Author Question: Provide an example of a phase-transfer catalyst other than the one used in this ... (Read 31 times)

biggirl4568

  • Hero Member
  • *****
  • Posts: 551
Provide an example of a phase-transfer catalyst other than the one used in this experiment.

Question 2

Identify each of the following reactions as an oxidative addition or reductive elimination.
 
Question 3

ByGsFEzhcExkpxh3Wqz88IkmApxqyAtMgpiNYgv8rlSewm+mykOjpfbD3BELFgzwAAABVy2fxjEOhAzxNnxvnJszxZKfaE9GskvCImT4zRhXow8PlooyIkMl8dZlskLGcVbeaKA2FGbdH5gCMRwpaFHijLjEmU80bOF/IRIiJUg7hRlx4bJfR8WZbIiR22E4hgJZ2OI36YLA2NkNphmrmg0L8yGw5bOBdcC5lOQGRcs88WSeKKk8FEOXJ5/gIwDxuUJ4uXcMLi6/GLkvqX5OdFye2wrLycoRlZn7KCoMHbUt7sALjBZHbBHWezQaPlc7/ILouNk3HAUhAMW8AdMIIYtDeSBLMDvGGgagP/JRgIBGwhBBuABa7lm1CNROiKA31hQBP6AiAdEY35+0lEeKIT6L2Na2dcapEtHC6Ue2eApxLm4Nu6Fe+Dh8OsDmz3uiruN+jGVR2clBhD9icHEQKLFGA8OZJ0DmxDw/40uDPY8mJ2Ei2A0h2/xCE8JXYRHhBuEHsIdkACeSKPIrWbwi4U/MGeCCNADowXKs0v7PjvcFLJ2wv1wT8gfcscZuDawxh1hJr64N8zNCWq/Zyge4/atlj/OJ2H9fT5yvZKlkpOcRdrYL8Mas/oxCuu7GnFhH/ajJbYMO4xdwE5jl7BWrAkwsZNYM9aOHZfgsZXwRLoSRmeLkXLLhnH4oza29bb9tp9/mJstn19SL1EBb3aBZDOw8vLnCPkZmQVMX3ga85ghAo7NBKa9rZ0LAJKzXXZ0vGFIz2yEcfmbrlgZgEkfR0ZGWr/pwk0AOFIKAOXpN515DdyuiwG4WM4RCwtlOslxDAiAApThrtACesAImMN87IEz8AA+IACEgigQB5LBdFjxTJALOc8C88BiUArKwWqwHmwG28BOUAv2g0OgCbSC0+A8uAI6wQ1wD66LPvASDIJ3YBhBEBJCQ+iIFqKPmCBWiD3iinghAUg4EoMkI6lIBiJAxMg8ZAlSjlQgm5EdSB3yK3IMOY1cQrqQO0gv0o/8hXxCMZSKqqO6qCk6EXVFfdEwNA6dhmagM9EitARdiW5Ea9B9aCN6Gr2C3kB70JfoEAYwRYyBGWDWmCvGwqKwFCwdE2ILsDKsEqvBGrAW+Dtfw3qwAewjTsTpOBO3hmszGI/HOfhMfAG+At+M1+KN+Fn8Gt6LD+JfCTSCDsGK4E4IISQRMgizCKWESsJuwlHCObhv+gjviEQig2hGdIH7MpmYRZxLXEHcQjxAPEXsIj4mDpFIJC2SFcmTFEVikwpIpaRNpH2kk6RuUh/pA1mRrE+2JweSU8gCcjG5kryXfILcTX5GHlZQUTBRcFeIUuAqzFFYpbBLoUXhqkKfwjBFlWJG8aTEUbIoiykbKQ2Uc5T7lDeKioqGim6KkxX5iosUNyoeVLyo2Kv4kapGtaSyqFOpYupK6h7qKeod6hsajWZK86Gl0ApoK2l1tDO0h7QPSnQlG6UQJa7SQqUqpUalbqVXygrKJsq+ytOVi5QrlQ8rX1UeUFFQMVVhqbBVFqhUqRxTuaUypEpXtVONUs1VXaG6V/WS6nM1kpqpWoAaV61EbafaGbXHdIxuRGfROfQl9F30c/Q+daK6mXqIepZ6ufp+9Q71QQ01DUeNBI3ZGlUaxzV6GBjDlBHCyGGsYhxi3GR8Gqc7znccb9zycQ3juse91xyv6aPJ0yzTPKB5Q/OTFlMrQCtba41Wk9YDbVzbUnuy9iztrdrntAfGq4/3GM8ZXzb+0Pi7OqiOpU6MzlydnTrtOkO6erpBuvm6m3TP6A7oMfR89LL01umd0OvXp+t76fP11+mf1H/B1GD6MnOYG5lnmYMGOgbBBmKDHQYdBsOGZobxhsWGBwwfGFGMXI3SjdYZtRkNGusbRxjPM643vmuiYOJqkmmyweSCyXtTM9NE06WmTabPzTTNQsyKzOrN7pvTzL3NZ5rXmF+3IFq4WmRbbLHotEQtnSwzLassr1qhVs5WfKstVl0TCBPcJggm1Ey4ZU219rUutK637rVh2ITbFNs02byaaDwxZeKaiRcmfrV1ss2x3WV7z07NLtSu2K7F7i97S3uOfZX9dQeaQ6DDQodmh9eOVo48x62Ot53oThFOS53anL44uzgLnRuc+12MXVJdql1uuaq7RruucL3oRnDzc1vo1ur20d3ZvcD9kPufHtYe2R57PZ5PMpvEm7Rr0mNPQ0+25w7PHi+mV6rXdq8ebwNvtneN9yMfIx+uz26fZ74Wvlm++3xf+dn6Cf2O+r1nubPms075Y/5B/mX+HQFqAfEBmwMeBhoGZgTWBw4GOQXNDToVTAgOC14TfCtEN4QTUhcyGOoSOj/0bBg1LDZsc9ijcMtwYXhLBBoRGrE24n6kSaQgsikKRIVErY16EG0WPTP6t8nEydGTqyY/jbGLmRdzIZYeOyN2b+y7OL+4VXH34s3jxfFtCcoJUxPqEt4n+idWJPYkTUyan3QlWTuZn9ycQkpJSNmdMjQlYMr6KX1TnaaWTr05zWza7GmXpmtPz5l+fIbyDPaMw6mE1MTUvamf2VHsGvZQWkhaddogh8XZwHnJ9eGu4/bzPHkVvGfpnukV6c8zPDPWZvRnemdWZg7wWfzN/NdZwVnbst5nR2XvyR7JScw5kEvOTc09JlATZAvO5unlzc7ryrfKL83vmek+c/3MQWGYcLcIEU0TNReow2tOu9hc/JO4t9CrsKrww6yEWYdnq84WzG6fYzln+ZxnRYFFv8zF53Lmts0zmLd4Xu983/k7FiAL0ha0LTRaWLKwb1HQotrFlMXZi38vti2uKH67JHFJS4luyaKSxz8F/VRfqlQqLL211GPptmX4Mv6yjuUOyzct/1rGLbtcblteWf55BWfF5Z/tft7488jK9JUdq5xXbV1NXC1YfXON95raCtWKoorHayPWNq5jritb93b9jPWXKh0rt22gbBBv6NkYvrF5k/Gm1Zs+b87cfKPKr+pAtU718ur3W7hburf6bG3YprutfNun7fztt3cE7WisMa2p3EncWbjz6a6EXRd+cf2lbrf27vLdX/YI9vTUxtSerXOpq9urs3dVPVovru/fN3Vf537//c0N1g07DjAOlB8EB8UHX/ya+uvNQ2GH2g67Hm44YnKk+ij9aFkj0jincbAps6mnObm561josbYWj5ajv9n8tqfVoLXquMbxVScoJ0pOjJwsOjl0Kv/UwOmM04/bZrTdO5N05vrZyWc7zoWdu3g+8PyZC74XTl70vNh6yf3Sscuul5uuOF9pbHdqP/q70+9HO5w7Gq+6XG3udOts6ZrUdaLbu/v0Nf9r56+HXL9yI/JG1834m7dvTb3Vc5t7+/mdnDuv7xbeHb636D7hftkDlQeVD3Ue1vzD4h8Hepx7jvf697Y/in107zHn8csnoief+0qe0p5WPtN/Vvfc/nlrf2B/54spL/pe5r8cHij9Q/WP6lfmr4786fNn+2DSYN9r4euRv1a80Xqz563j27ah6KGH73LfDb8v+6D1ofaj68cLnxI/PRue9Zn0eeMXiy8tX8O+3h/JHRnJZwvZ0qsABhuang7AX3sAoCUDQO+E9wcl2dtLKojsvShF4D9h2ftMKs4ANMBOcuVmnQLgIGxmENMWASC5esf5ANTBYazJRZTuYC+LRYUvGMKHkZE3ugCQWgD4IhwZGd4yMvJlFyR7B4BTM2VvPokQ4f1+u6MEdTNmLwI/yD8Bd0Rs573ioiIAAAAJcEhZcwAAFiUAABYlAUlSJPAAAAGcaVRYdFhNTDpjb20uYWRvYmUueG1wAAAAAAA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJYTVAgQ29yZSA1LjQuMCI+CiAgIDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+CiAgICAgIDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiCiAgICAgICAgICAgIHhtbG5zOmV4aWY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vZXhpZi8xLjAvI

Question 4

j4KICAgICAgICAgPGV4aWY6UGl4ZWxYRGltZW5zaW9uPjMzMDwvZXhpZjpQaXhlbFhEaW1lbnNpb24+CiAgICAgICAgIDxleGlmOlBpeGVsWURpbWVuc2lvbj43MDwvZXhpZjpQaXhlbFlEaW1lbnNpb24+CiAgICAgIDwvcmRmOkRlc2NyaXB0aW9uPgogICA8L3JkZjpSREY+CjwveDp4bXBtZXRhPgoc0SEOAAAAHGlET1QAAAACAAAAAAAAACMAAAAoAAAAIwAAACMAAAYNU8Lu4gAABdlJREFUeAHsnVtMFUcYx9cg94uADa2iUrViK4i0BVsT++DBQhNBa4VqL/SCrReSmprUt/piI32wgDbSWAtvhBdqTU0r+FJMbKw0AuH2UHjh9sALlwAh3L/uN8mQsxwOw56zR/cc/5Ns5ux+s3N2fvN9/zMzO4Q1pCcNCQRAAARAwC2BNRBKt2xgAAEQAAFBAEIJRwABEAABBQEIpQIQzCAAAiAAoYQPgAAIgICCAIRSAQhmEAABEIBQwgdAAARAQEEAQqkABDMIgAAIQCjhAyAAAiCgIAChVACCGQRAAAQglPABEAABEFAQgFAqAMEMAiAAAhBK+AAIgAAIKAhAKBWAYAYBEAABCCV8AARAAAQUBCCUCkAwgwAIgACEEj4AAiAAAgoCEEoFIJhBAARAAEIJHwABEAABBQEIpQIQzCAAAiAAoYQPgAAIgICCAIRSAQhmEAABEIBQwgdAAARAQEWA/wuj2TQxMUFrg4NWddy+/ZvZ6v2ifF3dXfq48CPamLhBcAgLD6WMzNep5PsSmpycNLRBsrr24zXDdZyAgL8SeBIaYKcY82hEOTMzo50tPuNWg7v+69IeNT4S9nv19zSHI8ttWX8z6CKoFX5SqN2587sWFBSk7d//lpaUtEUbHh7R7t9v0HQH0tLT07U//7irJSQkiOYFh6wVeWlpmXbuq3P+1mQ8Lwi4EPClBtgyxqz+Revv76fETRvFKOv8+a+trv6p1/fBhydE2w7lHqKBgQHD84yMjFDe4TxhdzgO0MLCgrBjRGnAhJMAJ+CtBtgxxjQr+2x4eJhefS1dCMWx/GM0Pz9vZfWm6oqMiqC0PbtN3aMqzFMBFr1dKa8QTz2WS6Ojo/TChudFOS7PCUK5HClca21tpdnZ2YAC4a0G2DXGLBNK7nA5muK1uvHx8UUHcGQ56OQXRdTV1UX5Bfm0LjZGiAcL2fWK64vlrPzgC6GUv3QVP1Ws+KgP/3lILS0tGFGuSOnZNupLUyIG9GUZysnJpqtXy6m3t9evoVihAXaNMcuEsrj4rOj4rdtedJmS8oiKR1k8JU9J3UWfff4pZevOwU7Ctpu/3LTcQXwhlFuSNovn7ezsNPW8GFGawvVMFOZlmb1vZC7GQFR0JEVEhtOmzYlUdLKIqqurqa+vz69YWKEBdo0xS4SyrLxMCEhcfKwYSS3tXSkUl767ZDDV1taK+/bte9Nw3ZOTqqoqcj7CI8KIoTtf4+/zJsl2TE1NmapG3oe33qawBXzhjo4O4t0S0j9kzgMInnVxnpKaQhcvfksNDX+57KawEyCrNEAysFuMeS2Ut279SiGhwaLD5Zrc0g7kxsesi6bp6WmDic9Z0Ha+nGy47smJBLxS7u33yLrt1ome8MI99iDgyDrgIpTSz2QeGhZCcfFxIlYyMjPoyg9XqKmpifQ3z7ZohJUaINtstxjzSigfNz3WOzBWdPRKoyVu/J70tGU7lafI3goYV8zrgs4HT2N2JL9kuNbc3LzsM6z2Ii8bcFt4Ed5Mkp0vGfG67O60VFFXdEwU5byTQ21tbWaqtLysfEbkq9sfbBdOvNPiaSarNcCuMeaxUJrZAsBO5WuhXOosvlijPHX6SyFuqpc5pWWlYi1WvqiSQcVCWa4v2vMomvPu7m5q/LeRcvNyKX59nMva7tI2+fJcPiNyewolT8XZpzl/O/sglek+Vl9f50uXUNbtCw2wa4x5JJRmtwAEilA++PuBEMrknTvcbg/ibUPbtm8V5WpqaoSzSfFhoTx95hRduPCNwQnHxsZE+Rs/3zBcx0lgE+jp6RHiJ/3DOZfCuP65eDp+4jhVVlYSvym3y3YiX2mAXWPMI6GU24BYENrb24k73N0xNDQkROBJjygz92bQ0feOWh5pBe8XiPbwhnNus3MaHBykI+8eEXZ+ozk3NyfMMgDk1Nv5Hv7M024uE6h/7rm0vTgnscc4S982x+uP3PfyrTePGrMOOuhyyWVi0ZA+ZDdmvtQAO8bY/wAAAP//8fd5nQAABEpJREFU7d29T1NRGAbwhyBaxJJYWLAEHRo1/fKjVSaVSYwOUokSMVHEQFUcdNH4McEAEROLmqjAplRKTYhff4AYXRTxiqJuDGVgIgEaCG040sY2Ia1yCmLwnqcJoT3nvbd9f2/vQ2EBYhG3VTnZQvaroeF8vHbbdmfaZ8pbt1Zs2bo57d5KXAyHw+LgoYPxntYYVouysn2i9sxpUeGpEOuMefF1l3unGBkZSb78hFXbnbbkWuJOKBQSDqdd7C7dJSKRSGKZ33UuoGla8hoqP7BftLQ0i743fWJmZua/6Dzxnpb5nmkGrMRrLCs2FWR4a2xqlD7C7XLhcMVh2Gw2fBrQUo6bCxcUFxfj+7cfKXsrdSEajSIQCKDL34UPH95jbGwMBoMBDrsDx6qq4K33Ijc3N/nyE17l5eUo3V2aXB8YGMCRSg9MJhOeP3sBs9mc3OMd/QsMDg7CarUiOzv7v2s28Z6WeeGLyYCVdo0tKihlcFjzZwFfmw/Xrl2Fx+PBg/sPYTQa/3wAdylAgYwE/uY1xqDMiH7pxbGflGfPedHb24vWm7dQW1u79JPyDBSgQFJgOa4xBmWS99/caW5pRtPcny5aW2/BbrfPe1LzBjMsFsu8NT6gAAUyE1iOa4xBmdkMllxdUGjC+Ph42vNcaLiA27d9afe4SAEKyAksxzXGoJSzZxUFKKCwAINS4eGzdQpQQE6AQSnnxCoKUEBhAQalwsNn6xSggJwAg1LOiVUUoIDCAgxKhYfP1ilAATkBBqWcE6soQAGFBRiUCg+frVOAAnICDEo5J1ZRgAIKCzAoFR4+W6cABeQEGJRyTqyiAAUUFmBQKjx8tk4BCsgJMCjlnFhFAQooLMCgVHj4bJ0CFJATYFDKObGKAhRQWIBBqfDw2ToFKCAnwKCUc2IVBSigsACDUuHhs3UKUEBOgEEp58QqClBAYQEGpcLDZ+sUoICcAINSzolVFKCAwgIMSoWHz9YpQAE5AQblL6fYv5C9d+8uXve9xssXr5CTkyMnyCoKUED3AsoHZf/HfrS3P0QgEIDb7cbo6CgKCwrh9z9BUVGR7t8AbJACFFhYQMmgnJycRHd3Nzo62zE8PIyaUzWoq6uHxWJBJBLBlSuX0RPsiYfl3j17F1ZkBQUooGsBpYJS0zR0dLSjy98Fh90Br/csKisrYTAYUoYc+4R5vuEcrl+/gUsXLyErKyulhgsUoIAaAroPyqmpKQSDwfiv11++fsGJ6hPxgHQ6nQtOeGhoCMeqjsJqtaGzoxP5+fkLHsMCClBAfwK6DcpYyMU+PT56/AglJSXxcKw+Xg2j0Zh2itFoFNpnDa6drnn7ExMTqKuvw+e5vWDPU9hstnn7fEABCiggIHR0m56eFn6/X5SV7RNr83LFqZqT4u27t2J2dva3XYZCIdHY1Cg2bioR23dsE+FwOKU2dryvzSdMBevj508p4AIFKKBrgZ9tiSeZW446tgAAAABJRU5ErkJggg== />
 
Question 5

Based on your background reading about the Wittig reaction, propose a synthesis of the phosphorane used in this experiment, starting with triphenylphosphine and whatever other commercially available reactants and reagents you choose.

Question 6

The Horner-Wadsworth-Emmons reaction is a commonly used variant of the Wittig reaction. What feature of this reaction, shown below, is particularly useful compared with the Wittig reaction? Hint: Consider the structure of the product(s).
 

Question 7

A researcher used column chromatography to separate two compounds. The desired compound, which was quite valuable, had an Rf approximately equal to 0.5. Two-mL fractions were collected, giving the TLC results shown below. Based on these results, explain what the researcher needs to do to maximize recovery of the desired compound, including the use of additional separations.



katara

  • Sr. Member
  • ****
  • Posts: 305
Answer to Question 1

Tetraoctylammonium bromide is just one of many possibilities.

Answer to Question 2



Answer to Question 3



Answer to Question 4

iVBORw0KGgoAAAANSUhEUgAAAhIAAAB4CAYAAACnzRuqAAAMFGlDQ1BJQ0MgUHJvZmlsZQAASImVVwdUk8kWnr+kEBJaIAJSQm+C9Co19C4dbIQkQCgBE4KKHVlUcC2oWMCGroIouhZAFht2ZRGw1wcqKsq6uIoNlTcpoOtr513O/PNx5947372ZmTMDgLItOz8/B1UBIFdQIIwJ8mMmJacwSb2ACEhAEf5NZHNE+b7R0eEAymj/d3l3EyCS/pq1JNa/jv9XUeXyRBwAkGiI07giTi7ERwDANTn5wgIACO1QbzSrIF+CByFWF0KCABBxCc6QYU0JTpPhCVKbuBgWxD4AkKlstjADACUJb2YhJwPGUZJwtBVw+QKIqyH24mSyuRDfh3hCbm4exMpkiM3TvouT8beYaWMx2eyMMSzLRSpkf74oP4c95/8sx/+W3Bzx6ByGsFEzhcExkpxh3Wqz88IkmApxqyAtMgpiNYgv8rlSewm+mykOjpfbD3BELFgzwAAABVy2fxjEOhAzxNnxvnJszxZKfaE9GskvCImT4zRhXow8PlooyIkMl8dZlskLGcVbeaKA2FGbdH5gCMRwpaFHijLjEmU80bOF/IRIiJUg7hRlx4bJfR8WZbIiR22E4hgJZ2OI36YLA2NkNphmrmg0L8yGw5bOBdcC5lOQGRcs88WSeKKk8FEOXJ5/gIwDxuUJ4uXcMLi6/GLkvqX5OdFye2wrLycoRlZn7KCoMHbUt7sALjBZHbBHWezQaPlc7/ILouNk3HAUhAMW8AdMIIYtDeSBLMDvGGgagP/JRgIBGwhBBuABa7lm1CNROiKA31hQBP6AiAdEY35+0lEeKIT6L2Na2dcapEtHC6Ue2eApxLm4Nu6Fe+Dh8OsDmz3uiruN+jGVR2clBhD9icHEQKLFGA8OZJ0DmxDw/40uDPY8mJ2Ei2A0h2/xCE8JXYRHhBuEHsIdkACeSKPIrWbwi4U/MGeCCNADowXKs0v7PjvcFLJ2wv1wT8gfcscZuDawxh1hJr64N8zNCWq/Zyge4/atlj/OJ2H9fT5yvZKlkpOcRdrYL8Mas/oxCuu7GnFhH/ajJbYMO4xdwE5jl7BWrAkwsZNYM9aOHZfgsZXwRLoSRmeLkXLLhnH4oza29bb9tp9/mJstn19SL1EBb3aBZDOw8vLnCPkZmQVMX3ga85ghAo7NBKa9rZ0LAJKzXXZ0vGFIz2yEcfmbrlgZgEkfR0ZGWr/pwk0AOFIKAOXpN515DdyuiwG4WM4RCwtlOslxDAiAApThrtACesAImMN87IEz8AA+IACEgigQB5LBdFjxTJALOc8C88BiUArKwWqwHmwG28BOUAv2g0OgCbSC0+A8uAI6wQ1wD66LPvASDIJ3YBhBEBJCQ+iIFqKPmCBWiD3iinghAUg4EoMkI6lIBiJAxMg8ZAlSjlQgm5EdSB3yK3IMOY1cQrqQO0gv0o/8hXxCMZSKqqO6qCk6EXVFfdEwNA6dhmagM9EitARdiW5Ea9B9aCN6Gr2C3kB70JfoEAYwRYyBGWDWmCvGwqKwFCwdE2ILsDKsEqvBGrAW+Dtfw3qwAewjTsTpOBO3hmszGI/HOfhMfAG+At+M1+KN+Fn8Gt6LD+JfCTSCDsGK4E4IISQRMgizCKWESsJuwlHCObhv+gjviEQig2hGdIH7MpmYRZxLXEHcQjxAPEXsIj4mDpFIJC2SFcmTFEVikwpIpaRNpH2kk6RuUh/pA1mRrE+2JweSU8gCcjG5kryXfILcTX5GHlZQUTBRcFeIUuAqzFFYpbBLoUXhqkKfwjBFlWJG8aTEUbIoiykbKQ2Uc5T7lDeKioqGim6KkxX5iosUNyoeVLyo2Kv4kapGtaSyqFOpYupK6h7qKeod6hsajWZK86Gl0ApoK2l1tDO0h7QPSnQlG6UQJa7SQqUqpUalbqVXygrKJsq+ytOVi5QrlQ8rX1UeUFFQMVVhqbBVFqhUqRxTuaUypEpXtVONUs1VXaG6V/WS6nM1kpqpWoAaV61EbafaGbXHdIxuRGfROfQl9F30c/Q+daK6mXqIepZ6ufp+9Q71QQ01DUeNBI3ZGlUaxzV6GBjDlBHCyGGsYhxi3GR8Gqc7znccb9zycQ3juse91xyv6aPJ0yzTPKB5Q/OTFlMrQCtba41Wk9YDbVzbUnuy9iztrdrntAfGq4/3GM8ZXzb+0Pi7OqiOpU6MzlydnTrtOkO6erpBuvm6m3TP6A7oMfR89LL01umd0OvXp+t76fP11+mf1H/B1GD6MnOYG5lnmYMGOgbBBmKDHQYdBsOGZobxhsWGBwwfGFGMXI3SjdYZtRkNGusbRxjPM643vmuiYOJqkmmyweSCyXtTM9NE06WmTabPzTTNQsyKzOrN7pvTzL3NZ5rXmF+3IFq4WmRbbLHotEQtnSwzLassr1qhVs5WfKstVl0TCBPcJggm1Ey4ZU219rUutK637rVh2ITbFNs02byaaDwxZeKaiRcmfrV1ss2x3WV7z07NLtSu2K7F7i97S3uOfZX9dQeaQ6DDQodmh9eOVo48x62Ot53oThFOS53anL44uzgLnRuc+12MXVJdql1uuaq7RruucL3oRnDzc1vo1ur20d3ZvcD9kPufHtYe2R57PZ5PMpvEm7Rr0mNPQ0+25w7PHi+mV6rXdq8ebwNvtneN9yMfIx+uz26fZ74Wvlm++3xf+dn6Cf2O+r1nubPms075Y/5B/mX+HQFqAfEBmwMeBhoGZgTWBw4GOQXNDToVTAgOC14TfCtEN4QTUhcyGOoSOj/0bBg1LDZsc9ijcMtwYXhLBBoRGrE24n6kSaQgsikKRIVErY16EG0WPTP6t8nEydGTqyY/jbGLmRdzIZYeOyN2b+y7OL+4VXH34s3jxfFtCcoJUxPqEt4n+idWJPYkTUyan3QlWTuZn9ycQkpJSNmdMjQlYMr6KX1TnaaWTr05zWza7GmXpmtPz5l+fIbyDPaMw6mE1MTUvamf2VHsGvZQWkhaddogh8XZwHnJ9eGu4/bzPHkVvGfpnukV6c8zPDPWZvRnemdWZg7wWfzN/NdZwVnbst5nR2XvyR7JScw5kEvOTc09JlATZAvO5unlzc7ryrfKL83vmek+c/3MQWGYcLcIEU0TNReow2tOu9hc/JO4t9CrsKrww6yEWYdnq84WzG6fYzln+ZxnRYFFv8zF53Lmts0zmLd4Xu983/k7FiAL0ha0LTRaWLKwb1HQotrFlMXZi38vti2uKH67JHFJS4luyaKSxz8F/VRfqlQqLL211GPptmX4Mv6yjuUOyzct/1rGLbtcblteWf55BWfF5Z/tft7488jK9JUdq5xXbV1NXC1YfXON95raCtWKoorHayPWNq5jritb93b9jPWXKh0rt22gbBBv6NkYvrF5k/Gm1Zs+b87cfKPKr+pAtU718ur3W7hburf6bG3YprutfNun7fztt3cE7WisMa2p3EncWbjz6a6EXRd+cf2lbrf27vLdX/YI9vTUxtSerXOpq9urs3dVPVovru/fN3Vf537//c0N1g07DjAOlB8EB8UHX/ya+uvNQ2GH2g67Hm44YnKk+ij9aFkj0jincbAps6mnObm561josbYWj5ajv9n8tqfVoLXquMbxVScoJ0pOjJwsOjl0Kv/UwOmM04/bZrTdO5N05vrZyWc7zoWdu3g+8PyZC74XTl70vNh6yf3Sscuul5uuOF9pbHdqP/q70+9HO5w7Gq+6XG3udOts6ZrUdaLbu/v0Nf9r56+HXL9yI/JG1834m7dvTb3Vc5t7+/mdnDuv7xbeHb636D7hftkDlQeVD3Ue1vzD4h8Hepx7jvf697Y/in107zHn8csnoief+0qe0p5WPtN/Vvfc/nlrf2B/54spL/pe5r8cHij9Q/WP6lfmr4786fNn+2DSYN9r4euRv1a80Xqz563j27ah6KGH73LfDb8v+6D1ofaj68cLnxI/PRue9Zn0eeMXiy8tX8O+3h/JHRnJZwvZ0qsABhuang7AX3sAoCUDQO+E9wcl2dtLKojsvShF4D9h2ftMKs4ANMBOcuVmnQLgIGxmENMWASC5esf5ANTBYazJRZTuYC+LRYUvGMKHkZE3ugCQWgD4IhwZGd4yMvJlFyR7B4BTM2VvPokQ4f1+u6MEdTNmLwI/yD8Bd0Rs573ioiIAAAAJcEhZcwAAFiUAABYlAUlSJPAAAAGdaVRYdFhNTDpjb20uYWRvYmUueG1wAAAAAAA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJYTVAgQ29yZSA1LjQuMCI+CiAgIDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+CiAgICAgIDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiCiAgICAgICAgICAgIHhtbG5zOmV4aWY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vZXhpZi8xLjAvIj4KICAgICAgICAgPGV4aWY6UGl4ZWxYRGltZW5zaW9uPjUzMDwvZXhpZjpQaXhlbFhEaW1lbnNpb24+CiAgICAgICAgIDxleGlmOlBpeGVsWURpbWVuc2lvbj4xMjA8L2V4aWY6UGl4ZWxZRGltZW5zaW9uPgogICAgICA8L3JkZjpEZXNjcmlwdGlvbj4KICAgPC9yZGY6UkRGPgo8L3g6eG1wbWV0YT4Kgk3/8AAAABxpRE9UAAAAAgAAAAAAAAA8AAAAKAAAADwAAAA8AAAN0uZA3zcAAA2eSURBVHgB7J15kBXFHccbl0vWA/Dg9OJYUBCTKKAVowgpxSgEjAp4gIoJKKClEhUNKikFTZXxIEYOi3CU5R8iGIgxWqAkUVMaA8LCLljIoVxquEFFxc78utKvZt7O252Z1++9AT9TtTUzPb/+dffn12/mOz09s/W0tygWCEAAAhCAAAQgkIBAPYREAmpkgQAEIAABCEDAEEBI0BEgAAEIQAACEEhMACGRGB0ZIQABCEAAAhBASNAHIAABCEAAAhBITAAhkRgdGSEAAQhAAAIQQEjQByAAAQhAAAIQSEwAIZEYHRkhAAEIQAACEEBI0AcgAAEIQAACEEhMACGRGB0ZIQABCEAAAhBASNAHIAABCEAAAhBITAAhkRgdGSEAAQhAAAIQQEjQByAAAQhAAAIQSEwAIZEYHRkhAAEIQAACEEBI0AcgAAEIQAACEEhMACGRGB0ZIQABCEAAAhBASNAHIAABCEDgkCPQoGF9U+ddO3er8vLy0PqPHj1KTZ02VT322O/UnXfcGWpDYv4EEBL5M8QDBCAAAQgUmQBCosjAaykOIVELHA5BAAIQgEA6CSAk0hMXhER6YkFNIAABCEAgIgGERERQRTBDSBQBMkVAAAIQgIBbAggJtzzz8YaQyIceeSEAAQhAoCQErJAYOWKkatCgQWgdlvx9iaqsrGSyZSgdd4kICXcs8QQBCEAAAkUiYIVElOJ4ayMKpeQ2CInk7MgJAQhAAAIlImCFxNYt23K+/nnnXXeo5557jhGJAscIIVFgwLiHAAQgAAH3BKyQ4DsS7tnG9YiQiEsMewhAAAIQKDkBhETJQ5CpAEIig4INCEAAAhA4VAggJNITKYREemJBTSAAAQhAICIBhEREUEUwQ0gUATJFQAACEICAWwIICbc88/GGkMiHHnkhAAEIQKAkBObOnWvKHThwoCorKwutw9KlS9W6detUt27dVEVFRagNifkTQEjkzxAPEIAABCAAge8tAYTE9zb0NBwCEIDA4UWgurpa7dm7R/Xs0fPwaljKW4OQSHmAqB4EIAABCEQjMOnRSerDD9eoP82YGS0DVk4IICScYMQJBCAAAQiUmgBCojQRQEiUhjulQgACEICAYwIICcdAI7pDSEQEhRkEIAABCKSbAEKiNPFBSJSGO6VCAAIQgIBjAggJx0AjukNIRASFGQQgAAEIpJsAQqI08UFIlIY7pUIAAhCAgGMCCAnHQCO6Q0hEBIUZBCAAAQikmwBCojTxQUiUhjulQgACEICAYwIICcdAI7pDSEQEhRkEIAABCKSbAEKiNPFBSJSGO6VCAAIQgIBjAggJx0AjukNIRASFGQQgAIE0ELD/PjusLm3btlU9vP8zMXbsWNX9nO7GROy7dOmiPli2PCxL5LS45UZ27NCw1EIiLqMk9i5i6RC5cYWQcE0UfxCAAAQKSMBefIYNG6bq168fKKm6qlq98693VMOGDdXCBQtV7959lNi7uPjELTdQsSLtpEVIxImNoIlj7yKWzsOhWSAAAQhA4JAhUL9BmZa/ffv2hdb5kYmPmOM9e/Ywx8X2rB90C7WNkxi33Di+XdlOnDRR33DjMFfuYvuJyyiJvYtYxm5YHRkYkXAuzXAIAQhAoHAE7MjArp27VXl5eY2C9u/fr5o2O1YdccQRaueOXerYpsdkRiRktGLRokXqwFdfeWld1YABA1STJk1q+AhLiFtuVL9hZSVNS8uIRJzYSFvj2NsRiXximZRvrnwIiVxkSIcABCCQQgJ1XdB37dqlTjjxeNWoUSO1/b871FFHl6tOnTqprl3PVC+9NDfQojZt2qjX/va6OR44ELITt1wpv9hL2oVEWGyEUS4hEWbvIpbO41LHiAWHIQABCEAgRQRqGw7/4osv9MhbRphHG/369zO1tvbdzjpTL1y4QG/fvl2vXr1aX/GLK4zddddfG6l11k/YI5WwciM5dWyU5kcbYYziMrX2+cbSMXbNiIRzaYZDCEAAAoUjYEcGLrmkryorK8sU5F2oVGXlCuUJBdW8eXP1z3+8pSoqKsxkS3nMUV21WrVr1y5jv23bNnXKqSerzp07q+UfrMik59qIW674keH3nt5bJP565vLvIj0tIxJxYiPtjmPvIpYuWPt9ICT8NNiGAAQgkHIC9oLesmVLVa9evUxtZbtDh47ehbuHGj16jGrdurU5JvYiKFatrMrY2g157CGvjK6uXmOSnvnjM+rJJ59QGzZsMOlDrx+qxo9/wLwdErfcTZs2qYpOHdX6dRtUixYtbJEFXRdLSHz00UdGlPn5S8PiMkpi7yKWzoPgeogDfxCAAAQgUDgCdng77BFDWKlin2umf/lRTXSnzhUm29RpU/WRTRrrpyc/rdevX6+9+RT6xBYn6Lvv/rU5Hrfc8eN/oy/vd3lYlQqWVqxHG6e1O9U8JspuSFxGSexdxDK73vnuMyLhXJrhEAIQgEDhCNi72FwT9LJLFns70z/7mH9EYsKEh9Q333yjHn74kYzZmDGj1eI3FquqVdWZu+0o5X7lvRXiXWzVtKnTVL9+/TP+9u7dqyZNmqgmTpyUSXO5UawRifvvv0+tqKw03+rw1z9JbCR/FKZi5yqW4svpkq8SIT8EIAABCBSPQKHuYrNbsGbNGt2xooO+7bYx5lCccmfPnq1PPuUk7QmTgNunnn5KX3zJxYE0lzuFGJF479/v6SlTpwSquXHjRt34yEZa1v4lDiPJl8Q+yoiEv06ynR3L7OP57qt8HZC/OAReffWvWmZXt27TynQ+6cTndD9byw9HZgOzQAAC3w8Chb74bN68WXfo2F43bNRA/+jsH+odO3YYsHHKPffcnvqhhx4MBOTbb7/V3pwJPXfui4H07777Th88eDCQlnSnEELi/f+8r5s1b6q973MEqnXlVVfWaGMcRuIsiX0cIZErloGGONgpiJAYN+5efUaX0/WePXtMFS2s7PVxxzfXF154gX7xxWDHErubht+YV/Oyy/Lvn3raKfrqQVdrUZp2ufa6a/RFF/XS3pCcTYq09vvN3vaGDfWZ3brqBx98QB84cCDjT+xydYaM0f83pPPa17QaNW6o+/y0j2EzYOAA7X10xnREERSffvqpyWHrIMr/cFpsu2p7Ljxq1K2Gx+O/f/xwajptgUCAQJTfgj9Dbecb/xwJm0duTKqqqvRbb79lzjedT++kd+7cGfmiJ8Jg7Ni79JYtW6xLs5ZXT+VG6Ouvvw6kz5v3kh40eFAgLenOCy+8oB997NGk2U2+L7/8skb+7j3O0TNnzgykL1nypj7p5LaBUZcksZE8tZ3X/IW6iqXfp4tt50JCAil3y6Li7CKNl4veiJG/CvwNHjJIH3Ps0aaDzpgxw5qbfVdCYvjNNwXKlDpccMFPTBlNyo/UixcvMuWK6GnX/jTzDnamIhE2bMe5+ZfDa5Qj73Hb9olwsUttncHa2PWQawabul52+WXamwVtk81aftxShvjr3fsiLT9gWx+ERAAVOxAIJeC9nqi958568h8m6xUrVoTapC1RbrzkT+7woyxi+/rrr4WaykVcRjtzLVu3bjXnFHlUEbfcbJ8i9GUCZvbSq9eFetr0adnJJduXm7WXX54fKF8mop5//o8DaXK+lWuY/7wcl1ESexexDDTEwY5TISHPi2QI6PbbbwtUTS5u7Tu0C6TZnXffe9fMFJbnaXYRe1dCIpfSy/4evZQts5TlpDJ//jxblTrX9sKdayRj7dq1honYrVy50viT7SgjEvIDF1sZ3cnVDu/LZ7plqxbGztpLnlIJCRmFidK2OsFmGUib5C8XBzFnRCILGrt1EpATufQrufmREb82bVvrIUMG6zlz5uiPP/64zvyHk8Ett4zU/hs6advnn39u+GTfjSdpt4x0ZJ8n5ZzofcI7M3pt/a733hrx87e//7C1nHPkA03eZNHAaIfYJjkXPTvlWd330r62KmYtN5rNj2umvW9vBNLTulPoWGa326mQuOrqq7QMlUnn8y8S0FxCQuzOO+9c01k/+eQTk03sRUjIENOsWbP0PffcbV5JihNE2+FyXXgkXWzkOaD/2Zc825ORCW92sb8JObdtOdk/EH8GUa1iJ22RRbZtB3/7nbf1hN9O0PfdN04///zzgbrY0Qjv3W6/uxrbcle1bNmyVIxIICRqhIeElBMYNfpWLf3W/pZlbfdbtW6ph90wVL/yyl9qFbEpb2Kk6l0/9Dot7ZWbO1nk0UT/n/fXbU9qU+OcHslhBCMpY8GCP9ewlMe5Tzz5RCbdxkZiIdcG/59c9G285JxpF/951qZlr2USoohG/7J7924jbrxvafiTa4idwMGU7RQ7ls6EhHxyVRS9P5CWrQS0NiEhz/jF5rPPPjNZZPvSn12qu3Q9I/DjljkVtpNb37nW4kP+cgkJ+8xPhI9fBMjsXBmVmD59ei7XgXRbjt+H30BmLYtaFrs333zDHJJtaZs8F7T57dr70pz5fK0YyiiNpK9atcrvstZt64cRiVoxcRACGQJyLpDvJ9jfTvZabjaaNmtqbjrkBuBebw6YPBLNfiMh4/AQ3ZBzpVyA5Jwoj2TlfN67T2+9fPnyorZIJl7KJE/5lLddbExynWfl+iMjG2JXXV1tssm2vWGzfrLXMiJy/AnH1bhxlJuzQ3kSe7Fj+T8AAAD///CSuloAABV0SURBVO2dB3wVxb7H/yABSei9JrRgIBQB6RcUJNJFMCFcMSB6lSQELsUGPEXhWiihqPikygXE54eilASvooaiF5DQcukEEUQFqUoRVObNf96bdffknMM5OZvkHM5vPp9kZ6fPd/bs/nZ2SiEhDdlgxo0bS9NSp9Gy996n2NhYS4ohRYtQREQEHT2SbXHnkxUrVtBfHxlATZo0ocwdO5U/h2fTv39/Gjd2PFWoUIGWLF1CY8c+Tw8+2IdWrlip/N3902lcvHCJwsLCLEGvXbtGo8eMovnz51P37j1ozeo1hv+ZM2eoRs3q1KplK9qy5UvD3ZVF58NhQ4qEWIKdPHmCZr/9Nn3xxeeqftu2bqciRYqQjtOwYUN65R+vULt27emnn36icePH0Zo1q2nAgAG0ZPFSI9zlX65QsWLFLGm7OtFpp6ZOpxHDR7gKZpv7hx+usqQ18NGBVKVKFUqdlmq4lyhRgmJiHjDOc2PR9UocmkghIVbOOr2MjRmUlZVFkydPodGjRmvngDnqOgZMgYO0oHfccYf6PV69epXY3qFDR/r0k09vGxqXL1+mEydOULly5dRv2R8qpn8b7u6F8QPiadWqlbRg/kIaNGiQun9GR0fT7l17aO/evfTphk/p119/pcaNGqn7vr6PTJjwIiUnD6PKlSv7Q1VtLUN+tWUhu4RE+/bt6OsdX9ORw0eVaDDT4IugePHi1KlTZ7MzHTuWTQcPHlQPhrR1aYY/h69duzbt+89+y0OjYXQDFX//vgOWdJyd6Auva9du6seuw/CPPytrL507d079UDZv2kL169fX3uoYWb8enTp1in784TSVKlXK4ud4ovNxdNfnLBx69OhJc+fMpfLlyytnjlO4cGE6sP8g1alTRwelH3/8kSJqhVNUVBTt2b03IIRE0WLOH+pGpaSlbt26qq5mN2/tt+JsTg9CwkwD9rwgwOKYb9La/Hbjd23FMQ8I6N+/KyHB78P3tGyhBMP69PXUpUuMun82aNCAWrduTYsWLbKUiu+7H6//l3rOWDxwkjsCLCTsMKXLlBL89/vvv+dIrkjIHaLYnUVFzfAalr+7mzUVT/ztcZGZmWmJw+ETBj1qceOTzvd3FnXr1THc35r9lqgXWVdw+Fq1I8SLL74gfvvtN+XPbvwnexcseYZH1FTpyN4NIcWCkZbZ0qNnDyEvXCGFkXL2JB8OM2fuHPU3bFiyKFEyTFSrXlVs/3q7OWll53JJUZTDnR3CSoSKu6LqK7/oRg1VHfbs2eM0rDNHXe9Zb8xy5m27m3wDEOa/4qF3itp1alncPvnkXz7nq+sle26EFINO/xKThipeqdNTVX7cJo2bNFJuJUuVEF27dRXyzcTnsiCB24vApUuXBF+3+hpzPEqxLMqWKyP4WLFSBdE/vr9Yvny5+OGHH24vEH5cG90mhw4dEsePH7f8bdy0UTwc+7Bqv6gGd4nr16+rmug4/MxYvHixyM7OFlu3bRVdYrqosEMef8yPaxxYRSO7issPXv6xOTPcoGYB4CyM2Y3DP/7EELOTspuFBD+0+cf/xptviG+++UasXLlCVKpcUTz77DMqrL6I5FtDjnRu5fBQ34eUkOAL1NN8ZJeZJdmMjC9EaFhxUbVaFbEjc4fFj8vW9O4mFjd9YhYSTw19Ul3ws9+erb2dHvnByaKDH5y63vklJBwLxALKVd0cw3pzruvlrj1ZwHE45jFj5gx1ffDxyJEjYtv2baJX716iXPmy4rvvvvMma4S9zQmMGjVSCX99jfGRf4d8rFylkoiXwoHvA7L3VNy8efM2p+Gf1TO3jSt7hw5/ESdPnjQqwOH4ubRv3z7DjS3ys41y5xdZGHsI2CYkuDeC3/q0GjQXjxvUbiHx0ksTxPjx48zZiJSUYaJBwyjlpi82dw8eS2TTScwDMUaPhKf5OAoJTo4FAJeDe0vOnj1r5MBurh62ZiGxectmFb/+XZHCVT3YvU7d2ircsmXL1JHTD3YhMTTxKfHMM08bzNny888/Kz7vzHnH4o6T4CWQlpamrok7ixcT/FelamXRv3+ckF3h6gUFwsE/rg19P+de55cnvqz+uBeCe4mq16gmvvzqyxwF5Th873RmzPdZZ/5w846AbUKiXbu26uF79OjRHCXgBrVbSDhmwl1ecmyDGDFiuPLSF56rB7BjfPM5P/i5t4O7PB2Nq3ycCQmO2+ehPupG9diQwUZSXDZPhARHiJM3NQ7fs1dP1Z1nJCItckyFkX6r1i3VZyVd72AXEmZO2s6fNZiPHCCqnXAMcgI7d2YK7g6fO2+uEg5BjsNvq6/va473Wf7ExL0OfO93fPZwHE/vs35b8QApmG1CgscccIPyW7Gj4QbNKyHB4xx4nAQr0+Ytmonz58+r7PWF562Q4G5vroccPGqpxq3ycbzAdeTvv/9efVfl8vBYAjbeXOBXrlwRPGaD4/A4k/vuu1d99uHPL/wZgd1b3NPcGO/B5/xXUEJC19vuo66Xu/Y0f9pwzJ/blcdLsODS42gcw+AcBEDAPwno37+z+yz3ULB/o8bRgu+X2rAbhISmkbdH24QEfz/kB11sXGyOEnOD5pWQ4IF3+/fvF1u+3CLu73K/eru4cOGCurA4X3cPnhwFlQ5vvvWmEhLz5s2zeN8qH2cXuE5g6dKlqjw82PT06dPK7s0Fzg8+TqN7j+6GKGER0bZtGzUWgMumDdeZ/yAkNBEhdu7cqT4vsdDE+Ig/ucAGAoFCQN/XnN1n+f7YsWMHdd977rlnjSpxHG/us0ZEWLwmYNv0T54z8sjAv8p1ENaoqX41a9Y0ppHwWhFhYaFq7q7h6MbC4SNqRVDLe1paQsnBj3T1yhWX6fD0SfmwpoUL3lXTTTly3759LdM/LQk6nMjvoSTf7kl+SyeeYupq7QZn+fTr109N6XRI0jhdu3YNXb9+g5o1a0a7du2i0qVLOV1bgddl4Kmy3bp1N+J6Y2F2bJo2bUqRkZHeRPXrsLpe7tpTCgY5pfiYWrNDT+mdOWsm8RonHO+d/55DJUuW9Ot6onAgAAI5CcheYuXoavrngQMHqHWbVmqdiIyMjdSubTvLOhKOKcoXMapRowYdPHDI0QvnuSHgtfRwE+Hbb79VMzeSk5PchLLHKykpUSxcuNCSGE8NZBXKA6VyYz744APVG2H+hp4X+eSmbIjjHQF+S+GpxTxLY8GCBd5FRmgQAAG/IuCuR0IXdPKUyer+zzPYuJcWPRKaTN4fbe2RYCEjH+40LCVZrQrZonmL3Ggbj+IMGpxAGzZsoI8+Wq1WoZRzuikxKZHk4CnatXO3Wg3To4T+P9Avv/xCcjqQXKWuAy16959GVLvzMRKGJU8JvPb6azRp0kSaOnUaNZIr2ZlN9WrVqV69emYn2EEABPyEgJzOT4sX/5N69e5N+hkyUf6W2YwfN95lD/Mff/xBU6dNpRs3blDvXr1p7bq1VKlSJeLVcB3Nq6+9qhYbTBmWoryk8KDt27epVUp5tVIYLwnkhVZ5+ukxgufomge+2J0Pj33gRat4Gk+p0iXV+AxeZ8KbxZvMZfrbk0+ITp3uyzGmwu58zHnCnncEuCdCv8U4HkeO/HveZYyUQQAEvCbAa728Pvl1cffdTdXvtkLF8iI9Pc3rdHIb4bPPNqjeaF6LKGV4iti0eZOQwiS3yQVdPNt7JLzUMT4Hlw/6fFkXPr/y8RkIEgABEACBACAgp9LTSrk3hlxMUC1tzUUuVKgQJSUm0UsvvUxly5bN11pkyt7sp5560ihL1apVKfbhWIqNi6M2rdu4HQOXrwX1w8wCXkj4IVMUCQRAAARAwAkBucqkEg9yKjyx3Wzay80LZ816Qw0UN7t7Y5cz+OjipYtqsKU38XRYucUDyRlvUshMUAM3tTsPzGRRESc3kuRJACx4YP4kACHxJwvYQAAEQAAEbCQg+/jVjrwsHLj3gTdpdDS8W/CUyVPVrse+PqB5bNThw4fo3YWLHLPx6pxnfyUPSyb5ySNHPN7JOi42TvVUNG/WHKJCEoKQyHGZwAEEQAAEQCC3BFg88BR3LR7kipNOk+JBjSP/PpLGj/8v26Zl2yUkuMBcj/fff59Gjxmldot2VgneRZRFRVxcfzXt3Fch5CyPgHALulEhqDAIgAAIBBgBxwHD5nNe0p93JDXvNMz+rhZj8qbq5nzM9vIVyol77+2odkE1p8dTMHm5anNYZ3beiVeu/WCOaotdzsYQ5u0I7EiUlxXgNJ3Vw+zGOzrz5oBms27dWjHw0UfUTtAclvdzkdudi1defSXHwH6dViAuJogeiYCQeygkCIBAMBPQCzINHjyYihT5v8WZNI8D+w/QV//+iooWLUpr16ylzp3vd7sYk47nyZHzLVGiBMXHx1uCy32IKD09nXja5Nw582jIkCHKXz4g1fgCS2DTSXh4OKVOS6U+fR7Kk08CdvZImIqtrPyZIyk5iXh6qjNTsWJFOnL4qFx8MYx4OYGEQQmUlrZOLWzYseO9FB5eky5cuEiff/4ZXbx4UfVgrFubRjyok41u49TU6TRi+AhnWfivm1k9wQ4CIAACIOB/BPTbKk9Hd2b4DZfDtG7dSnmz3a4eCVfbG/DbN29uGB5R0ygS73XE0/F1efUxNKy44J2U83JJAC5EXvRIGJWTFi4/7yvFezvpuulj6vRUIyhvFcHuffv1FXKNI8OdLbwZJO9cyv68tLeeZqrTCcQeCdv22rCQwgkIgAAIgIBtBPRDxpWQYHcOww84ftixXQsJ3mKbN7aSS8WL9957z6uHOafjSkhw5Xi/Hw5z8uRJo65jxoxWbuzOf7zBYHZ2tuGfl5a8FhK67HIMiBJtuo5Vq1UxPlWsWbPa4G/eB0nH5aPssRA1alZX4T7+eL3y0mlBSJhJwQ4CIAACIGALAf2QcSUk9EaFvEAfb2zF4Xmp6PgB8cqu4/Mxola44E0WPTEc3p2Q4O/9HObMmTNGcvwGzj0QvD37+vXphnt+WPJLSHBd5FRRIffyUT0w5t4IHq/CTObMneO2yixGzFufcxz+g5Bwiw2eIAACIAACuSGgHzLOhAS/9SYmDVUPod4P9lbJ6/BNmjYWcsNAce7cOSUe+j3cT4V7NGGgR8XgdFwJieXLl6u0eFddRyPHEyhB4+ie1+f5KSR0XY4fP270RrBb9RrVFJfDhw/rIB4ddZsFopDAYEv/Hb6CkoEACICAIqAH4nXt2s2y1wQPdszK2qumJ5YrV442b9pCvPMthy9cuLDaiZmnKGrDOxfLHgmKioqiPbv3ameXR06HdyPu1KmzJcyxY9lqTYiQkBBKW5eWw98SOB9P8nKwpafV0G115fJVNQDW23iBONgSQsLTVkY4EAABECggAvrhxIs3mdcqYHu9epHUulUrSkkZTtWqVVMl5PAsKPb9Z3+OEpu30J799myaOXMGybdqta32oIRB9MILLxozQzgdXu+BN78ym/Lly1OLFi0oOWkYNW/e3OxVoHZ/EBJyiifxBmKXLv5MoaGhHvPQbQwh4TEyBAQBEAABEPCUgH7IXLxwSU0vvFU8Dh8dHU27d+3JEVQLidGjx5DcwI4mT56idsvknZN5euNjgx9TbhyR0+GVHI8eyc6Rjj86+IOQ4F2kefnvbVu3uxVZciyL6rHgniM2uo0DUUhg1oZHX68QCARAAAQKjoD+fu5sjISzUnF4PWvD0Z8HZN4VVV9Nxxw/fpzFOyVlmGjQMMpwczdGwgjkR5aCGCPhWP0RI4arMRJTpk5x9LKc80wa3qV40j8mKXfdxhgj4Y8SFWUCARAAgQAnoN9W7eyROHjgkIWKHBxIvXr3pO7duqvNs9gTPRIWRB6dZGVlkZzNQpUrV6ZdO3cTfwZyNHLwKzVqHE1nz55Vi4h1k8x1G6NHwqK3cAICIAACIGAHAf22amePhC7XqVOnRL3IumoNCp6BcV4uKqUNeiQ0Ce+Ow4enGDNaMjZmiJs3bxoJZGZmilatWyr/Xr17GX66jdEj4Si7cA4CIAACIOAzAf22mhc9EteuXVODLc9fOE8TJkygU6e+o39/tZXKlCmDHolctpwUDiQ/cZBcS0KlwINk69SuQ8xY74Daq1dvWrJ4iVqCnAPpNg7EHgnM2sjlhYJoIAACIJBfBFasWKGy6tu3r2X6p6v8OXzp0qUoJuaBHEE+/HCVmtLJ3emOhqeH1gyvQQsXvEsJCQnE6YSFhVL37j0cg/rluT8MtjSD2ZG5g/5H7iC6Y8cOunDxAhW/szhFN4qm/nK3UJ7Kaza6jZs2bUqRkZFmL7+3Q0j4fROhgCAAAiBgP4FkOUOjZctWxoZbnAN/s5fLPdP8eQuINwgLNONvQiLQ+OW2vBASuSWHeCAAAiAQwAQGDU6gDRs20EcfraZWUlDIpa0pMSmReBooDxKsUKFCwNUOQqJgmgxComC4I1cQAAEQKFACcnMvuW5EIq1atUp9Lrl+/Tq1b/8XmjF9htriukALl8vMISRyCc7HaBASPgJEdBAAARAIZAJyJgidOHGCeIltHhQYyCYj4ws6ffoMxcfHB3I1Aq7sEBIB12QoMAiAAAiAAAj4DwEICf9pC5QEBEAABEDAQwJ6uqS7KbFypU41BZOXAR89arSHKSOYtwQgJLwlhvAgAAIgAAIFTgBCosCbwCgAhISBAhYQAAEQAIFAIQAh4T8tBSHhP22BkoAACIAACHhIAELCQ1D5EAxCIh8gIwsQAAEQAAF7CUBI2MvTl9QgJHyhh7ggAAIgAAIFQkALieefe17uU1HUaRnWp6cTL1ONwZZO8djmCCFhG0okBAIgAAIgkF8EtJDwJD8ICU8o5T4MhETu2SEmCIAACIBAARHQQmLvniwKDQ11WooXJ7xAy5YtQ4+EUzr2OUJI2McSKYEACIAACOQTAS0ksI5EPgF3kw2EhBs48AIBEAABEPBPAhAS/tMuEBL+0xYoCQiAAAiAgIcEICQ8BJUPwSAk8gEysgABEAABELCXAISEvTx9SQ1Cwhd6iAsCIAACIFAgBCAkCgS700whJJxigSMIgAAIgIA/E5g4aaIq3tjnx1JISIjToqanp8l1JDIpJiaG2rZp6zQMHH0nACHhO0OkAAIgAAIgAAJBSwBCImibHhUHARAAARAAAd8JQEj4zhApgAAIgAAIgEDQEoCQCNqmR8VBAARAAARAwHcCEBK+M0QKIAACIAACIBC0BCAkgrbpUXEQAAEQAAEQ8J0AhITvDJECCIAACIAACAQtAQiJoG16VBwEQAAEQAAEfCcAIeE7Q6QAAiAAAiAAAkFLAEIiaJseFQcBEAABEAAB3wlASPjOECmAAAiAAAiAQNAS+F8XYC4ziuSlZgAAAABJRU5ErkJggg== />
Answer to Question 5

One example is shown below.

Answer to Question 6

The phosphorus-containing product is water soluble, allowing for the separation of the alkene from the reaction mixture by a simple aqueous extraction.

Answer to Question 7



Answer to Question 8

First combine fractions 6-10 and then evaporate off the solvent to isolate the compound. Combine fractions 3-5, evaporate off the solvent and add this mixture to a new column. In addition, one could collect smaller fractions or use a more non-polar solvent system to more effectively separate these two compounds.

Answer to Question 9

If product were dissolved in the eluent when elution began, it would result in the continuous addition of product to the column throughout the separation. This would lead to little or no separation of the product(s).



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
 

Did you know?

Human neurons are so small that they require a microscope in order to be seen. However, some neurons can be up to 3 feet long, such as those that extend from the spinal cord to the toes.

Did you know?

The lipid bilayer is made of phospholipids. They are arranged in a double layer because one of their ends is attracted to water while the other is repelled by water.

Did you know?

Anti-aging claims should not ever be believed. There is no supplement, medication, or any other substance that has been proven to slow or stop the aging process.

Did you know?

In 1835 it was discovered that a disease of silkworms known as muscardine could be transferred from one silkworm to another, and was caused by a fungus.

Did you know?

More than 34,000 trademarked medication names and more than 10,000 generic medication names are in use in the United States.

For a complete list of videos, visit our video library