Author Question: Provide an example of a phase-transfer catalyst other than the one used in this ... (Read 36 times)

biggirl4568

  • Hero Member
  • *****
  • Posts: 551
Provide an example of a phase-transfer catalyst other than the one used in this experiment.

Question 2

Identify each of the following reactions as an oxidative addition or reductive elimination.
 
Question 3

ByGsFEzhcExkpxh3Wqz88IkmApxqyAtMgpiNYgv8rlSewm+mykOjpfbD3BELFgzwAAABVy2fxjEOhAzxNnxvnJszxZKfaE9GskvCImT4zRhXow8PlooyIkMl8dZlskLGcVbeaKA2FGbdH5gCMRwpaFHijLjEmU80bOF/IRIiJUg7hRlx4bJfR8WZbIiR22E4hgJZ2OI36YLA2NkNphmrmg0L8yGw5bOBdcC5lOQGRcs88WSeKKk8FEOXJ5/gIwDxuUJ4uXcMLi6/GLkvqX5OdFye2wrLycoRlZn7KCoMHbUt7sALjBZHbBHWezQaPlc7/ILouNk3HAUhAMW8AdMIIYtDeSBLMDvGGgagP/JRgIBGwhBBuABa7lm1CNROiKA31hQBP6AiAdEY35+0lEeKIT6L2Na2dcapEtHC6Ue2eApxLm4Nu6Fe+Dh8OsDmz3uiruN+jGVR2clBhD9icHEQKLFGA8OZJ0DmxDw/40uDPY8mJ2Ei2A0h2/xCE8JXYRHhBuEHsIdkACeSKPIrWbwi4U/MGeCCNADowXKs0v7PjvcFLJ2wv1wT8gfcscZuDawxh1hJr64N8zNCWq/Zyge4/atlj/OJ2H9fT5yvZKlkpOcRdrYL8Mas/oxCuu7GnFhH/ajJbYMO4xdwE5jl7BWrAkwsZNYM9aOHZfgsZXwRLoSRmeLkXLLhnH4oza29bb9tp9/mJstn19SL1EBb3aBZDOw8vLnCPkZmQVMX3ga85ghAo7NBKa9rZ0LAJKzXXZ0vGFIz2yEcfmbrlgZgEkfR0ZGWr/pwk0AOFIKAOXpN515DdyuiwG4WM4RCwtlOslxDAiAApThrtACesAImMN87IEz8AA+IACEgigQB5LBdFjxTJALOc8C88BiUArKwWqwHmwG28BOUAv2g0OgCbSC0+A8uAI6wQ1wD66LPvASDIJ3YBhBEBJCQ+iIFqKPmCBWiD3iinghAUg4EoMkI6lIBiJAxMg8ZAlSjlQgm5EdSB3yK3IMOY1cQrqQO0gv0o/8hXxCMZSKqqO6qCk6EXVFfdEwNA6dhmagM9EitARdiW5Ea9B9aCN6Gr2C3kB70JfoEAYwRYyBGWDWmCvGwqKwFCwdE2ILsDKsEqvBGrAW+Dtfw3qwAewjTsTpOBO3hmszGI/HOfhMfAG+At+M1+KN+Fn8Gt6LD+JfCTSCDsGK4E4IISQRMgizCKWESsJuwlHCObhv+gjviEQig2hGdIH7MpmYRZxLXEHcQjxAPEXsIj4mDpFIJC2SFcmTFEVikwpIpaRNpH2kk6RuUh/pA1mRrE+2JweSU8gCcjG5kryXfILcTX5GHlZQUTBRcFeIUuAqzFFYpbBLoUXhqkKfwjBFlWJG8aTEUbIoiykbKQ2Uc5T7lDeKioqGim6KkxX5iosUNyoeVLyo2Kv4kapGtaSyqFOpYupK6h7qKeod6hsajWZK86Gl0ApoK2l1tDO0h7QPSnQlG6UQJa7SQqUqpUalbqVXygrKJsq+ytOVi5QrlQ8rX1UeUFFQMVVhqbBVFqhUqRxTuaUypEpXtVONUs1VXaG6V/WS6nM1kpqpWoAaV61EbafaGbXHdIxuRGfROfQl9F30c/Q+daK6mXqIepZ6ufp+9Q71QQ01DUeNBI3ZGlUaxzV6GBjDlBHCyGGsYhxi3GR8Gqc7znccb9zycQ3juse91xyv6aPJ0yzTPKB5Q/OTFlMrQCtba41Wk9YDbVzbUnuy9iztrdrntAfGq4/3GM8ZXzb+0Pi7OqiOpU6MzlydnTrtOkO6erpBuvm6m3TP6A7oMfR89LL01umd0OvXp+t76fP11+mf1H/B1GD6MnOYG5lnmYMGOgbBBmKDHQYdBsOGZobxhsWGBwwfGFGMXI3SjdYZtRkNGusbRxjPM643vmuiYOJqkmmyweSCyXtTM9NE06WmTabPzTTNQsyKzOrN7pvTzL3NZ5rXmF+3IFq4WmRbbLHotEQtnSwzLassr1qhVs5WfKstVl0TCBPcJggm1Ey4ZU219rUutK637rVh2ITbFNs02byaaDwxZeKaiRcmfrV1ss2x3WV7z07NLtSu2K7F7i97S3uOfZX9dQeaQ6DDQodmh9eOVo48x62Ot53oThFOS53anL44uzgLnRuc+12MXVJdql1uuaq7RruucL3oRnDzc1vo1ur20d3ZvcD9kPufHtYe2R57PZ5PMpvEm7Rr0mNPQ0+25w7PHi+mV6rXdq8ebwNvtneN9yMfIx+uz26fZ74Wvlm++3xf+dn6Cf2O+r1nubPms075Y/5B/mX+HQFqAfEBmwMeBhoGZgTWBw4GOQXNDToVTAgOC14TfCtEN4QTUhcyGOoSOj/0bBg1LDZsc9ijcMtwYXhLBBoRGrE24n6kSaQgsikKRIVErY16EG0WPTP6t8nEydGTqyY/jbGLmRdzIZYeOyN2b+y7OL+4VXH34s3jxfFtCcoJUxPqEt4n+idWJPYkTUyan3QlWTuZn9ycQkpJSNmdMjQlYMr6KX1TnaaWTr05zWza7GmXpmtPz5l+fIbyDPaMw6mE1MTUvamf2VHsGvZQWkhaddogh8XZwHnJ9eGu4/bzPHkVvGfpnukV6c8zPDPWZvRnemdWZg7wWfzN/NdZwVnbst5nR2XvyR7JScw5kEvOTc09JlATZAvO5unlzc7ryrfKL83vmek+c/3MQWGYcLcIEU0TNReow2tOu9hc/JO4t9CrsKrww6yEWYdnq84WzG6fYzln+ZxnRYFFv8zF53Lmts0zmLd4Xu983/k7FiAL0ha0LTRaWLKwb1HQotrFlMXZi38vti2uKH67JHFJS4luyaKSxz8F/VRfqlQqLL211GPptmX4Mv6yjuUOyzct/1rGLbtcblteWf55BWfF5Z/tft7488jK9JUdq5xXbV1NXC1YfXON95raCtWKoorHayPWNq5jritb93b9jPWXKh0rt22gbBBv6NkYvrF5k/Gm1Zs+b87cfKPKr+pAtU718ur3W7hburf6bG3YprutfNun7fztt3cE7WisMa2p3EncWbjz6a6EXRd+cf2lbrf27vLdX/YI9vTUxtSerXOpq9urs3dVPVovru/fN3Vf537//c0N1g07DjAOlB8EB8UHX/ya+uvNQ2GH2g67Hm44YnKk+ij9aFkj0jincbAps6mnObm561josbYWj5ajv9n8tqfVoLXquMbxVScoJ0pOjJwsOjl0Kv/UwOmM04/bZrTdO5N05vrZyWc7zoWdu3g+8PyZC74XTl70vNh6yf3Sscuul5uuOF9pbHdqP/q70+9HO5w7Gq+6XG3udOts6ZrUdaLbu/v0Nf9r56+HXL9yI/JG1834m7dvTb3Vc5t7+/mdnDuv7xbeHb636D7hftkDlQeVD3Ue1vzD4h8Hepx7jvf697Y/in107zHn8csnoief+0qe0p5WPtN/Vvfc/nlrf2B/54spL/pe5r8cHij9Q/WP6lfmr4786fNn+2DSYN9r4euRv1a80Xqz563j27ah6KGH73LfDb8v+6D1ofaj68cLnxI/PRue9Zn0eeMXiy8tX8O+3h/JHRnJZwvZ0qsABhuang7AX3sAoCUDQO+E9wcl2dtLKojsvShF4D9h2ftMKs4ANMBOcuVmnQLgIGxmENMWASC5esf5ANTBYazJRZTuYC+LRYUvGMKHkZE3ugCQWgD4IhwZGd4yMvJlFyR7B4BTM2VvPokQ4f1+u6MEdTNmLwI/yD8Bd0Rs573ioiIAAAAJcEhZcwAAFiUAABYlAUlSJPAAAAGcaVRYdFhNTDpjb20uYWRvYmUueG1wAAAAAAA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJYTVAgQ29yZSA1LjQuMCI+CiAgIDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+CiAgICAgIDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiCiAgICAgICAgICAgIHhtbG5zOmV4aWY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vZXhpZi8xLjAvI

Question 4

j4KICAgICAgICAgPGV4aWY6UGl4ZWxYRGltZW5zaW9uPjMzMDwvZXhpZjpQaXhlbFhEaW1lbnNpb24+CiAgICAgICAgIDxleGlmOlBpeGVsWURpbWVuc2lvbj43MDwvZXhpZjpQaXhlbFlEaW1lbnNpb24+CiAgICAgIDwvcmRmOkRlc2NyaXB0aW9uPgogICA8L3JkZjpSREY+CjwveDp4bXBtZXRhPgoc0SEOAAAAHGlET1QAAAACAAAAAAAAACMAAAAoAAAAIwAAACMAAAYNU8Lu4gAABdlJREFUeAHsnVtMFUcYx9cg94uADa2iUrViK4i0BVsT++DBQhNBa4VqL/SCrReSmprUt/piI32wgDbSWAtvhBdqTU0r+FJMbKw0AuH2UHjh9sALlwAh3L/uN8mQsxwOw56zR/cc/5Ns5ux+s3N2fvN9/zMzO4Q1pCcNCQRAAARAwC2BNRBKt2xgAAEQAAFBAEIJRwABEAABBQEIpQIQzCAAAiAAoYQPgAAIgICCAIRSAQhmEAABEIBQwgdAAARAQEEAQqkABDMIgAAIQCjhAyAAAiCgIAChVACCGQRAAAQglPABEAABEFAQgFAqAMEMAiAAAhBK+AAIgAAIKAhAKBWAYAYBEAABCCV8AARAAAQUBCCUCkAwgwAIgACEEj4AAiAAAgoCEEoFIJhBAARAAEIJHwABEAABBQEIpQIQzCAAAiAAoYQPgAAIgICCAIRSAQhmEAABEIBQwgdAAARAQEWA/wuj2TQxMUFrg4NWddy+/ZvZ6v2ifF3dXfq48CPamLhBcAgLD6WMzNep5PsSmpycNLRBsrr24zXDdZyAgL8SeBIaYKcY82hEOTMzo50tPuNWg7v+69IeNT4S9nv19zSHI8ttWX8z6CKoFX5SqN2587sWFBSk7d//lpaUtEUbHh7R7t9v0HQH0tLT07U//7irJSQkiOYFh6wVeWlpmXbuq3P+1mQ8Lwi4EPClBtgyxqz+Revv76fETRvFKOv8+a+trv6p1/fBhydE2w7lHqKBgQHD84yMjFDe4TxhdzgO0MLCgrBjRGnAhJMAJ+CtBtgxxjQr+2x4eJhefS1dCMWx/GM0Pz9vZfWm6oqMiqC0PbtN3aMqzFMBFr1dKa8QTz2WS6Ojo/TChudFOS7PCUK5HClca21tpdnZ2YAC4a0G2DXGLBNK7nA5muK1uvHx8UUHcGQ56OQXRdTV1UX5Bfm0LjZGiAcL2fWK64vlrPzgC6GUv3QVP1Ws+KgP/3lILS0tGFGuSOnZNupLUyIG9GUZysnJpqtXy6m3t9evoVihAXaNMcuEsrj4rOj4rdtedJmS8oiKR1k8JU9J3UWfff4pZevOwU7Ctpu/3LTcQXwhlFuSNovn7ezsNPW8GFGawvVMFOZlmb1vZC7GQFR0JEVEhtOmzYlUdLKIqqurqa+vz69YWKEBdo0xS4SyrLxMCEhcfKwYSS3tXSkUl767ZDDV1taK+/bte9Nw3ZOTqqoqcj7CI8KIoTtf4+/zJsl2TE1NmapG3oe33qawBXzhjo4O4t0S0j9kzgMInnVxnpKaQhcvfksNDX+57KawEyCrNEAysFuMeS2Ut279SiGhwaLD5Zrc0g7kxsesi6bp6WmDic9Z0Ha+nGy47smJBLxS7u33yLrt1ome8MI99iDgyDrgIpTSz2QeGhZCcfFxIlYyMjPoyg9XqKmpifQ3z7ZohJUaINtstxjzSigfNz3WOzBWdPRKoyVu/J70tGU7lafI3goYV8zrgs4HT2N2JL9kuNbc3LzsM6z2Ii8bcFt4Ed5Mkp0vGfG67O60VFFXdEwU5byTQ21tbWaqtLysfEbkq9sfbBdOvNPiaSarNcCuMeaxUJrZAsBO5WuhXOosvlijPHX6SyFuqpc5pWWlYi1WvqiSQcVCWa4v2vMomvPu7m5q/LeRcvNyKX59nMva7tI2+fJcPiNyewolT8XZpzl/O/sglek+Vl9f50uXUNbtCw2wa4x5JJRmtwAEilA++PuBEMrknTvcbg/ibUPbtm8V5WpqaoSzSfFhoTx95hRduPCNwQnHxsZE+Rs/3zBcx0lgE+jp6RHiJ/3DOZfCuP65eDp+4jhVVlYSvym3y3YiX2mAXWPMI6GU24BYENrb24k73N0xNDQkROBJjygz92bQ0feOWh5pBe8XiPbwhnNus3MaHBykI+8eEXZ+ozk3NyfMMgDk1Nv5Hv7M024uE6h/7rm0vTgnscc4S982x+uP3PfyrTePGrMOOuhyyWVi0ZA+ZDdmvtQAO8bY/wAAAP//8fd5nQAABEpJREFU7d29T1NRGAbwhyBaxJJYWLAEHRo1/fKjVSaVSYwOUokSMVHEQFUcdNH4McEAEROLmqjAplRKTYhff4AYXRTxiqJuDGVgIgEaCG040sY2Ia1yCmLwnqcJoT3nvbd9f2/vQ2EBYhG3VTnZQvaroeF8vHbbdmfaZ8pbt1Zs2bo57d5KXAyHw+LgoYPxntYYVouysn2i9sxpUeGpEOuMefF1l3unGBkZSb78hFXbnbbkWuJOKBQSDqdd7C7dJSKRSGKZ33UuoGla8hoqP7BftLQ0i743fWJmZua/6Dzxnpb5nmkGrMRrLCs2FWR4a2xqlD7C7XLhcMVh2Gw2fBrQUo6bCxcUFxfj+7cfKXsrdSEajSIQCKDL34UPH95jbGwMBoMBDrsDx6qq4K33Ijc3N/nyE17l5eUo3V2aXB8YGMCRSg9MJhOeP3sBs9mc3OMd/QsMDg7CarUiOzv7v2s28Z6WeeGLyYCVdo0tKihlcFjzZwFfmw/Xrl2Fx+PBg/sPYTQa/3wAdylAgYwE/uY1xqDMiH7pxbGflGfPedHb24vWm7dQW1u79JPyDBSgQFJgOa4xBmWS99/caW5pRtPcny5aW2/BbrfPe1LzBjMsFsu8NT6gAAUyE1iOa4xBmdkMllxdUGjC+Ph42vNcaLiA27d9afe4SAEKyAksxzXGoJSzZxUFKKCwAINS4eGzdQpQQE6AQSnnxCoKUEBhAQalwsNn6xSggJwAg1LOiVUUoIDCAgxKhYfP1ilAATkBBqWcE6soQAGFBRiUCg+frVOAAnICDEo5J1ZRgAIKCzAoFR4+W6cABeQEGJRyTqyiAAUUFmBQKjx8tk4BCsgJMCjlnFhFAQooLMCgVHj4bJ0CFJATYFDKObGKAhRQWIBBqfDw2ToFKCAnwKCUc2IVBSigsACDUuHhs3UKUEBOgEEp58QqClBAYQEGpcLDZ+sUoICcAINSzolVFKCAwgIMSoWHz9YpQAE5AQblL6fYv5C9d+8uXve9xssXr5CTkyMnyCoKUED3AsoHZf/HfrS3P0QgEIDb7cbo6CgKCwrh9z9BUVGR7t8AbJACFFhYQMmgnJycRHd3Nzo62zE8PIyaUzWoq6uHxWJBJBLBlSuX0RPsiYfl3j17F1ZkBQUooGsBpYJS0zR0dLSjy98Fh90Br/csKisrYTAYUoYc+4R5vuEcrl+/gUsXLyErKyulhgsUoIAaAroPyqmpKQSDwfiv11++fsGJ6hPxgHQ6nQtOeGhoCMeqjsJqtaGzoxP5+fkLHsMCClBAfwK6DcpYyMU+PT56/AglJSXxcKw+Xg2j0Zh2itFoFNpnDa6drnn7ExMTqKuvw+e5vWDPU9hstnn7fEABCiggIHR0m56eFn6/X5SV7RNr83LFqZqT4u27t2J2dva3XYZCIdHY1Cg2bioR23dsE+FwOKU2dryvzSdMBevj508p4AIFKKBrgZ9tiSeZW446tgAAAABJRU5ErkJggg== />
 
Question 5

Based on your background reading about the Wittig reaction, propose a synthesis of the phosphorane used in this experiment, starting with triphenylphosphine and whatever other commercially available reactants and reagents you choose.

Question 6

The Horner-Wadsworth-Emmons reaction is a commonly used variant of the Wittig reaction. What feature of this reaction, shown below, is particularly useful compared with the Wittig reaction? Hint: Consider the structure of the product(s).
 

Question 7

A researcher used column chromatography to separate two compounds. The desired compound, which was quite valuable, had an Rf approximately equal to 0.5. Two-mL fractions were collected, giving the TLC results shown below. Based on these results, explain what the researcher needs to do to maximize recovery of the desired compound, including the use of additional separations.



katara

  • Sr. Member
  • ****
  • Posts: 305
Answer to Question 1

Tetraoctylammonium bromide is just one of many possibilities.

Answer to Question 2



Answer to Question 3



Answer to Question 4

iVBORw0KGgoAAAANSUhEUgAAAhIAAAB4CAYAAACnzRuqAAAMFGlDQ1BJQ0MgUHJvZmlsZQAASImVVwdUk8kWnr+kEBJaIAJSQm+C9Co19C4dbIQkQCgBE4KKHVlUcC2oWMCGroIouhZAFht2ZRGw1wcqKsq6uIoNlTcpoOtr513O/PNx5947372ZmTMDgLItOz8/B1UBIFdQIIwJ8mMmJacwSb2ACEhAEf5NZHNE+b7R0eEAymj/d3l3EyCS/pq1JNa/jv9XUeXyRBwAkGiI07giTi7ERwDANTn5wgIACO1QbzSrIF+CByFWF0KCABBxCc6QYU0JTpPhCVKbuBgWxD4AkKlstjADACUJb2YhJwPGUZJwtBVw+QKIqyH24mSyuRDfh3hCbm4exMpkiM3TvouT8beYaWMx2eyMMSzLRSpkf74oP4c95/8sx/+W3Bzx6ByGsFEzhcExkpxh3Wqz88IkmApxqyAtMgpiNYgv8rlSewm+mykOjpfbD3BELFgzwAAABVy2fxjEOhAzxNnxvnJszxZKfaE9GskvCImT4zRhXow8PlooyIkMl8dZlskLGcVbeaKA2FGbdH5gCMRwpaFHijLjEmU80bOF/IRIiJUg7hRlx4bJfR8WZbIiR22E4hgJZ2OI36YLA2NkNphmrmg0L8yGw5bOBdcC5lOQGRcs88WSeKKk8FEOXJ5/gIwDxuUJ4uXcMLi6/GLkvqX5OdFye2wrLycoRlZn7KCoMHbUt7sALjBZHbBHWezQaPlc7/ILouNk3HAUhAMW8AdMIIYtDeSBLMDvGGgagP/JRgIBGwhBBuABa7lm1CNROiKA31hQBP6AiAdEY35+0lEeKIT6L2Na2dcapEtHC6Ue2eApxLm4Nu6Fe+Dh8OsDmz3uiruN+jGVR2clBhD9icHEQKLFGA8OZJ0DmxDw/40uDPY8mJ2Ei2A0h2/xCE8JXYRHhBuEHsIdkACeSKPIrWbwi4U/MGeCCNADowXKs0v7PjvcFLJ2wv1wT8gfcscZuDawxh1hJr64N8zNCWq/Zyge4/atlj/OJ2H9fT5yvZKlkpOcRdrYL8Mas/oxCuu7GnFhH/ajJbYMO4xdwE5jl7BWrAkwsZNYM9aOHZfgsZXwRLoSRmeLkXLLhnH4oza29bb9tp9/mJstn19SL1EBb3aBZDOw8vLnCPkZmQVMX3ga85ghAo7NBKa9rZ0LAJKzXXZ0vGFIz2yEcfmbrlgZgEkfR0ZGWr/pwk0AOFIKAOXpN515DdyuiwG4WM4RCwtlOslxDAiAApThrtACesAImMN87IEz8AA+IACEgigQB5LBdFjxTJALOc8C88BiUArKwWqwHmwG28BOUAv2g0OgCbSC0+A8uAI6wQ1wD66LPvASDIJ3YBhBEBJCQ+iIFqKPmCBWiD3iinghAUg4EoMkI6lIBiJAxMg8ZAlSjlQgm5EdSB3yK3IMOY1cQrqQO0gv0o/8hXxCMZSKqqO6qCk6EXVFfdEwNA6dhmagM9EitARdiW5Ea9B9aCN6Gr2C3kB70JfoEAYwRYyBGWDWmCvGwqKwFCwdE2ILsDKsEqvBGrAW+Dtfw3qwAewjTsTpOBO3hmszGI/HOfhMfAG+At+M1+KN+Fn8Gt6LD+JfCTSCDsGK4E4IISQRMgizCKWESsJuwlHCObhv+gjviEQig2hGdIH7MpmYRZxLXEHcQjxAPEXsIj4mDpFIJC2SFcmTFEVikwpIpaRNpH2kk6RuUh/pA1mRrE+2JweSU8gCcjG5kryXfILcTX5GHlZQUTBRcFeIUuAqzFFYpbBLoUXhqkKfwjBFlWJG8aTEUbIoiykbKQ2Uc5T7lDeKioqGim6KkxX5iosUNyoeVLyo2Kv4kapGtaSyqFOpYupK6h7qKeod6hsajWZK86Gl0ApoK2l1tDO0h7QPSnQlG6UQJa7SQqUqpUalbqVXygrKJsq+ytOVi5QrlQ8rX1UeUFFQMVVhqbBVFqhUqRxTuaUypEpXtVONUs1VXaG6V/WS6nM1kpqpWoAaV61EbafaGbXHdIxuRGfROfQl9F30c/Q+daK6mXqIepZ6ufp+9Q71QQ01DUeNBI3ZGlUaxzV6GBjDlBHCyGGsYhxi3GR8Gqc7znccb9zycQ3juse91xyv6aPJ0yzTPKB5Q/OTFlMrQCtba41Wk9YDbVzbUnuy9iztrdrntAfGq4/3GM8ZXzb+0Pi7OqiOpU6MzlydnTrtOkO6erpBuvm6m3TP6A7oMfR89LL01umd0OvXp+t76fP11+mf1H/B1GD6MnOYG5lnmYMGOgbBBmKDHQYdBsOGZobxhsWGBwwfGFGMXI3SjdYZtRkNGusbRxjPM643vmuiYOJqkmmyweSCyXtTM9NE06WmTabPzTTNQsyKzOrN7pvTzL3NZ5rXmF+3IFq4WmRbbLHotEQtnSwzLassr1qhVs5WfKstVl0TCBPcJggm1Ey4ZU219rUutK637rVh2ITbFNs02byaaDwxZeKaiRcmfrV1ss2x3WV7z07NLtSu2K7F7i97S3uOfZX9dQeaQ6DDQodmh9eOVo48x62Ot53oThFOS53anL44uzgLnRuc+12MXVJdql1uuaq7RruucL3oRnDzc1vo1ur20d3ZvcD9kPufHtYe2R57PZ5PMpvEm7Rr0mNPQ0+25w7PHi+mV6rXdq8ebwNvtneN9yMfIx+uz26fZ74Wvlm++3xf+dn6Cf2O+r1nubPms075Y/5B/mX+HQFqAfEBmwMeBhoGZgTWBw4GOQXNDToVTAgOC14TfCtEN4QTUhcyGOoSOj/0bBg1LDZsc9ijcMtwYXhLBBoRGrE24n6kSaQgsikKRIVErY16EG0WPTP6t8nEydGTqyY/jbGLmRdzIZYeOyN2b+y7OL+4VXH34s3jxfFtCcoJUxPqEt4n+idWJPYkTUyan3QlWTuZn9ycQkpJSNmdMjQlYMr6KX1TnaaWTr05zWza7GmXpmtPz5l+fIbyDPaMw6mE1MTUvamf2VHsGvZQWkhaddogh8XZwHnJ9eGu4/bzPHkVvGfpnukV6c8zPDPWZvRnemdWZg7wWfzN/NdZwVnbst5nR2XvyR7JScw5kEvOTc09JlATZAvO5unlzc7ryrfKL83vmek+c/3MQWGYcLcIEU0TNReow2tOu9hc/JO4t9CrsKrww6yEWYdnq84WzG6fYzln+ZxnRYFFv8zF53Lmts0zmLd4Xu983/k7FiAL0ha0LTRaWLKwb1HQotrFlMXZi38vti2uKH67JHFJS4luyaKSxz8F/VRfqlQqLL211GPptmX4Mv6yjuUOyzct/1rGLbtcblteWf55BWfF5Z/tft7488jK9JUdq5xXbV1NXC1YfXON95raCtWKoorHayPWNq5jritb93b9jPWXKh0rt22gbBBv6NkYvrF5k/Gm1Zs+b87cfKPKr+pAtU718ur3W7hburf6bG3YprutfNun7fztt3cE7WisMa2p3EncWbjz6a6EXRd+cf2lbrf27vLdX/YI9vTUxtSerXOpq9urs3dVPVovru/fN3Vf537//c0N1g07DjAOlB8EB8UHX/ya+uvNQ2GH2g67Hm44YnKk+ij9aFkj0jincbAps6mnObm561josbYWj5ajv9n8tqfVoLXquMbxVScoJ0pOjJwsOjl0Kv/UwOmM04/bZrTdO5N05vrZyWc7zoWdu3g+8PyZC74XTl70vNh6yf3Sscuul5uuOF9pbHdqP/q70+9HO5w7Gq+6XG3udOts6ZrUdaLbu/v0Nf9r56+HXL9yI/JG1834m7dvTb3Vc5t7+/mdnDuv7xbeHb636D7hftkDlQeVD3Ue1vzD4h8Hepx7jvf697Y/in107zHn8csnoief+0qe0p5WPtN/Vvfc/nlrf2B/54spL/pe5r8cHij9Q/WP6lfmr4786fNn+2DSYN9r4euRv1a80Xqz563j27ah6KGH73LfDb8v+6D1ofaj68cLnxI/PRue9Zn0eeMXiy8tX8O+3h/JHRnJZwvZ0qsABhuang7AX3sAoCUDQO+E9wcl2dtLKojsvShF4D9h2ftMKs4ANMBOcuVmnQLgIGxmENMWASC5esf5ANTBYazJRZTuYC+LRYUvGMKHkZE3ugCQWgD4IhwZGd4yMvJlFyR7B4BTM2VvPokQ4f1+u6MEdTNmLwI/yD8Bd0Rs573ioiIAAAAJcEhZcwAAFiUAABYlAUlSJPAAAAGdaVRYdFhNTDpjb20uYWRvYmUueG1wAAAAAAA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJYTVAgQ29yZSA1LjQuMCI+CiAgIDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+CiAgICAgIDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiCiAgICAgICAgICAgIHhtbG5zOmV4aWY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vZXhpZi8xLjAvIj4KICAgICAgICAgPGV4aWY6UGl4ZWxYRGltZW5zaW9uPjUzMDwvZXhpZjpQaXhlbFhEaW1lbnNpb24+CiAgICAgICAgIDxleGlmOlBpeGVsWURpbWVuc2lvbj4xMjA8L2V4aWY6UGl4ZWxZRGltZW5zaW9uPgogICAgICA8L3JkZjpEZXNjcmlwdGlvbj4KICAgPC9yZGY6UkRGPgo8L3g6eG1wbWV0YT4Kgk3/8AAAABxpRE9UAAAAAgAAAAAAAAA8AAAAKAAAADwAAAA8AAAN0uZA3zcAAA2eSURBVHgB7J15kBXFHccbl0vWA/Dg9OJYUBCTKKAVowgpxSgEjAp4gIoJKKClEhUNKikFTZXxIEYOi3CU5R8iGIgxWqAkUVMaA8LCLljIoVxquEFFxc78utKvZt7O252Z1++9AT9TtTUzPb/+dffn12/mOz09s/W0tygWCEAAAhCAAAQgkIBAPYREAmpkgQAEIAABCEDAEEBI0BEgAAEIQAACEEhMACGRGB0ZIQABCEAAAhBASNAHIAABCEAAAhBITAAhkRgdGSEAAQhAAAIQQEjQByAAAQhAAAIQSEwAIZEYHRkhAAEIQAACEEBI0AcgAAEIQAACEEhMACGRGB0ZIQABCEAAAhBASNAHIAABCEAAAhBITAAhkRgdGSEAAQhAAAIQQEjQByAAAQhAAAIQSEwAIZEYHRkhAAEIQAACEEBI0AcgAAEIQAACEEhMACGRGB0ZIQABCEAAAhBASNAHIAABCEDgkCPQoGF9U+ddO3er8vLy0PqPHj1KTZ02VT322O/UnXfcGWpDYv4EEBL5M8QDBCAAAQgUmQBCosjAaykOIVELHA5BAAIQgEA6CSAk0hMXhER6YkFNIAABCEAgIgGERERQRTBDSBQBMkVAAAIQgIBbAggJtzzz8YaQyIceeSEAAQhAoCQErJAYOWKkatCgQWgdlvx9iaqsrGSyZSgdd4kICXcs8QQBCEAAAkUiYIVElOJ4ayMKpeQ2CInk7MgJAQhAAAIlImCFxNYt23K+/nnnXXeo5557jhGJAscIIVFgwLiHAAQgAAH3BKyQ4DsS7tnG9YiQiEsMewhAAAIQKDkBhETJQ5CpAEIig4INCEAAAhA4VAggJNITKYREemJBTSAAAQhAICIBhEREUEUwQ0gUATJFQAACEICAWwIICbc88/GGkMiHHnkhAAEIQKAkBObOnWvKHThwoCorKwutw9KlS9W6detUt27dVEVFRagNifkTQEjkzxAPEIAABCAAge8tAYTE9zb0NBwCEIDA4UWgurpa7dm7R/Xs0fPwaljKW4OQSHmAqB4EIAABCEQjMOnRSerDD9eoP82YGS0DVk4IICScYMQJBCAAAQiUmgBCojQRQEiUhjulQgACEICAYwIICcdAI7pDSEQEhRkEIAABCKSbAEKiNPFBSJSGO6VCAAIQgIBjAggJx0AjukNIRASFGQQgAAEIpJsAQqI08UFIlIY7pUIAAhCAgGMCCAnHQCO6Q0hEBIUZBCAAAQikmwBCojTxQUiUhjulQgACEICAYwIICcdAI7pDSEQEhRkEIAABCKSbAEKiNPFBSJSGO6VCAAIQgIBjAggJx0AjukNIRASFGQQgAIE0ELD/PjusLm3btlU9vP8zMXbsWNX9nO7GROy7dOmiPli2PCxL5LS45UZ27NCw1EIiLqMk9i5i6RC5cYWQcE0UfxCAAAQKSMBefIYNG6bq168fKKm6qlq98693VMOGDdXCBQtV7959lNi7uPjELTdQsSLtpEVIxImNoIlj7yKWzsOhWSAAAQhA4JAhUL9BmZa/ffv2hdb5kYmPmOM9e/Ywx8X2rB90C7WNkxi33Di+XdlOnDRR33DjMFfuYvuJyyiJvYtYxm5YHRkYkXAuzXAIAQhAoHAE7MjArp27VXl5eY2C9u/fr5o2O1YdccQRaueOXerYpsdkRiRktGLRokXqwFdfeWld1YABA1STJk1q+AhLiFtuVL9hZSVNS8uIRJzYSFvj2NsRiXximZRvrnwIiVxkSIcABCCQQgJ1XdB37dqlTjjxeNWoUSO1/b871FFHl6tOnTqprl3PVC+9NDfQojZt2qjX/va6OR44ELITt1wpv9hL2oVEWGyEUS4hEWbvIpbO41LHiAWHIQABCEAgRQRqGw7/4osv9MhbRphHG/369zO1tvbdzjpTL1y4QG/fvl2vXr1aX/GLK4zddddfG6l11k/YI5WwciM5dWyU5kcbYYziMrX2+cbSMXbNiIRzaYZDCEAAAoUjYEcGLrmkryorK8sU5F2oVGXlCuUJBdW8eXP1z3+8pSoqKsxkS3nMUV21WrVr1y5jv23bNnXKqSerzp07q+UfrMik59qIW674keH3nt5bJP565vLvIj0tIxJxYiPtjmPvIpYuWPt9ICT8NNiGAAQgkHIC9oLesmVLVa9evUxtZbtDh47ehbuHGj16jGrdurU5JvYiKFatrMrY2g157CGvjK6uXmOSnvnjM+rJJ59QGzZsMOlDrx+qxo9/wLwdErfcTZs2qYpOHdX6dRtUixYtbJEFXRdLSHz00UdGlPn5S8PiMkpi7yKWzoPgeogDfxCAAAQgUDgCdng77BFDWKlin2umf/lRTXSnzhUm29RpU/WRTRrrpyc/rdevX6+9+RT6xBYn6Lvv/rU5Hrfc8eN/oy/vd3lYlQqWVqxHG6e1O9U8JspuSFxGSexdxDK73vnuMyLhXJrhEAIQgEDhCNi72FwT9LJLFns70z/7mH9EYsKEh9Q333yjHn74kYzZmDGj1eI3FquqVdWZu+0o5X7lvRXiXWzVtKnTVL9+/TP+9u7dqyZNmqgmTpyUSXO5UawRifvvv0+tqKw03+rw1z9JbCR/FKZi5yqW4svpkq8SIT8EIAABCBSPQKHuYrNbsGbNGt2xooO+7bYx5lCccmfPnq1PPuUk7QmTgNunnn5KX3zJxYE0lzuFGJF479/v6SlTpwSquXHjRt34yEZa1v4lDiPJl8Q+yoiEv06ynR3L7OP57qt8HZC/OAReffWvWmZXt27TynQ+6cTndD9byw9HZgOzQAAC3w8Chb74bN68WXfo2F43bNRA/+jsH+odO3YYsHHKPffcnvqhhx4MBOTbb7/V3pwJPXfui4H07777Th88eDCQlnSnEELi/f+8r5s1b6q973MEqnXlVVfWaGMcRuIsiX0cIZErloGGONgpiJAYN+5efUaX0/WePXtMFS2s7PVxxzfXF154gX7xxWDHErubht+YV/Oyy/Lvn3raKfrqQVdrUZp2ufa6a/RFF/XS3pCcTYq09vvN3vaGDfWZ3brqBx98QB84cCDjT+xydYaM0f83pPPa17QaNW6o+/y0j2EzYOAA7X10xnREERSffvqpyWHrIMr/cFpsu2p7Ljxq1K2Gx+O/f/xwajptgUCAQJTfgj9Dbecb/xwJm0duTKqqqvRbb79lzjedT++kd+7cGfmiJ8Jg7Ni79JYtW6xLs5ZXT+VG6Ouvvw6kz5v3kh40eFAgLenOCy+8oB997NGk2U2+L7/8skb+7j3O0TNnzgykL1nypj7p5LaBUZcksZE8tZ3X/IW6iqXfp4tt50JCAil3y6Li7CKNl4veiJG/CvwNHjJIH3Ps0aaDzpgxw5qbfVdCYvjNNwXKlDpccMFPTBlNyo/UixcvMuWK6GnX/jTzDnamIhE2bMe5+ZfDa5Qj73Hb9olwsUttncHa2PWQawabul52+WXamwVtk81aftxShvjr3fsiLT9gWx+ERAAVOxAIJeC9nqi958568h8m6xUrVoTapC1RbrzkT+7woyxi+/rrr4WaykVcRjtzLVu3bjXnFHlUEbfcbJ8i9GUCZvbSq9eFetr0adnJJduXm7WXX54fKF8mop5//o8DaXK+lWuY/7wcl1ESexexDDTEwY5TISHPi2QI6PbbbwtUTS5u7Tu0C6TZnXffe9fMFJbnaXYRe1dCIpfSy/4evZQts5TlpDJ//jxblTrX9sKdayRj7dq1honYrVy50viT7SgjEvIDF1sZ3cnVDu/LZ7plqxbGztpLnlIJCRmFidK2OsFmGUib5C8XBzFnRCILGrt1EpATufQrufmREb82bVvrIUMG6zlz5uiPP/64zvyHk8Ett4zU/hs6advnn39u+GTfjSdpt4x0ZJ8n5ZzofcI7M3pt/a733hrx87e//7C1nHPkA03eZNHAaIfYJjkXPTvlWd330r62KmYtN5rNj2umvW9vBNLTulPoWGa326mQuOrqq7QMlUnn8y8S0FxCQuzOO+9c01k/+eQTk03sRUjIENOsWbP0PffcbV5JihNE2+FyXXgkXWzkOaD/2Zc825ORCW92sb8JObdtOdk/EH8GUa1iJ22RRbZtB3/7nbf1hN9O0PfdN04///zzgbrY0Qjv3W6/uxrbcle1bNmyVIxIICRqhIeElBMYNfpWLf3W/pZlbfdbtW6ph90wVL/yyl9qFbEpb2Kk6l0/9Dot7ZWbO1nk0UT/n/fXbU9qU+OcHslhBCMpY8GCP9ewlMe5Tzz5RCbdxkZiIdcG/59c9G285JxpF/951qZlr2USoohG/7J7924jbrxvafiTa4idwMGU7RQ7ls6EhHxyVRS9P5CWrQS0NiEhz/jF5rPPPjNZZPvSn12qu3Q9I/DjljkVtpNb37nW4kP+cgkJ+8xPhI9fBMjsXBmVmD59ei7XgXRbjt+H30BmLYtaFrs333zDHJJtaZs8F7T57dr70pz5fK0YyiiNpK9atcrvstZt64cRiVoxcRACGQJyLpDvJ9jfTvZabjaaNmtqbjrkBuBebw6YPBLNfiMh4/AQ3ZBzpVyA5Jwoj2TlfN67T2+9fPnyorZIJl7KJE/5lLddbExynWfl+iMjG2JXXV1tssm2vWGzfrLXMiJy/AnH1bhxlJuzQ3kSe7Fj+T8AAAD///CSuloAABV0SURBVO2dB3wVxb7H/yABSei9JrRgIBQB6RcUJNJFMCFcMSB6lSQELsUGPEXhWiihqPikygXE54eilASvooaiF5DQcukEEUQFqUoRVObNf96bdffknMM5OZvkHM5vPp9kZ6fPd/bs/nZ2SiEhDdlgxo0bS9NSp9Gy996n2NhYS4ohRYtQREQEHT2SbXHnkxUrVtBfHxlATZo0ocwdO5U/h2fTv39/Gjd2PFWoUIGWLF1CY8c+Tw8+2IdWrlip/N3902lcvHCJwsLCLEGvXbtGo8eMovnz51P37j1ozeo1hv+ZM2eoRs3q1KplK9qy5UvD3ZVF58NhQ4qEWIKdPHmCZr/9Nn3xxeeqftu2bqciRYqQjtOwYUN65R+vULt27emnn36icePH0Zo1q2nAgAG0ZPFSI9zlX65QsWLFLGm7OtFpp6ZOpxHDR7gKZpv7hx+usqQ18NGBVKVKFUqdlmq4lyhRgmJiHjDOc2PR9UocmkghIVbOOr2MjRmUlZVFkydPodGjRmvngDnqOgZMgYO0oHfccYf6PV69epXY3qFDR/r0k09vGxqXL1+mEydOULly5dRv2R8qpn8b7u6F8QPiadWqlbRg/kIaNGiQun9GR0fT7l17aO/evfTphk/p119/pcaNGqn7vr6PTJjwIiUnD6PKlSv7Q1VtLUN+tWUhu4RE+/bt6OsdX9ORw0eVaDDT4IugePHi1KlTZ7MzHTuWTQcPHlQPhrR1aYY/h69duzbt+89+y0OjYXQDFX//vgOWdJyd6Auva9du6seuw/CPPytrL507d079UDZv2kL169fX3uoYWb8enTp1in784TSVKlXK4ud4ovNxdNfnLBx69OhJc+fMpfLlyytnjlO4cGE6sP8g1alTRwelH3/8kSJqhVNUVBTt2b03IIRE0WLOH+pGpaSlbt26qq5mN2/tt+JsTg9CwkwD9rwgwOKYb9La/Hbjd23FMQ8I6N+/KyHB78P3tGyhBMP69PXUpUuMun82aNCAWrduTYsWLbKUiu+7H6//l3rOWDxwkjsCLCTsMKXLlBL89/vvv+dIrkjIHaLYnUVFzfAalr+7mzUVT/ztcZGZmWmJw+ETBj1qceOTzvd3FnXr1THc35r9lqgXWVdw+Fq1I8SLL74gfvvtN+XPbvwnexcseYZH1FTpyN4NIcWCkZbZ0qNnDyEvXCGFkXL2JB8OM2fuHPU3bFiyKFEyTFSrXlVs/3q7OWll53JJUZTDnR3CSoSKu6LqK7/oRg1VHfbs2eM0rDNHXe9Zb8xy5m27m3wDEOa/4qF3itp1alncPvnkXz7nq+sle26EFINO/xKThipeqdNTVX7cJo2bNFJuJUuVEF27dRXyzcTnsiCB24vApUuXBF+3+hpzPEqxLMqWKyP4WLFSBdE/vr9Yvny5+OGHH24vEH5cG90mhw4dEsePH7f8bdy0UTwc+7Bqv6gGd4nr16+rmug4/MxYvHixyM7OFlu3bRVdYrqosEMef8yPaxxYRSO7issPXv6xOTPcoGYB4CyM2Y3DP/7EELOTspuFBD+0+cf/xptviG+++UasXLlCVKpcUTz77DMqrL6I5FtDjnRu5fBQ34eUkOAL1NN8ZJeZJdmMjC9EaFhxUbVaFbEjc4fFj8vW9O4mFjd9YhYSTw19Ul3ws9+erb2dHvnByaKDH5y63vklJBwLxALKVd0cw3pzruvlrj1ZwHE45jFj5gx1ffDxyJEjYtv2baJX716iXPmy4rvvvvMma4S9zQmMGjVSCX99jfGRf4d8rFylkoiXwoHvA7L3VNy8efM2p+Gf1TO3jSt7hw5/ESdPnjQqwOH4ubRv3z7DjS3ys41y5xdZGHsI2CYkuDeC3/q0GjQXjxvUbiHx0ksTxPjx48zZiJSUYaJBwyjlpi82dw8eS2TTScwDMUaPhKf5OAoJTo4FAJeDe0vOnj1r5MBurh62ZiGxectmFb/+XZHCVT3YvU7d2ircsmXL1JHTD3YhMTTxKfHMM08bzNny888/Kz7vzHnH4o6T4CWQlpamrok7ixcT/FelamXRv3+ckF3h6gUFwsE/rg19P+de55cnvqz+uBeCe4mq16gmvvzqyxwF5Th873RmzPdZZ/5w846AbUKiXbu26uF79OjRHCXgBrVbSDhmwl1ecmyDGDFiuPLSF56rB7BjfPM5P/i5t4O7PB2Nq3ycCQmO2+ehPupG9diQwUZSXDZPhARHiJM3NQ7fs1dP1Z1nJCItckyFkX6r1i3VZyVd72AXEmZO2s6fNZiPHCCqnXAMcgI7d2YK7g6fO2+uEg5BjsNvq6/va473Wf7ExL0OfO93fPZwHE/vs35b8QApmG1CgscccIPyW7Gj4QbNKyHB4xx4nAQr0+Ytmonz58+r7PWF562Q4G5vroccPGqpxq3ycbzAdeTvv/9efVfl8vBYAjbeXOBXrlwRPGaD4/A4k/vuu1d99uHPL/wZgd1b3NPcGO/B5/xXUEJC19vuo66Xu/Y0f9pwzJ/blcdLsODS42gcw+AcBEDAPwno37+z+yz3ULB/o8bRgu+X2rAbhISmkbdH24QEfz/kB11sXGyOEnOD5pWQ4IF3+/fvF1u+3CLu73K/eru4cOGCurA4X3cPnhwFlQ5vvvWmEhLz5s2zeN8qH2cXuE5g6dKlqjw82PT06dPK7s0Fzg8+TqN7j+6GKGER0bZtGzUWgMumDdeZ/yAkNBEhdu7cqT4vsdDE+Ig/ucAGAoFCQN/XnN1n+f7YsWMHdd977rlnjSpxHG/us0ZEWLwmYNv0T54z8sjAv8p1ENaoqX41a9Y0ppHwWhFhYaFq7q7h6MbC4SNqRVDLe1paQsnBj3T1yhWX6fD0SfmwpoUL3lXTTTly3759LdM/LQk6nMjvoSTf7kl+SyeeYupq7QZn+fTr109N6XRI0jhdu3YNXb9+g5o1a0a7du2i0qVLOV1bgddl4Kmy3bp1N+J6Y2F2bJo2bUqRkZHeRPXrsLpe7tpTCgY5pfiYWrNDT+mdOWsm8RonHO+d/55DJUuW9Ot6onAgAAI5CcheYuXoavrngQMHqHWbVmqdiIyMjdSubTvLOhKOKcoXMapRowYdPHDI0QvnuSHgtfRwE+Hbb79VMzeSk5PchLLHKykpUSxcuNCSGE8NZBXKA6VyYz744APVG2H+hp4X+eSmbIjjHQF+S+GpxTxLY8GCBd5FRmgQAAG/IuCuR0IXdPKUyer+zzPYuJcWPRKaTN4fbe2RYCEjH+40LCVZrQrZonmL3Ggbj+IMGpxAGzZsoI8+Wq1WoZRzuikxKZHk4CnatXO3Wg3To4T+P9Avv/xCcjqQXKWuAy16959GVLvzMRKGJU8JvPb6azRp0kSaOnUaNZIr2ZlN9WrVqV69emYn2EEABPyEgJzOT4sX/5N69e5N+hkyUf6W2YwfN95lD/Mff/xBU6dNpRs3blDvXr1p7bq1VKlSJeLVcB3Nq6+9qhYbTBmWoryk8KDt27epVUp5tVIYLwnkhVZ5+ukxgufomge+2J0Pj33gRat4Gk+p0iXV+AxeZ8KbxZvMZfrbk0+ITp3uyzGmwu58zHnCnncEuCdCv8U4HkeO/HveZYyUQQAEvCbAa728Pvl1cffdTdXvtkLF8iI9Pc3rdHIb4bPPNqjeaF6LKGV4iti0eZOQwiS3yQVdPNt7JLzUMT4Hlw/6fFkXPr/y8RkIEgABEACBACAgp9LTSrk3hlxMUC1tzUUuVKgQJSUm0UsvvUxly5bN11pkyt7sp5560ihL1apVKfbhWIqNi6M2rdu4HQOXrwX1w8wCXkj4IVMUCQRAAARAwAkBucqkEg9yKjyx3Wzay80LZ816Qw0UN7t7Y5cz+OjipYtqsKU38XRYucUDyRlvUshMUAM3tTsPzGRRESc3kuRJACx4YP4kACHxJwvYQAAEQAAEbCQg+/jVjrwsHLj3gTdpdDS8W/CUyVPVrse+PqB5bNThw4fo3YWLHLPx6pxnfyUPSyb5ySNHPN7JOi42TvVUNG/WHKJCEoKQyHGZwAEEQAAEQCC3BFg88BR3LR7kipNOk+JBjSP/PpLGj/8v26Zl2yUkuMBcj/fff59Gjxmldot2VgneRZRFRVxcfzXt3Fch5CyPgHALulEhqDAIgAAIBBgBxwHD5nNe0p93JDXvNMz+rhZj8qbq5nzM9vIVyol77+2odkE1p8dTMHm5anNYZ3beiVeu/WCOaotdzsYQ5u0I7EiUlxXgNJ3Vw+zGOzrz5oBms27dWjHw0UfUTtAclvdzkdudi1defSXHwH6dViAuJogeiYCQeygkCIBAMBPQCzINHjyYihT5v8WZNI8D+w/QV//+iooWLUpr16ylzp3vd7sYk47nyZHzLVGiBMXHx1uCy32IKD09nXja5Nw582jIkCHKXz4g1fgCS2DTSXh4OKVOS6U+fR7Kk08CdvZImIqtrPyZIyk5iXh6qjNTsWJFOnL4qFx8MYx4OYGEQQmUlrZOLWzYseO9FB5eky5cuEiff/4ZXbx4UfVgrFubRjyok41u49TU6TRi+AhnWfivm1k9wQ4CIAACIOB/BPTbKk9Hd2b4DZfDtG7dSnmz3a4eCVfbG/DbN29uGB5R0ygS73XE0/F1efUxNKy44J2U83JJAC5EXvRIGJWTFi4/7yvFezvpuulj6vRUIyhvFcHuffv1FXKNI8OdLbwZJO9cyv68tLeeZqrTCcQeCdv22rCQwgkIgAAIgIBtBPRDxpWQYHcOww84ftixXQsJ3mKbN7aSS8WL9957z6uHOafjSkhw5Xi/Hw5z8uRJo65jxoxWbuzOf7zBYHZ2tuGfl5a8FhK67HIMiBJtuo5Vq1UxPlWsWbPa4G/eB0nH5aPssRA1alZX4T7+eL3y0mlBSJhJwQ4CIAACIGALAf2QcSUk9EaFvEAfb2zF4Xmp6PgB8cqu4/Mxola44E0WPTEc3p2Q4O/9HObMmTNGcvwGzj0QvD37+vXphnt+WPJLSHBd5FRRIffyUT0w5t4IHq/CTObMneO2yixGzFufcxz+g5Bwiw2eIAACIAACuSGgHzLOhAS/9SYmDVUPod4P9lbJ6/BNmjYWcsNAce7cOSUe+j3cT4V7NGGgR8XgdFwJieXLl6u0eFddRyPHEyhB4+ie1+f5KSR0XY4fP270RrBb9RrVFJfDhw/rIB4ddZsFopDAYEv/Hb6CkoEACICAIqAH4nXt2s2y1wQPdszK2qumJ5YrV442b9pCvPMthy9cuLDaiZmnKGrDOxfLHgmKioqiPbv3ameXR06HdyPu1KmzJcyxY9lqTYiQkBBKW5eWw98SOB9P8nKwpafV0G115fJVNQDW23iBONgSQsLTVkY4EAABECggAvrhxIs3mdcqYHu9epHUulUrSkkZTtWqVVMl5PAsKPb9Z3+OEpu30J799myaOXMGybdqta32oIRB9MILLxozQzgdXu+BN78ym/Lly1OLFi0oOWkYNW/e3OxVoHZ/EBJyiifxBmKXLv5MoaGhHvPQbQwh4TEyBAQBEAABEPCUgH7IXLxwSU0vvFU8Dh8dHU27d+3JEVQLidGjx5DcwI4mT56idsvknZN5euNjgx9TbhyR0+GVHI8eyc6Rjj86+IOQ4F2kefnvbVu3uxVZciyL6rHgniM2uo0DUUhg1oZHX68QCARAAAQKjoD+fu5sjISzUnF4PWvD0Z8HZN4VVV9Nxxw/fpzFOyVlmGjQMMpwczdGwgjkR5aCGCPhWP0RI4arMRJTpk5x9LKc80wa3qV40j8mKXfdxhgj4Y8SFWUCARAAgQAnoN9W7eyROHjgkIWKHBxIvXr3pO7duqvNs9gTPRIWRB6dZGVlkZzNQpUrV6ZdO3cTfwZyNHLwKzVqHE1nz55Vi4h1k8x1G6NHwqK3cAICIAACIGAHAf22amePhC7XqVOnRL3IumoNCp6BcV4uKqUNeiQ0Ce+Ow4enGDNaMjZmiJs3bxoJZGZmilatWyr/Xr17GX66jdEj4Si7cA4CIAACIOAzAf22mhc9EteuXVODLc9fOE8TJkygU6e+o39/tZXKlCmDHolctpwUDiQ/cZBcS0KlwINk69SuQ8xY74Daq1dvWrJ4iVqCnAPpNg7EHgnM2sjlhYJoIAACIJBfBFasWKGy6tu3r2X6p6v8OXzp0qUoJuaBHEE+/HCVmtLJ3emOhqeH1gyvQQsXvEsJCQnE6YSFhVL37j0cg/rluT8MtjSD2ZG5g/5H7iC6Y8cOunDxAhW/szhFN4qm/nK3UJ7Kaza6jZs2bUqRkZFmL7+3Q0j4fROhgCAAAiBgP4FkOUOjZctWxoZbnAN/s5fLPdP8eQuINwgLNONvQiLQ+OW2vBASuSWHeCAAAiAQwAQGDU6gDRs20EcfraZWUlDIpa0pMSmReBooDxKsUKFCwNUOQqJgmgxComC4I1cQAAEQKFACcnMvuW5EIq1atUp9Lrl+/Tq1b/8XmjF9htriukALl8vMISRyCc7HaBASPgJEdBAAARAIZAJyJgidOHGCeIltHhQYyCYj4ws6ffoMxcfHB3I1Aq7sEBIB12QoMAiAAAiAAAj4DwEICf9pC5QEBEAABEDAQwJ6uqS7KbFypU41BZOXAR89arSHKSOYtwQgJLwlhvAgAAIgAAIFTgBCosCbwCgAhISBAhYQAAEQAIFAIQAh4T8tBSHhP22BkoAACIAACHhIAELCQ1D5EAxCIh8gIwsQAAEQAAF7CUBI2MvTl9QgJHyhh7ggAAIgAAIFQkALieefe17uU1HUaRnWp6cTL1ONwZZO8djmCCFhG0okBAIgAAIgkF8EtJDwJD8ICU8o5T4MhETu2SEmCIAACIBAARHQQmLvniwKDQ11WooXJ7xAy5YtQ4+EUzr2OUJI2McSKYEACIAACOQTAS0ksI5EPgF3kw2EhBs48AIBEAABEPBPAhAS/tMuEBL+0xYoCQiAAAiAgIcEICQ8BJUPwSAk8gEysgABEAABELCXAISEvTx9SQ1Cwhd6iAsCIAACIFAgBCAkCgS700whJJxigSMIgAAIgIA/E5g4aaIq3tjnx1JISIjToqanp8l1JDIpJiaG2rZp6zQMHH0nACHhO0OkAAIgAAIgAAJBSwBCImibHhUHARAAARAAAd8JQEj4zhApgAAIgAAIgEDQEoCQCNqmR8VBAARAAARAwHcCEBK+M0QKIAACIAACIBC0BCAkgrbpUXEQAAEQAAEQ8J0AhITvDJECCIAACIAACAQtAQiJoG16VBwEQAAEQAAEfCcAIeE7Q6QAAiAAAiAAAkFLAEIiaJseFQcBEAABEAAB3wlASPjOECmAAAiAAAiAQNAS+F8XYC4ziuSlZgAAAABJRU5ErkJggg== />
Answer to Question 5

One example is shown below.

Answer to Question 6

The phosphorus-containing product is water soluble, allowing for the separation of the alkene from the reaction mixture by a simple aqueous extraction.

Answer to Question 7



Answer to Question 8

First combine fractions 6-10 and then evaporate off the solvent to isolate the compound. Combine fractions 3-5, evaporate off the solvent and add this mixture to a new column. In addition, one could collect smaller fractions or use a more non-polar solvent system to more effectively separate these two compounds.

Answer to Question 9

If product were dissolved in the eluent when elution began, it would result in the continuous addition of product to the column throughout the separation. This would lead to little or no separation of the product(s).



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
 

Did you know?

Medication errors are three times higher among children and infants than with adults.

Did you know?

ACTH levels are normally highest in the early morning (between 6 and 8 A.M.) and lowest in the evening (between 6 and 11 P.M.). Therefore, a doctor who suspects abnormal levels looks for low ACTH in the morning and high ACTH in the evening.

Did you know?

Between 1999 and 2012, American adults with high total cholesterol decreased from 18.3% to 12.9%

Did you know?

The U.S. Pharmacopeia Medication Errors Reporting Program states that approximately 50% of all medication errors involve insulin.

Did you know?

People often find it difficult to accept the idea that bacteria can be beneficial and improve health. Lactic acid bacteria are good, and when eaten, these bacteria improve health and increase longevity. These bacteria included in foods such as yogurt.

For a complete list of videos, visit our video library