This topic contains a solution. Click here to go to the answer

Author Question: You are observing the wobble of a star caused by the orbit of a planet around that star. Which ... (Read 62 times)

Jipu 123

  • Hero Member
  • *****
  • Posts: 569
You are observing the wobble of a star caused by the orbit of a planet around that star. Which property of this system listed below most signicantly affects the period of that wobble?
 
  A) the planet's orbital radius B) the planet's mass
  C) both the planet's orbital radius and its mass D) neither the planet's orbital radius nor its mass

Question 2

Briefly describe one of the three questions left unanswered by the standard Big Bang theory which are solved by inflation. That is, describe either the structure problem, the uniformity (or smoothness) problem, or the density (or flatness) problem.
 
  What will be an ideal response?



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

dantucker

  • Sr. Member
  • ****
  • Posts: 346
Answer to Question 1

A

Answer to Question 2

Structure problem: The fact that there are galaxies means that the density of the early universe differed slightly from place to place. The temperature differences in the cosmic background radiation show that regions of enhanced density did exist at the end of the era of nuclei, when the universe was 300,000 years old. However, the standard Big Bang theory cannot explain where these density enhancements originally came from.

Smoothness problem: Observations of the cosmic background radiation show that the density of the universe at the end of the era of nuclei varied from place to place by no more than about 1 part in 100,000 percent. This means that widely separated regions of the universe that did not have time to be in thermal contact nevertheless ended up with exactly the same temperature. The standard Big Bang has no explanation for this cosmic coincidence.

Flatness problem: Historically, measurements of the matter density of the universe typically found values from, perhaps, 0.1 to 100 percent of the critical density (today we know that the matter density plus dark energy adds up to exactly the critical density). These early measurements were quite puzzling: why would the density of the universe be so close to the critical value, when, according to the standard Big Bang theory, the matter density could be any value. Another way to state this problem is to say that the universe is very flat. If the universe had been 10 percent denser at the end of the era of nuclei, it would have re-collapsed long ago. If it had been 10 percent less dense at this time, galaxies would never have formed before expansion spread the matter too thin. Why this fine-tuning to the critical density? The standard Big Bang has no answer.




Jipu 123

  • Member
  • Posts: 569
Reply 2 on: Jul 27, 2018
Thanks for the timely response, appreciate it


31809pancho

  • Member
  • Posts: 317
Reply 3 on: Yesterday
Gracias!

 

Did you know?

Vaccines prevent between 2.5 and 4 million deaths every year.

Did you know?

In most cases, kidneys can recover from almost complete loss of function, such as in acute kidney (renal) failure.

Did you know?

About 3% of all pregnant women will give birth to twins, which is an increase in rate of nearly 60% since the early 1980s.

Did you know?

There used to be a metric calendar, as well as metric clocks. The metric calendar, or "French Republican Calendar" divided the year into 12 months, but each month was divided into three 10-day weeks. Each day had 10 decimal hours. Each hour had 100 decimal minutes. Due to lack of popularity, the metric clocks and calendars were ended in 1795, three years after they had been first marketed.

Did you know?

Stroke kills people from all ethnic backgrounds, but the people at highest risk for fatal strokes are: black men, black women, Asian men, white men, and white women.

For a complete list of videos, visit our video library