This topic contains a solution. Click here to go to the answer

Author Question: You are observing the wobble of a star caused by the orbit of a planet around that star. Which ... (Read 102 times)

Jipu 123

  • Hero Member
  • *****
  • Posts: 569
You are observing the wobble of a star caused by the orbit of a planet around that star. Which property of this system listed below most signicantly affects the period of that wobble?
 
  A) the planet's orbital radius B) the planet's mass
  C) both the planet's orbital radius and its mass D) neither the planet's orbital radius nor its mass

Question 2

Briefly describe one of the three questions left unanswered by the standard Big Bang theory which are solved by inflation. That is, describe either the structure problem, the uniformity (or smoothness) problem, or the density (or flatness) problem.
 
  What will be an ideal response?



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

dantucker

  • Sr. Member
  • ****
  • Posts: 346
Answer to Question 1

A

Answer to Question 2

Structure problem: The fact that there are galaxies means that the density of the early universe differed slightly from place to place. The temperature differences in the cosmic background radiation show that regions of enhanced density did exist at the end of the era of nuclei, when the universe was 300,000 years old. However, the standard Big Bang theory cannot explain where these density enhancements originally came from.

Smoothness problem: Observations of the cosmic background radiation show that the density of the universe at the end of the era of nuclei varied from place to place by no more than about 1 part in 100,000 percent. This means that widely separated regions of the universe that did not have time to be in thermal contact nevertheless ended up with exactly the same temperature. The standard Big Bang has no explanation for this cosmic coincidence.

Flatness problem: Historically, measurements of the matter density of the universe typically found values from, perhaps, 0.1 to 100 percent of the critical density (today we know that the matter density plus dark energy adds up to exactly the critical density). These early measurements were quite puzzling: why would the density of the universe be so close to the critical value, when, according to the standard Big Bang theory, the matter density could be any value. Another way to state this problem is to say that the universe is very flat. If the universe had been 10 percent denser at the end of the era of nuclei, it would have re-collapsed long ago. If it had been 10 percent less dense at this time, galaxies would never have formed before expansion spread the matter too thin. Why this fine-tuning to the critical density? The standard Big Bang has no answer.




Jipu 123

  • Member
  • Posts: 569
Reply 2 on: Jul 27, 2018
Great answer, keep it coming :)


lkanara2

  • Member
  • Posts: 329
Reply 3 on: Yesterday
Wow, this really help

 

Did you know?

Medication errors are three times higher among children and infants than with adults.

Did you know?

More than 34,000 trademarked medication names and more than 10,000 generic medication names are in use in the United States.

Did you know?

You should not take more than 1,000 mg of vitamin E per day. Doses above this amount increase the risk of bleeding problems that can lead to a stroke.

Did you know?

Signs of depression include feeling sad most of the time for 2 weeks or longer; loss of interest in things normally enjoyed; lack of energy; sleep and appetite disturbances; weight changes; feelings of hopelessness, helplessness, or worthlessness; an inability to make decisions; and thoughts of death and suicide.

Did you know?

About one in five American adults and teenagers have had a genital herpes infection—and most of them don't know it. People with genital herpes have at least twice the risk of becoming infected with HIV if exposed to it than those people who do not have genital herpes.

For a complete list of videos, visit our video library