx8WnZzQimVk1Art2jnC+91X0Ra5OLNpD+4W67IggrGlJYyE26rnuuI/SXjD8pcVRGH1OxOw5Vo+ZADMPAPw454QHPjSG+Za3BEZW8JSXiAtd59eUF3s1iWOuocVeBj+K+JgiGZWvTB5WSD8hrVRj6LlysiyNUy0hGsP0lIvZp4I+HEPQg58CW9tkLVnVOdQXXVYfz4qJjV9lhUgavU7mLDlGvLZgwMjWLauOxWVnAFoMtK8Vo/9LK7q0b/1LNzjNjkBToATqE6AiRd36NABt2/fFuR6qsd4khAZSrLSwCRbbQYMhJ0RIBPfQujaPfjL1BSpF6JR2m8e1vgOhRZVP92GZWLcCl2LPX+ZwjT1AqJL+2Hemnlwv78NvssP4WGLwRjrHIsdP9wEev0XW4P/C9fyKwievxAhsabo2VOCUgCGOiyU/rUfn316Gk26tUdBXCpcfP3RPmg0FkeKoZ+7FvMCizDa6CdsOPIQFtk94DnXASl7l2H1OUKr4jhkv+SL9R/rKXOn4nv4+Ytl+PaONV6btRBTvWyUw0SyvChsWbAChx5YYMj4bojdthc3qAd81s2C2e4F2HihDN2nB




Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

Pamela.irrgang@yahoo.com

  • Sr. Member
  • ****
  • Posts: 323
Answer to Question 1

(a) The -CH2OH group has higher priority because the FIRST point of difference is the underlined O atom of -
CH2 OH that takes priority over the underlined C atom of -CH2CH2 OH.


(b) The FIRST point of difference is the underlined O atom of -CH2 OH that takes priority over any of the carbon
atoms bonded to the central carbon atom of -C(CH3)3.



Answer to Question 2




Answer to Question 3



Answer to Question 4



Answer to Question 5



Answer to Question 6



Answer to Question 7

 B

Answer to Question 8



Answer to Question 9



Answer to Question 10



Answer to Question 11



Answer to Question 12

 B

Answer to Question 13



Answer to Question 14



Answer to Question 15



Answer to Question 16



Answer to Question 17

 B

Answer to Question 18

The less stable molecule will have the larger (more negative) heat of combustion. Because these molecules are
constitutional isomers with virtually identical ring strain, any difference in energy between them must be the
result of differences in conformational stability. As listed in the answer to Problem 2.39, the cis isomer has two
chair conformations of equal energy, each one with one axial and one equatorial methyl group. The trans
isomer has chair conformations of different stability, the more stable of which is the diequatorial conformation
that has no diaxial interactions. By virtue of having diaxial interactions in both chair conformations, the cis
isomer is higher in energy and thus will have the larger (more negative) heat of combustion.






 

Did you know?

The average office desk has 400 times more bacteria on it than a toilet.

Did you know?

Bisphosphonates were first developed in the nineteenth century. They were first investigated for use in disorders of bone metabolism in the 1960s. They are now used clinically for the treatment of osteoporosis, Paget's disease, bone metastasis, multiple myeloma, and other conditions that feature bone fragility.

Did you know?

More than 4.4billion prescriptions were dispensed within the United States in 2016.

Did you know?

There can actually be a 25-hour time difference between certain locations in the world. The International Date Line passes between the islands of Samoa and American Samoa. It is not a straight line, but "zig-zags" around various island chains. Therefore, Samoa and nearby islands have one date, while American Samoa and nearby islands are one day behind. Daylight saving time is used in some islands, but not in others—further shifting the hours out of sync with natural time.

Did you know?

Dogs have been used in studies to detect various cancers in human subjects. They have been trained to sniff breath samples from humans that were collected by having them breathe into special tubes. These people included 55 lung cancer patients, 31 breast cancer patients, and 83 cancer-free patients. The dogs detected 54 of the 55 lung cancer patients as having cancer, detected 28 of the 31 breast cancer patients, and gave only three false-positive results (detecting cancer in people who didn't have it).

For a complete list of videos, visit our video library