Author Question: Provide an example of a phase-transfer catalyst other than the one used in this ... (Read 15 times)

biggirl4568

  • Hero Member
  • *****
  • Posts: 551
Provide an example of a phase-transfer catalyst other than the one used in this experiment.

Question 2

Identify each of the following reactions as an oxidative addition or reductive elimination.
 
Question 3

ByGsFEzhcExkpxh3Wqz88IkmApxqyAtMgpiNYgv8rlSewm+mykOjpfbD3BELFgzwAAABVy2fxjEOhAzxNnxvnJszxZKfaE9GskvCImT4zRhXow8PlooyIkMl8dZlskLGcVbeaKA2FGbdH5gCMRwpaFHijLjEmU80bOF/IRIiJUg7hRlx4bJfR8WZbIiR22E4hgJZ2OI36YLA2NkNphmrmg0L8yGw5bOBdcC5lOQGRcs88WSeKKk8FEOXJ5/gIwDxuUJ4uXcMLi6/GLkvqX5OdFye2wrLycoRlZn7KCoMHbUt7sALjBZHbBHWezQaPlc7/ILouNk3HAUhAMW8AdMIIYtDeSBLMDvGGgagP/JRgIBGwhBBuABa7lm1CNROiKA31hQBP6AiAdEY35+0lEeKIT6L2Na2dcapEtHC6Ue2eApxLm4Nu6Fe+Dh8OsDmz3uiruN+jGVR2clBhD9icHEQKLFGA8OZJ0DmxDw/40uDPY8mJ2Ei2A0h2/xCE8JXYRHhBuEHsIdkACeSKPIrWbwi4U/MGeCCNADowXKs0v7PjvcFLJ2wv1wT8gfcscZuDawxh1hJr64N8zNCWq/Zyge4/atlj/OJ2H9fT5yvZKlkpOcRdrYL8Mas/oxCuu7GnFhH/ajJbYMO4xdwE5jl7BWrAkwsZNYM9aOHZfgsZXwRLoSRmeLkXLLhnH4oza29bb9tp9/mJstn19SL1EBb3aBZDOw8vLnCPkZmQVMX3ga85ghAo7NBKa9rZ0LAJKzXXZ0vGFIz2yEcfmbrlgZgEkfR0ZGWr/pwk0AOFIKAOXpN515DdyuiwG4WM4RCwtlOslxDAiAApThrtACesAImMN87IEz8AA+IACEgigQB5LBdFjxTJALOc8C88BiUArKwWqwHmwG28BOUAv2g0OgCbSC0+A8uAI6wQ1wD66LPvASDIJ3YBhBEBJCQ+iIFqKPmCBWiD3iinghAUg4EoMkI6lIBiJAxMg8ZAlSjlQgm5EdSB3yK3IMOY1cQrqQO0gv0o/8hXxCMZSKqqO6qCk6EXVFfdEwNA6dhmagM9EitARdiW5Ea9B9aCN6Gr2C3kB70JfoEAYwRYyBGWDWmCvGwqKwFCwdE2ILsDKsEqvBGrAW+Dtfw3qwAewjTsTpOBO3hmszGI/HOfhMfAG+At+M1+KN+Fn8Gt6LD+JfCTSCDsGK4E4IISQRMgizCKWESsJuwlHCObhv+gjviEQig2hGdIH7MpmYRZxLXEHcQjxAPEXsIj4mDpFIJC2SFcmTFEVikwpIpaRNpH2kk6RuUh/pA1mRrE+2JweSU8gCcjG5kryXfILcTX5GHlZQUTBRcFeIUuAqzFFYpbBLoUXhqkKfwjBFlWJG8aTEUbIoiykbKQ2Uc5T7lDeKioqGim6KkxX5iosUNyoeVLyo2Kv4kapGtaSyqFOpYupK6h7qKeod6hsajWZK86Gl0ApoK2l1tDO0h7QPSnQlG6UQJa7SQqUqpUalbqVXygrKJsq+ytOVi5QrlQ8rX1UeUFFQMVVhqbBVFqhUqRxTuaUypEpXtVONUs1VXaG6V/WS6nM1kpqpWoAaV61EbafaGbXHdIxuRGfROfQl9F30c/Q+daK6mXqIepZ6ufp+9Q71QQ01DUeNBI3ZGlUaxzV6GBjDlBHCyGGsYhxi3GR8Gqc7znccb9zycQ3juse91xyv6aPJ0yzTPKB5Q/OTFlMrQCtba41Wk9YDbVzbUnuy9iztrdrntAfGq4/3GM8ZXzb+0Pi7OqiOpU6MzlydnTrtOkO6erpBuvm6m3TP6A7oMfR89LL01umd0OvXp+t76fP11+mf1H/B1GD6MnOYG5lnmYMGOgbBBmKDHQYdBsOGZobxhsWGBwwfGFGMXI3SjdYZtRkNGusbRxjPM643vmuiYOJqkmmyweSCyXtTM9NE06WmTabPzTTNQsyKzOrN7pvTzL3NZ5rXmF+3IFq4WmRbbLHotEQtnSwzLassr1qhVs5WfKstVl0TCBPcJggm1Ey4ZU219rUutK637rVh2ITbFNs02byaaDwxZeKaiRcmfrV1ss2x3WV7z07NLtSu2K7F7i97S3uOfZX9dQeaQ6DDQodmh9eOVo48x62Ot53oThFOS53anL44uzgLnRuc+12MXVJdql1uuaq7RruucL3oRnDzc1vo1ur20d3ZvcD9kPufHtYe2R57PZ5PMpvEm7Rr0mNPQ0+25w7PHi+mV6rXdq8ebwNvtneN9yMfIx+uz26fZ74Wvlm++3xf+dn6Cf2O+r1nubPms075Y/5B/mX+HQFqAfEBmwMeBhoGZgTWBw4GOQXNDToVTAgOC14TfCtEN4QTUhcyGOoSOj/0bBg1LDZsc9ijcMtwYXhLBBoRGrE24n6kSaQgsikKRIVErY16EG0WPTP6t8nEydGTqyY/jbGLmRdzIZYeOyN2b+y7OL+4VXH34s3jxfFtCcoJUxPqEt4n+idWJPYkTUyan3QlWTuZn9ycQkpJSNmdMjQlYMr6KX1TnaaWTr05zWza7GmXpmtPz5l+fIbyDPaMw6mE1MTUvamf2VHsGvZQWkhaddogh8XZwHnJ9eGu4/bzPHkVvGfpnukV6c8zPDPWZvRnemdWZg7wWfzN/NdZwVnbst5nR2XvyR7JScw5kEvOTc09JlATZAvO5unlzc7ryrfKL83vmek+c/3MQWGYcLcIEU0TNReow2tOu9hc/JO4t9CrsKrww6yEWYdnq84WzG6fYzln+ZxnRYFFv8zF53Lmts0zmLd4Xu983/k7FiAL0ha0LTRaWLKwb1HQotrFlMXZi38vti2uKH67JHFJS4luyaKSxz8F/VRfqlQqLL211GPptmX4Mv6yjuUOyzct/1rGLbtcblteWf55BWfF5Z/tft7488jK9JUdq5xXbV1NXC1YfXON95raCtWKoorHayPWNq5jritb93b9jPWXKh0rt22gbBBv6NkYvrF5k/Gm1Zs+b87cfKPKr+pAtU718ur3W7hburf6bG3YprutfNun7fztt3cE7WisMa2p3EncWbjz6a6EXRd+cf2lbrf27vLdX/YI9vTUxtSerXOpq9urs3dVPVovru/fN3Vf537//c0N1g07DjAOlB8EB8UHX/ya+uvNQ2GH2g67Hm44YnKk+ij9aFkj0jincbAps6mnObm561josbYWj5ajv9n8tqfVoLXquMbxVScoJ0pOjJwsOjl0Kv/UwOmM04/bZrTdO5N05vrZyWc7zoWdu3g+8PyZC74XTl70vNh6yf3Sscuul5uuOF9pbHdqP/q70+9HO5w7Gq+6XG3udOts6ZrUdaLbu/v0Nf9r56+HXL9yI/JG1834m7dvTb3Vc5t7+/mdnDuv7xbeHb636D7hftkDlQeVD3Ue1vzD4h8Hepx7jvf697Y/in107zHn8csnoief+0qe0p5WPtN/Vvfc/nlrf2B/54spL/pe5r8cHij9Q/WP6lfmr4786fNn+2DSYN9r4euRv1a80Xqz563j27ah6KGH73LfDb8v+6D1ofaj68cLnxI/PRue9Zn0eeMXiy8tX8O+3h/JHRnJZwvZ0qsABhuang7AX3sAoCUDQO+E9wcl2dtLKojsvShF4D9h2ftMKs4ANMBOcuVmnQLgIGxmENMWASC5esf5ANTBYazJRZTuYC+LRYUvGMKHkZE3ugCQWgD4IhwZGd4yMvJlFyR7B4BTM2VvPokQ4f1+u6MEdTNmLwI/yD8Bd0Rs573ioiIAAAAJcEhZcwAAFiUAABYlAUlSJPAAAAGcaVRYdFhNTDpjb20uYWRvYmUueG1wAAAAAAA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJYTVAgQ29yZSA1LjQuMCI+CiAgIDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+CiAgICAgIDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiCiAgICAgICAgICAgIHhtbG5zOmV4aWY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vZXhpZi8xLjAvI

Question 4

j4KICAgICAgICAgPGV4aWY6UGl4ZWxYRGltZW5zaW9uPjMzMDwvZXhpZjpQaXhlbFhEaW1lbnNpb24+CiAgICAgICAgIDxleGlmOlBpeGVsWURpbWVuc2lvbj43MDwvZXhpZjpQaXhlbFlEaW1lbnNpb24+CiAgICAgIDwvcmRmOkRlc2NyaXB0aW9uPgogICA8L3JkZjpSREY+CjwveDp4bXBtZXRhPgoc0SEOAAAAHGlET1QAAAACAAAAAAAAACMAAAAoAAAAIwAAACMAAAYNU8Lu4gAABdlJREFUeAHsnVtMFUcYx9cg94uADa2iUrViK4i0BVsT++DBQhNBa4VqL/SCrReSmprUt/piI32wgDbSWAtvhBdqTU0r+FJMbKw0AuH2UHjh9sALlwAh3L/uN8mQsxwOw56zR/cc/5Ns5ux+s3N2fvN9/zMzO4Q1pCcNCQRAAARAwC2BNRBKt2xgAAEQAAFBAEIJRwABEAABBQEIpQIQzCAAAiAAoYQPgAAIgICCAIRSAQhmEAABEIBQwgdAAARAQEEAQqkABDMIgAAIQCjhAyAAAiCgIAChVACCGQRAAAQglPABEAABEFAQgFAqAMEMAiAAAhBK+AAIgAAIKAhAKBWAYAYBEAABCCV8AARAAAQUBCCUCkAwgwAIgACEEj4AAiAAAgoCEEoFIJhBAARAAEIJHwABEAABBQEIpQIQzCAAAiAAoYQPgAAIgICCAIRSAQhmEAABEIBQwgdAAARAQEWA/wuj2TQxMUFrg4NWddy+/ZvZ6v2ifF3dXfq48CPamLhBcAgLD6WMzNep5PsSmpycNLRBsrr24zXDdZyAgL8SeBIaYKcY82hEOTMzo50tPuNWg7v+69IeNT4S9nv19zSHI8ttWX8z6CKoFX5SqN2587sWFBSk7d//lpaUtEUbHh7R7t9v0HQH0tLT07U//7irJSQkiOYFh6wVeWlpmXbuq3P+1mQ8Lwi4EPClBtgyxqz+Revv76fETRvFKOv8+a+trv6p1/fBhydE2w7lHqKBgQHD84yMjFDe4TxhdzgO0MLCgrBjRGnAhJMAJ+CtBtgxxjQr+2x4eJhefS1dCMWx/GM0Pz9vZfWm6oqMiqC0PbtN3aMqzFMBFr1dKa8QTz2WS6Ojo/TChudFOS7PCUK5HClca21tpdnZ2YAC4a0G2DXGLBNK7nA5muK1uvHx8UUHcGQ56OQXRdTV1UX5Bfm0LjZGiAcL2fWK64vlrPzgC6GUv3QVP1Ws+KgP/3lILS0tGFGuSOnZNupLUyIG9GUZysnJpqtXy6m3t9evoVihAXaNMcuEsrj4rOj4rdtedJmS8oiKR1k8JU9J3UWfff4pZevOwU7Ctpu/3LTcQXwhlFuSNovn7ezsNPW8GFGawvVMFOZlmb1vZC7GQFR0JEVEhtOmzYlUdLKIqqurqa+vz69YWKEBdo0xS4SyrLxMCEhcfKwYSS3tXSkUl767ZDDV1taK+/bte9Nw3ZOTqqoqcj7CI8KIoTtf4+/zJsl2TE1NmapG3oe33qawBXzhjo4O4t0S0j9kzgMInnVxnpKaQhcvfksNDX+57KawEyCrNEAysFuMeS2Ut279SiGhwaLD5Zrc0g7kxsesi6bp6WmDic9Z0Ha+nGy47smJBLxS7u33yLrt1ome8MI99iDgyDrgIpTSz2QeGhZCcfFxIlYyMjPoyg9XqKmpifQ3z7ZohJUaINtstxjzSigfNz3WOzBWdPRKoyVu/J70tGU7lafI3goYV8zrgs4HT2N2JL9kuNbc3LzsM6z2Ii8bcFt4Ed5Mkp0vGfG67O60VFFXdEwU5byTQ21tbWaqtLysfEbkq9sfbBdOvNPiaSarNcCuMeaxUJrZAsBO5WuhXOosvlijPHX6SyFuqpc5pWWlYi1WvqiSQcVCWa4v2vMomvPu7m5q/LeRcvNyKX59nMva7tI2+fJcPiNyewolT8XZpzl/O/sglek+Vl9f50uXUNbtCw2wa4x5JJRmtwAEilA++PuBEMrknTvcbg/ibUPbtm8V5WpqaoSzSfFhoTx95hRduPCNwQnHxsZE+Rs/3zBcx0lgE+jp6RHiJ/3DOZfCuP65eDp+4jhVVlYSvym3y3YiX2mAXWPMI6GU24BYENrb24k73N0xNDQkROBJjygz92bQ0feOWh5pBe8XiPbwhnNus3MaHBykI+8eEXZ+ozk3NyfMMgDk1Nv5Hv7M024uE6h/7rm0vTgnscc4S982x+uP3PfyrTePGrMOOuhyyWVi0ZA+ZDdmvtQAO8bY/wAAAP//8fd5nQAABEpJREFU7d29T1NRGAbwhyBaxJJYWLAEHRo1/fKjVSaVSYwOUokSMVHEQFUcdNH4McEAEROLmqjAplRKTYhff4AYXRTxiqJuDGVgIgEaCG040sY2Ia1yCmLwnqcJoT3nvbd9f2/vQ2EBYhG3VTnZQvaroeF8vHbbdmfaZ8pbt1Zs2bo57d5KXAyHw+LgoYPxntYYVouysn2i9sxpUeGpEOuMefF1l3unGBkZSb78hFXbnbbkWuJOKBQSDqdd7C7dJSKRSGKZ33UuoGla8hoqP7BftLQ0i743fWJmZua/6Dzxnpb5nmkGrMRrLCs2FWR4a2xqlD7C7XLhcMVh2Gw2fBrQUo6bCxcUFxfj+7cfKXsrdSEajSIQCKDL34UPH95jbGwMBoMBDrsDx6qq4K33Ijc3N/nyE17l5eUo3V2aXB8YGMCRSg9MJhOeP3sBs9mc3OMd/QsMDg7CarUiOzv7v2s28Z6WeeGLyYCVdo0tKihlcFjzZwFfmw/Xrl2Fx+PBg/sPYTQa/3wAdylAgYwE/uY1xqDMiH7pxbGflGfPedHb24vWm7dQW1u79JPyDBSgQFJgOa4xBmWS99/caW5pRtPcny5aW2/BbrfPe1LzBjMsFsu8NT6gAAUyE1iOa4xBmdkMllxdUGjC+Ph42vNcaLiA27d9afe4SAEKyAksxzXGoJSzZxUFKKCwAINS4eGzdQpQQE6AQSnnxCoKUEBhAQalwsNn6xSggJwAg1LOiVUUoIDCAgxKhYfP1ilAATkBBqWcE6soQAGFBRiUCg+frVOAAnICDEo5J1ZRgAIKCzAoFR4+W6cABeQEGJRyTqyiAAUUFmBQKjx8tk4BCsgJMCjlnFhFAQooLMCgVHj4bJ0CFJATYFDKObGKAhRQWIBBqfDw2ToFKCAnwKCUc2IVBSigsACDUuHhs3UKUEBOgEEp58QqClBAYQEGpcLDZ+sUoICcAINSzolVFKCAwgIMSoWHz9YpQAE5AQblL6fYv5C9d+8uXve9xssXr5CTkyMnyCoKUED3AsoHZf/HfrS3P0QgEIDb7cbo6CgKCwrh9z9BUVGR7t8AbJACFFhYQMmgnJycRHd3Nzo62zE8PIyaUzWoq6uHxWJBJBLBlSuX0RPsiYfl3j17F1ZkBQUooGsBpYJS0zR0dLSjy98Fh90Br/csKisrYTAYUoYc+4R5vuEcrl+/gUsXLyErKyulhgsUoIAaAroPyqmpKQSDwfiv11++fsGJ6hPxgHQ6nQtOeGhoCMeqjsJqtaGzoxP5+fkLHsMCClBAfwK6DcpYyMU+PT56/AglJSXxcKw+Xg2j0Zh2itFoFNpnDa6drnn7ExMTqKuvw+e5vWDPU9hstnn7fEABCiggIHR0m56eFn6/X5SV7RNr83LFqZqT4u27t2J2dva3XYZCIdHY1Cg2bioR23dsE+FwOKU2dryvzSdMBevj508p4AIFKKBrgZ9tiSeZW446tgAAAABJRU5ErkJggg== />
 
Question 5

Based on your background reading about the Wittig reaction, propose a synthesis of the phosphorane used in this experiment, starting with triphenylphosphine and whatever other commercially available reactants and reagents you choose.

Question 6

The Horner-Wadsworth-Emmons reaction is a commonly used variant of the Wittig reaction. What feature of this reaction, shown below, is particularly useful compared with the Wittig reaction? Hint: Consider the structure of the product(s).
 

Question 7

A researcher used column chromatography to separate two compounds. The desired compound, which was quite valuable, had an Rf approximately equal to 0.5. Two-mL fractions were collected, giving the TLC results shown below. Based on these results, explain what the researcher needs to do to maximize recovery of the desired compound, including the use of additional separations.



katara

  • Sr. Member
  • ****
  • Posts: 305
Answer to Question 1

Tetraoctylammonium bromide is just one of many possibilities.

Answer to Question 2



Answer to Question 3



Answer to Question 4

iVBORw0KGgoAAAANSUhEUgAAAhIAAAB4CAYAAACnzRuqAAAMFGlDQ1BJQ0MgUHJvZmlsZQAASImVVwdUk8kWnr+kEBJaIAJSQm+C9Co19C4dbIQkQCgBE4KKHVlUcC2oWMCGroIouhZAFht2ZRGw1wcqKsq6uIoNlTcpoOtr513O/PNx5947372ZmTMDgLItOz8/B1UBIFdQIIwJ8mMmJacwSb2ACEhAEf5NZHNE+b7R0eEAymj/d3l3EyCS/pq1JNa/jv9XUeXyRBwAkGiI07giTi7ERwDANTn5wgIACO1QbzSrIF+CByFWF0KCABBxCc6QYU0JTpPhCVKbuBgWxD4AkKlstjADACUJb2YhJwPGUZJwtBVw+QKIqyH24mSyuRDfh3hCbm4exMpkiM3TvouT8beYaWMx2eyMMSzLRSpkf74oP4c95/8sx/+W3Bzx6ByGsFEzhcExkpxh3Wqz88IkmApxqyAtMgpiNYgv8rlSewm+mykOjpfbD3BELFgzwAAABVy2fxjEOhAzxNnxvnJszxZKfaE9GskvCImT4zRhXow8PlooyIkMl8dZlskLGcVbeaKA2FGbdH5gCMRwpaFHijLjEmU80bOF/IRIiJUg7hRlx4bJfR8WZbIiR22E4hgJZ2OI36YLA2NkNphmrmg0L8yGw5bOBdcC5lOQGRcs88WSeKKk8FEOXJ5/gIwDxuUJ4uXcMLi6/GLkvqX5OdFye2wrLycoRlZn7KCoMHbUt7sALjBZHbBHWezQaPlc7/ILouNk3HAUhAMW8AdMIIYtDeSBLMDvGGgagP/JRgIBGwhBBuABa7lm1CNROiKA31hQBP6AiAdEY35+0lEeKIT6L2Na2dcapEtHC6Ue2eApxLm4Nu6Fe+Dh8OsDmz3uiruN+jGVR2clBhD9icHEQKLFGA8OZJ0DmxDw/40uDPY8mJ2Ei2A0h2/xCE8JXYRHhBuEHsIdkACeSKPIrWbwi4U/MGeCCNADowXKs0v7PjvcFLJ2wv1wT8gfcscZuDawxh1hJr64N8zNCWq/Zyge4/atlj/OJ2H9fT5yvZKlkpOcRdrYL8Mas/oxCuu7GnFhH/ajJbYMO4xdwE5jl7BWrAkwsZNYM9aOHZfgsZXwRLoSRmeLkXLLhnH4oza29bb9tp9/mJstn19SL1EBb3aBZDOw8vLnCPkZmQVMX3ga85ghAo7NBKa9rZ0LAJKzXXZ0vGFIz2yEcfmbrlgZgEkfR0ZGWr/pwk0AOFIKAOXpN515DdyuiwG4WM4RCwtlOslxDAiAApThrtACesAImMN87IEz8AA+IACEgigQB5LBdFjxTJALOc8C88BiUArKwWqwHmwG28BOUAv2g0OgCbSC0+A8uAI6wQ1wD66LPvASDIJ3YBhBEBJCQ+iIFqKPmCBWiD3iinghAUg4EoMkI6lIBiJAxMg8ZAlSjlQgm5EdSB3yK3IMOY1cQrqQO0gv0o/8hXxCMZSKqqO6qCk6EXVFfdEwNA6dhmagM9EitARdiW5Ea9B9aCN6Gr2C3kB70JfoEAYwRYyBGWDWmCvGwqKwFCwdE2ILsDKsEqvBGrAW+Dtfw3qwAewjTsTpOBO3hmszGI/HOfhMfAG+At+M1+KN+Fn8Gt6LD+JfCTSCDsGK4E4IISQRMgizCKWESsJuwlHCObhv+gjviEQig2hGdIH7MpmYRZxLXEHcQjxAPEXsIj4mDpFIJC2SFcmTFEVikwpIpaRNpH2kk6RuUh/pA1mRrE+2JweSU8gCcjG5kryXfILcTX5GHlZQUTBRcFeIUuAqzFFYpbBLoUXhqkKfwjBFlWJG8aTEUbIoiykbKQ2Uc5T7lDeKioqGim6KkxX5iosUNyoeVLyo2Kv4kapGtaSyqFOpYupK6h7qKeod6hsajWZK86Gl0ApoK2l1tDO0h7QPSnQlG6UQJa7SQqUqpUalbqVXygrKJsq+ytOVi5QrlQ8rX1UeUFFQMVVhqbBVFqhUqRxTuaUypEpXtVONUs1VXaG6V/WS6nM1kpqpWoAaV61EbafaGbXHdIxuRGfROfQl9F30c/Q+daK6mXqIepZ6ufp+9Q71QQ01DUeNBI3ZGlUaxzV6GBjDlBHCyGGsYhxi3GR8Gqc7znccb9zycQ3juse91xyv6aPJ0yzTPKB5Q/OTFlMrQCtba41Wk9YDbVzbUnuy9iztrdrntAfGq4/3GM8ZXzb+0Pi7OqiOpU6MzlydnTrtOkO6erpBuvm6m3TP6A7oMfR89LL01umd0OvXp+t76fP11+mf1H/B1GD6MnOYG5lnmYMGOgbBBmKDHQYdBsOGZobxhsWGBwwfGFGMXI3SjdYZtRkNGusbRxjPM643vmuiYOJqkmmyweSCyXtTM9NE06WmTabPzTTNQsyKzOrN7pvTzL3NZ5rXmF+3IFq4WmRbbLHotEQtnSwzLassr1qhVs5WfKstVl0TCBPcJggm1Ey4ZU219rUutK637rVh2ITbFNs02byaaDwxZeKaiRcmfrV1ss2x3WV7z07NLtSu2K7F7i97S3uOfZX9dQeaQ6DDQodmh9eOVo48x62Ot53oThFOS53anL44uzgLnRuc+12MXVJdql1uuaq7RruucL3oRnDzc1vo1ur20d3ZvcD9kPufHtYe2R57PZ5PMpvEm7Rr0mNPQ0+25w7PHi+mV6rXdq8ebwNvtneN9yMfIx+uz26fZ74Wvlm++3xf+dn6Cf2O+r1nubPms075Y/5B/mX+HQFqAfEBmwMeBhoGZgTWBw4GOQXNDToVTAgOC14TfCtEN4QTUhcyGOoSOj/0bBg1LDZsc9ijcMtwYXhLBBoRGrE24n6kSaQgsikKRIVErY16EG0WPTP6t8nEydGTqyY/jbGLmRdzIZYeOyN2b+y7OL+4VXH34s3jxfFtCcoJUxPqEt4n+idWJPYkTUyan3QlWTuZn9ycQkpJSNmdMjQlYMr6KX1TnaaWTr05zWza7GmXpmtPz5l+fIbyDPaMw6mE1MTUvamf2VHsGvZQWkhaddogh8XZwHnJ9eGu4/bzPHkVvGfpnukV6c8zPDPWZvRnemdWZg7wWfzN/NdZwVnbst5nR2XvyR7JScw5kEvOTc09JlATZAvO5unlzc7ryrfKL83vmek+c/3MQWGYcLcIEU0TNReow2tOu9hc/JO4t9CrsKrww6yEWYdnq84WzG6fYzln+ZxnRYFFv8zF53Lmts0zmLd4Xu983/k7FiAL0ha0LTRaWLKwb1HQotrFlMXZi38vti2uKH67JHFJS4luyaKSxz8F/VRfqlQqLL211GPptmX4Mv6yjuUOyzct/1rGLbtcblteWf55BWfF5Z/tft7488jK9JUdq5xXbV1NXC1YfXON95raCtWKoorHayPWNq5jritb93b9jPWXKh0rt22gbBBv6NkYvrF5k/Gm1Zs+b87cfKPKr+pAtU718ur3W7hburf6bG3YprutfNun7fztt3cE7WisMa2p3EncWbjz6a6EXRd+cf2lbrf27vLdX/YI9vTUxtSerXOpq9urs3dVPVovru/fN3Vf537//c0N1g07DjAOlB8EB8UHX/ya+uvNQ2GH2g67Hm44YnKk+ij9aFkj0jincbAps6mnObm561josbYWj5ajv9n8tqfVoLXquMbxVScoJ0pOjJwsOjl0Kv/UwOmM04/bZrTdO5N05vrZyWc7zoWdu3g+8PyZC74XTl70vNh6yf3Sscuul5uuOF9pbHdqP/q70+9HO5w7Gq+6XG3udOts6ZrUdaLbu/v0Nf9r56+HXL9yI/JG1834m7dvTb3Vc5t7+/mdnDuv7xbeHb636D7hftkDlQeVD3Ue1vzD4h8Hepx7jvf697Y/in107zHn8csnoief+0qe0p5WPtN/Vvfc/nlrf2B/54spL/pe5r8cHij9Q/WP6lfmr4786fNn+2DSYN9r4euRv1a80Xqz563j27ah6KGH73LfDb8v+6D1ofaj68cLnxI/PRue9Zn0eeMXiy8tX8O+3h/JHRnJZwvZ0qsABhuang7AX3sAoCUDQO+E9wcl2dtLKojsvShF4D9h2ftMKs4ANMBOcuVmnQLgIGxmENMWASC5esf5ANTBYazJRZTuYC+LRYUvGMKHkZE3ugCQWgD4IhwZGd4yMvJlFyR7B4BTM2VvPokQ4f1+u6MEdTNmLwI/yD8Bd0Rs573ioiIAAAAJcEhZcwAAFiUAABYlAUlSJPAAAAGdaVRYdFhNTDpjb20uYWRvYmUueG1wAAAAAAA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJYTVAgQ29yZSA1LjQuMCI+CiAgIDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+CiAgICAgIDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiCiAgICAgICAgICAgIHhtbG5zOmV4aWY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vZXhpZi8xLjAvIj4KICAgICAgICAgPGV4aWY6UGl4ZWxYRGltZW5zaW9uPjUzMDwvZXhpZjpQaXhlbFhEaW1lbnNpb24+CiAgICAgICAgIDxleGlmOlBpeGVsWURpbWVuc2lvbj4xMjA8L2V4aWY6UGl4ZWxZRGltZW5zaW9uPgogICAgICA8L3JkZjpEZXNjcmlwdGlvbj4KICAgPC9yZGY6UkRGPgo8L3g6eG1wbWV0YT4Kgk3/8AAAABxpRE9UAAAAAgAAAAAAAAA8AAAAKAAAADwAAAA8AAAN0uZA3zcAAA2eSURBVHgB7J15kBXFHccbl0vWA/Dg9OJYUBCTKKAVowgpxSgEjAp4gIoJKKClEhUNKikFTZXxIEYOi3CU5R8iGIgxWqAkUVMaA8LCLljIoVxquEFFxc78utKvZt7O252Z1++9AT9TtTUzPb/+dffn12/mOz09s/W0tygWCEAAAhCAAAQgkIBAPYREAmpkgQAEIAABCEDAEEBI0BEgAAEIQAACEEhMACGRGB0ZIQABCEAAAhBASNAHIAABCEAAAhBITAAhkRgdGSEAAQhAAAIQQEjQByAAAQhAAAIQSEwAIZEYHRkhAAEIQAACEEBI0AcgAAEIQAACEEhMACGRGB0ZIQABCEAAAhBASNAHIAABCEAAAhBITAAhkRgdGSEAAQhAAAIQQEjQByAAAQhAAAIQSEwAIZEYHRkhAAEIQAACEEBI0AcgAAEIQAACEEhMACGRGB0ZIQABCEAAAhBASNAHIAABCEDgkCPQoGF9U+ddO3er8vLy0PqPHj1KTZ02VT322O/UnXfcGWpDYv4EEBL5M8QDBCAAAQgUmQBCosjAaykOIVELHA5BAAIQgEA6CSAk0hMXhER6YkFNIAABCEAgIgGERERQRTBDSBQBMkVAAAIQgIBbAggJtzzz8YaQyIceeSEAAQhAoCQErJAYOWKkatCgQWgdlvx9iaqsrGSyZSgdd4kICXcs8QQBCEAAAkUiYIVElOJ4ayMKpeQ2CInk7MgJAQhAAAIlImCFxNYt23K+/nnnXXeo5557jhGJAscIIVFgwLiHAAQgAAH3BKyQ4DsS7tnG9YiQiEsMewhAAAIQKDkBhETJQ5CpAEIig4INCEAAAhA4VAggJNITKYREemJBTSAAAQhAICIBhEREUEUwQ0gUATJFQAACEICAWwIICbc88/GGkMiHHnkhAAEIQKAkBObOnWvKHThwoCorKwutw9KlS9W6detUt27dVEVFRagNifkTQEjkzxAPEIAABCAAge8tAYTE9zb0NBwCEIDA4UWgurpa7dm7R/Xs0fPwaljKW4OQSHmAqB4EIAABCEQjMOnRSerDD9eoP82YGS0DVk4IICScYMQJBCAAAQiUmgBCojQRQEiUhjulQgACEICAYwIICcdAI7pDSEQEhRkEIAABCKSbAEKiNPFBSJSGO6VCAAIQgIBjAggJx0AjukNIRASFGQQgAAEIpJsAQqI08UFIlIY7pUIAAhCAgGMCCAnHQCO6Q0hEBIUZBCAAAQikmwBCojTxQUiUhjulQgACEICAYwIICcdAI7pDSEQEhRkEIAABCKSbAEKiNPFBSJSGO6VCAAIQgIBjAggJx0AjukNIRASFGQQgAIE0ELD/PjusLm3btlU9vP8zMXbsWNX9nO7GROy7dOmiPli2PCxL5LS45UZ27NCw1EIiLqMk9i5i6RC5cYWQcE0UfxCAAAQKSMBefIYNG6bq168fKKm6qlq98693VMOGDdXCBQtV7959lNi7uPjELTdQsSLtpEVIxImNoIlj7yKWzsOhWSAAAQhA4JAhUL9BmZa/ffv2hdb5kYmPmOM9e/Ywx8X2rB90C7WNkxi33Di+XdlOnDRR33DjMFfuYvuJyyiJvYtYxm5YHRkYkXAuzXAIAQhAoHAE7MjArp27VXl5eY2C9u/fr5o2O1YdccQRaueOXerYpsdkRiRktGLRokXqwFdfeWld1YABA1STJk1q+AhLiFtuVL9hZSVNS8uIRJzYSFvj2NsRiXximZRvrnwIiVxkSIcABCCQQgJ1XdB37dqlTjjxeNWoUSO1/b871FFHl6tOnTqprl3PVC+9NDfQojZt2qjX/va6OR44ELITt1wpv9hL2oVEWGyEUS4hEWbvIpbO41LHiAWHIQABCEAgRQRqGw7/4osv9MhbRphHG/369zO1tvbdzjpTL1y4QG/fvl2vXr1aX/GLK4zddddfG6l11k/YI5WwciM5dWyU5kcbYYziMrX2+cbSMXbNiIRzaYZDCEAAAoUjYEcGLrmkryorK8sU5F2oVGXlCuUJBdW8eXP1z3+8pSoqKsxkS3nMUV21WrVr1y5jv23bNnXKqSerzp07q+UfrMik59qIW674keH3nt5bJP565vLvIj0tIxJxYiPtjmPvIpYuWPt9ICT8NNiGAAQgkHIC9oLesmVLVa9evUxtZbtDh47ehbuHGj16jGrdurU5JvYiKFatrMrY2g157CGvjK6uXmOSnvnjM+rJJ59QGzZsMOlDrx+qxo9/wLwdErfcTZs2qYpOHdX6dRtUixYtbJEFXRdLSHz00UdGlPn5S8PiMkpi7yKWzoPgeogDfxCAAAQgUDgCdng77BFDWKlin2umf/lRTXSnzhUm29RpU/WRTRrrpyc/rdevX6+9+RT6xBYn6Lvv/rU5Hrfc8eN/oy/vd3lYlQqWVqxHG6e1O9U8JspuSFxGSexdxDK73vnuMyLhXJrhEAIQgEDhCNi72FwT9LJLFns70z/7mH9EYsKEh9Q333yjHn74kYzZmDGj1eI3FquqVdWZu+0o5X7lvRXiXWzVtKnTVL9+/TP+9u7dqyZNmqgmTpyUSXO5UawRifvvv0+tqKw03+rw1z9JbCR/FKZi5yqW4svpkq8SIT8EIAABCBSPQKHuYrNbsGbNGt2xooO+7bYx5lCccmfPnq1PPuUk7QmTgNunnn5KX3zJxYE0lzuFGJF479/v6SlTpwSquXHjRt34yEZa1v4lDiPJl8Q+yoiEv06ynR3L7OP57qt8HZC/OAReffWvWmZXt27TynQ+6cTndD9byw9HZgOzQAAC3w8Chb74bN68WXfo2F43bNRA/+jsH+odO3YYsHHKPffcnvqhhx4MBOTbb7/V3pwJPXfui4H07777Th88eDCQlnSnEELi/f+8r5s1b6q973MEqnXlVVfWaGMcRuIsiX0cIZErloGGONgpiJAYN+5efUaX0/WePXtMFS2s7PVxxzfXF154gX7xxWDHErubht+YV/Oyy/Lvn3raKfrqQVdrUZp2ufa6a/RFF/XS3pCcTYq09vvN3vaGDfWZ3brqBx98QB84cCDjT+xydYaM0f83pPPa17QaNW6o+/y0j2EzYOAA7X10xnREERSffvqpyWHrIMr/cFpsu2p7Ljxq1K2Gx+O/f/xwajptgUCAQJTfgj9Dbecb/xwJm0duTKqqqvRbb79lzjedT++kd+7cGfmiJ8Jg7Ni79JYtW6xLs5ZXT+VG6Ouvvw6kz5v3kh40eFAgLenOCy+8oB997NGk2U2+L7/8skb+7j3O0TNnzgykL1nypj7p5LaBUZcksZE8tZ3X/IW6iqXfp4tt50JCAil3y6Li7CKNl4veiJG/CvwNHjJIH3Ps0aaDzpgxw5qbfVdCYvjNNwXKlDpccMFPTBlNyo/UixcvMuWK6GnX/jTzDnamIhE2bMe5+ZfDa5Qj73Hb9olwsUttncHa2PWQawabul52+WXamwVtk81aftxShvjr3fsiLT9gWx+ERAAVOxAIJeC9nqi958568h8m6xUrVoTapC1RbrzkT+7woyxi+/rrr4WaykVcRjtzLVu3bjXnFHlUEbfcbJ8i9GUCZvbSq9eFetr0adnJJduXm7WXX54fKF8mop5//o8DaXK+lWuY/7wcl1ESexexDDTEwY5TISHPi2QI6PbbbwtUTS5u7Tu0C6TZnXffe9fMFJbnaXYRe1dCIpfSy/4evZQts5TlpDJ//jxblTrX9sKdayRj7dq1honYrVy50viT7SgjEvIDF1sZ3cnVDu/LZ7plqxbGztpLnlIJCRmFidK2OsFmGUib5C8XBzFnRCILGrt1EpATufQrufmREb82bVvrIUMG6zlz5uiPP/64zvyHk8Ett4zU/hs6advnn39u+GTfjSdpt4x0ZJ8n5ZzofcI7M3pt/a733hrx87e//7C1nHPkA03eZNHAaIfYJjkXPTvlWd330r62KmYtN5rNj2umvW9vBNLTulPoWGa326mQuOrqq7QMlUnn8y8S0FxCQuzOO+9c01k/+eQTk03sRUjIENOsWbP0PffcbV5JihNE2+FyXXgkXWzkOaD/2Zc825ORCW92sb8JObdtOdk/EH8GUa1iJ22RRbZtB3/7nbf1hN9O0PfdN04///zzgbrY0Qjv3W6/uxrbcle1bNmyVIxIICRqhIeElBMYNfpWLf3W/pZlbfdbtW6ph90wVL/yyl9qFbEpb2Kk6l0/9Dot7ZWbO1nk0UT/n/fXbU9qU+OcHslhBCMpY8GCP9ewlMe5Tzz5RCbdxkZiIdcG/59c9G285JxpF/951qZlr2USoohG/7J7924jbrxvafiTa4idwMGU7RQ7ls6EhHxyVRS9P5CWrQS0NiEhz/jF5rPPPjNZZPvSn12qu3Q9I/DjljkVtpNb37nW4kP+cgkJ+8xPhI9fBMjsXBmVmD59ei7XgXRbjt+H30BmLYtaFrs333zDHJJtaZs8F7T57dr70pz5fK0YyiiNpK9atcrvstZt64cRiVoxcRACGQJyLpDvJ9jfTvZabjaaNmtqbjrkBuBebw6YPBLNfiMh4/AQ3ZBzpVyA5Jwoj2TlfN67T2+9fPnyorZIJl7KJE/5lLddbExynWfl+iMjG2JXXV1tssm2vWGzfrLXMiJy/AnH1bhxlJuzQ3kSe7Fj+T8AAAD///CSuloAABV0SURBVO2dB3wVxb7H/yABSei9JrRgIBQB6RcUJNJFMCFcMSB6lSQELsUGPEXhWiihqPikygXE54eilASvooaiF5DQcukEEUQFqUoRVObNf96bdffknMM5OZvkHM5vPp9kZ6fPd/bs/nZ2SiEhDdlgxo0bS9NSp9Gy996n2NhYS4ohRYtQREQEHT2SbXHnkxUrVtBfHxlATZo0ocwdO5U/h2fTv39/Gjd2PFWoUIGWLF1CY8c+Tw8+2IdWrlip/N3902lcvHCJwsLCLEGvXbtGo8eMovnz51P37j1ozeo1hv+ZM2eoRs3q1KplK9qy5UvD3ZVF58NhQ4qEWIKdPHmCZr/9Nn3xxeeqftu2bqciRYqQjtOwYUN65R+vULt27emnn36icePH0Zo1q2nAgAG0ZPFSI9zlX65QsWLFLGm7OtFpp6ZOpxHDR7gKZpv7hx+usqQ18NGBVKVKFUqdlmq4lyhRgmJiHjDOc2PR9UocmkghIVbOOr2MjRmUlZVFkydPodGjRmvngDnqOgZMgYO0oHfccYf6PV69epXY3qFDR/r0k09vGxqXL1+mEydOULly5dRv2R8qpn8b7u6F8QPiadWqlbRg/kIaNGiQun9GR0fT7l17aO/evfTphk/p119/pcaNGqn7vr6PTJjwIiUnD6PKlSv7Q1VtLUN+tWUhu4RE+/bt6OsdX9ORw0eVaDDT4IugePHi1KlTZ7MzHTuWTQcPHlQPhrR1aYY/h69duzbt+89+y0OjYXQDFX//vgOWdJyd6Auva9du6seuw/CPPytrL507d079UDZv2kL169fX3uoYWb8enTp1in784TSVKlXK4ud4ovNxdNfnLBx69OhJc+fMpfLlyytnjlO4cGE6sP8g1alTRwelH3/8kSJqhVNUVBTt2b03IIRE0WLOH+pGpaSlbt26qq5mN2/tt+JsTg9CwkwD9rwgwOKYb9La/Hbjd23FMQ8I6N+/KyHB78P3tGyhBMP69PXUpUuMun82aNCAWrduTYsWLbKUiu+7H6//l3rOWDxwkjsCLCTsMKXLlBL89/vvv+dIrkjIHaLYnUVFzfAalr+7mzUVT/ztcZGZmWmJw+ETBj1qceOTzvd3FnXr1THc35r9lqgXWVdw+Fq1I8SLL74gfvvtN+XPbvwnexcseYZH1FTpyN4NIcWCkZbZ0qNnDyEvXCGFkXL2JB8OM2fuHPU3bFiyKFEyTFSrXlVs/3q7OWll53JJUZTDnR3CSoSKu6LqK7/oRg1VHfbs2eM0rDNHXe9Zb8xy5m27m3wDEOa/4qF3itp1alncPvnkXz7nq+sle26EFINO/xKThipeqdNTVX7cJo2bNFJuJUuVEF27dRXyzcTnsiCB24vApUuXBF+3+hpzPEqxLMqWKyP4WLFSBdE/vr9Yvny5+OGHH24vEH5cG90mhw4dEsePH7f8bdy0UTwc+7Bqv6gGd4nr16+rmug4/MxYvHixyM7OFlu3bRVdYrqosEMef8yPaxxYRSO7issPXv6xOTPcoGYB4CyM2Y3DP/7EELOTspuFBD+0+cf/xptviG+++UasXLlCVKpcUTz77DMqrL6I5FtDjnRu5fBQ34eUkOAL1NN8ZJeZJdmMjC9EaFhxUbVaFbEjc4fFj8vW9O4mFjd9YhYSTw19Ul3ws9+erb2dHvnByaKDH5y63vklJBwLxALKVd0cw3pzruvlrj1ZwHE45jFj5gx1ffDxyJEjYtv2baJX716iXPmy4rvvvvMma4S9zQmMGjVSCX99jfGRf4d8rFylkoiXwoHvA7L3VNy8efM2p+Gf1TO3jSt7hw5/ESdPnjQqwOH4ubRv3z7DjS3ys41y5xdZGHsI2CYkuDeC3/q0GjQXjxvUbiHx0ksTxPjx48zZiJSUYaJBwyjlpi82dw8eS2TTScwDMUaPhKf5OAoJTo4FAJeDe0vOnj1r5MBurh62ZiGxectmFb/+XZHCVT3YvU7d2ircsmXL1JHTD3YhMTTxKfHMM08bzNny888/Kz7vzHnH4o6T4CWQlpamrok7ixcT/FelamXRv3+ckF3h6gUFwsE/rg19P+de55cnvqz+uBeCe4mq16gmvvzqyxwF5Th873RmzPdZZ/5w846AbUKiXbu26uF79OjRHCXgBrVbSDhmwl1ecmyDGDFiuPLSF56rB7BjfPM5P/i5t4O7PB2Nq3ycCQmO2+ehPupG9diQwUZSXDZPhARHiJM3NQ7fs1dP1Z1nJCItckyFkX6r1i3VZyVd72AXEmZO2s6fNZiPHCCqnXAMcgI7d2YK7g6fO2+uEg5BjsNvq6/va473Wf7ExL0OfO93fPZwHE/vs35b8QApmG1CgscccIPyW7Gj4QbNKyHB4xx4nAQr0+Ytmonz58+r7PWF562Q4G5vroccPGqpxq3ycbzAdeTvv/9efVfl8vBYAjbeXOBXrlwRPGaD4/A4k/vuu1d99uHPL/wZgd1b3NPcGO/B5/xXUEJC19vuo66Xu/Y0f9pwzJ/blcdLsODS42gcw+AcBEDAPwno37+z+yz3ULB/o8bRgu+X2rAbhISmkbdH24QEfz/kB11sXGyOEnOD5pWQ4IF3+/fvF1u+3CLu73K/eru4cOGCurA4X3cPnhwFlQ5vvvWmEhLz5s2zeN8qH2cXuE5g6dKlqjw82PT06dPK7s0Fzg8+TqN7j+6GKGER0bZtGzUWgMumDdeZ/yAkNBEhdu7cqT4vsdDE+Ig/ucAGAoFCQN/XnN1n+f7YsWMHdd977rlnjSpxHG/us0ZEWLwmYNv0T54z8sjAv8p1ENaoqX41a9Y0ppHwWhFhYaFq7q7h6MbC4SNqRVDLe1paQsnBj3T1yhWX6fD0SfmwpoUL3lXTTTly3759LdM/LQk6nMjvoSTf7kl+SyeeYupq7QZn+fTr109N6XRI0jhdu3YNXb9+g5o1a0a7du2i0qVLOV1bgddl4Kmy3bp1N+J6Y2F2bJo2bUqRkZHeRPXrsLpe7tpTCgY5pfiYWrNDT+mdOWsm8RonHO+d/55DJUuW9Ot6onAgAAI5CcheYuXoavrngQMHqHWbVmqdiIyMjdSubTvLOhKOKcoXMapRowYdPHDI0QvnuSHgtfRwE+Hbb79VMzeSk5PchLLHKykpUSxcuNCSGE8NZBXKA6VyYz744APVG2H+hp4X+eSmbIjjHQF+S+GpxTxLY8GCBd5FRmgQAAG/IuCuR0IXdPKUyer+zzPYuJcWPRKaTN4fbe2RYCEjH+40LCVZrQrZonmL3Ggbj+IMGpxAGzZsoI8+Wq1WoZRzuikxKZHk4CnatXO3Wg3To4T+P9Avv/xCcjqQXKWuAy16959GVLvzMRKGJU8JvPb6azRp0kSaOnUaNZIr2ZlN9WrVqV69emYn2EEABPyEgJzOT4sX/5N69e5N+hkyUf6W2YwfN95lD/Mff/xBU6dNpRs3blDvXr1p7bq1VKlSJeLVcB3Nq6+9qhYbTBmWoryk8KDt27epVUp5tVIYLwnkhVZ5+ukxgufomge+2J0Pj33gRat4Gk+p0iXV+AxeZ8KbxZvMZfrbk0+ITp3uyzGmwu58zHnCnncEuCdCv8U4HkeO/HveZYyUQQAEvCbAa728Pvl1cffdTdXvtkLF8iI9Pc3rdHIb4bPPNqjeaF6LKGV4iti0eZOQwiS3yQVdPNt7JLzUMT4Hlw/6fFkXPr/y8RkIEgABEACBACAgp9LTSrk3hlxMUC1tzUUuVKgQJSUm0UsvvUxly5bN11pkyt7sp5560ihL1apVKfbhWIqNi6M2rdu4HQOXrwX1w8wCXkj4IVMUCQRAAARAwAkBucqkEg9yKjyx3Wzay80LZ816Qw0UN7t7Y5cz+OjipYtqsKU38XRYucUDyRlvUshMUAM3tTsPzGRRESc3kuRJACx4YP4kACHxJwvYQAAEQAAEbCQg+/jVjrwsHLj3gTdpdDS8W/CUyVPVrse+PqB5bNThw4fo3YWLHLPx6pxnfyUPSyb5ySNHPN7JOi42TvVUNG/WHKJCEoKQyHGZwAEEQAAEQCC3BFg88BR3LR7kipNOk+JBjSP/PpLGj/8v26Zl2yUkuMBcj/fff59Gjxmldot2VgneRZRFRVxcfzXt3Fch5CyPgHALulEhqDAIgAAIBBgBxwHD5nNe0p93JDXvNMz+rhZj8qbq5nzM9vIVyol77+2odkE1p8dTMHm5anNYZ3beiVeu/WCOaotdzsYQ5u0I7EiUlxXgNJ3Vw+zGOzrz5oBms27dWjHw0UfUTtAclvdzkdudi1defSXHwH6dViAuJogeiYCQeygkCIBAMBPQCzINHjyYihT5v8WZNI8D+w/QV//+iooWLUpr16ylzp3vd7sYk47nyZHzLVGiBMXHx1uCy32IKD09nXja5Nw582jIkCHKXz4g1fgCS2DTSXh4OKVOS6U+fR7Kk08CdvZImIqtrPyZIyk5iXh6qjNTsWJFOnL4qFx8MYx4OYGEQQmUlrZOLWzYseO9FB5eky5cuEiff/4ZXbx4UfVgrFubRjyok41u49TU6TRi+AhnWfivm1k9wQ4CIAACIOB/BPTbKk9Hd2b4DZfDtG7dSnmz3a4eCVfbG/DbN29uGB5R0ygS73XE0/F1efUxNKy44J2U83JJAC5EXvRIGJWTFi4/7yvFezvpuulj6vRUIyhvFcHuffv1FXKNI8OdLbwZJO9cyv68tLeeZqrTCcQeCdv22rCQwgkIgAAIgIBtBPRDxpWQYHcOww84ftixXQsJ3mKbN7aSS8WL9957z6uHOafjSkhw5Xi/Hw5z8uRJo65jxoxWbuzOf7zBYHZ2tuGfl5a8FhK67HIMiBJtuo5Vq1UxPlWsWbPa4G/eB0nH5aPssRA1alZX4T7+eL3y0mlBSJhJwQ4CIAACIGALAf2QcSUk9EaFvEAfb2zF4Xmp6PgB8cqu4/Mxola44E0WPTEc3p2Q4O/9HObMmTNGcvwGzj0QvD37+vXphnt+WPJLSHBd5FRRIffyUT0w5t4IHq/CTObMneO2yixGzFufcxz+g5Bwiw2eIAACIAACuSGgHzLOhAS/9SYmDVUPod4P9lbJ6/BNmjYWcsNAce7cOSUe+j3cT4V7NGGgR8XgdFwJieXLl6u0eFddRyPHEyhB4+ie1+f5KSR0XY4fP270RrBb9RrVFJfDhw/rIB4ddZsFopDAYEv/Hb6CkoEACICAIqAH4nXt2s2y1wQPdszK2qumJ5YrV442b9pCvPMthy9cuLDaiZmnKGrDOxfLHgmKioqiPbv3ameXR06HdyPu1KmzJcyxY9lqTYiQkBBKW5eWw98SOB9P8nKwpafV0G115fJVNQDW23iBONgSQsLTVkY4EAABECggAvrhxIs3mdcqYHu9epHUulUrSkkZTtWqVVMl5PAsKPb9Z3+OEpu30J799myaOXMGybdqta32oIRB9MILLxozQzgdXu+BN78ym/Lly1OLFi0oOWkYNW/e3OxVoHZ/EBJyiifxBmKXLv5MoaGhHvPQbQwh4TEyBAQBEAABEPCUgH7IXLxwSU0vvFU8Dh8dHU27d+3JEVQLidGjx5DcwI4mT56idsvknZN5euNjgx9TbhyR0+GVHI8eyc6Rjj86+IOQ4F2kefnvbVu3uxVZciyL6rHgniM2uo0DUUhg1oZHX68QCARAAAQKjoD+fu5sjISzUnF4PWvD0Z8HZN4VVV9Nxxw/fpzFOyVlmGjQMMpwczdGwgjkR5aCGCPhWP0RI4arMRJTpk5x9LKc80wa3qV40j8mKXfdxhgj4Y8SFWUCARAAgQAnoN9W7eyROHjgkIWKHBxIvXr3pO7duqvNs9gTPRIWRB6dZGVlkZzNQpUrV6ZdO3cTfwZyNHLwKzVqHE1nz55Vi4h1k8x1G6NHwqK3cAICIAACIGAHAf22amePhC7XqVOnRL3IumoNCp6BcV4uKqUNeiQ0Ce+Ow4enGDNaMjZmiJs3bxoJZGZmilatWyr/Xr17GX66jdEj4Si7cA4CIAACIOAzAf22mhc9EteuXVODLc9fOE8TJkygU6e+o39/tZXKlCmDHolctpwUDiQ/cZBcS0KlwINk69SuQ8xY74Daq1dvWrJ4iVqCnAPpNg7EHgnM2sjlhYJoIAACIJBfBFasWKGy6tu3r2X6p6v8OXzp0qUoJuaBHEE+/HCVmtLJ3emOhqeH1gyvQQsXvEsJCQnE6YSFhVL37j0cg/rluT8MtjSD2ZG5g/5H7iC6Y8cOunDxAhW/szhFN4qm/nK3UJ7Kaza6jZs2bUqRkZFmL7+3Q0j4fROhgCAAAiBgP4FkOUOjZctWxoZbnAN/s5fLPdP8eQuINwgLNONvQiLQ+OW2vBASuSWHeCAAAiAQwAQGDU6gDRs20EcfraZWUlDIpa0pMSmReBooDxKsUKFCwNUOQqJgmgxComC4I1cQAAEQKFACcnMvuW5EIq1atUp9Lrl+/Tq1b/8XmjF9htriukALl8vMISRyCc7HaBASPgJEdBAAARAIZAJyJgidOHGCeIltHhQYyCYj4ws6ffoMxcfHB3I1Aq7sEBIB12QoMAiAAAiAAAj4DwEICf9pC5QEBEAABEDAQwJ6uqS7KbFypU41BZOXAR89arSHKSOYtwQgJLwlhvAgAAIgAAIFTgBCosCbwCgAhISBAhYQAAEQAIFAIQAh4T8tBSHhP22BkoAACIAACHhIAELCQ1D5EAxCIh8gIwsQAAEQAAF7CUBI2MvTl9QgJHyhh7ggAAIgAAIFQkALieefe17uU1HUaRnWp6cTL1ONwZZO8djmCCFhG0okBAIgAAIgkF8EtJDwJD8ICU8o5T4MhETu2SEmCIAACIBAARHQQmLvniwKDQ11WooXJ7xAy5YtQ4+EUzr2OUJI2McSKYEACIAACOQTAS0ksI5EPgF3kw2EhBs48AIBEAABEPBPAhAS/tMuEBL+0xYoCQiAAAiAgIcEICQ8BJUPwSAk8gEysgABEAABELCXAISEvTx9SQ1Cwhd6iAsCIAACIFAgBCAkCgS700whJJxigSMIgAAIgIA/E5g4aaIq3tjnx1JISIjToqanp8l1JDIpJiaG2rZp6zQMHH0nACHhO0OkAAIgAAIgAAJBSwBCImibHhUHARAAARAAAd8JQEj4zhApgAAIgAAIgEDQEoCQCNqmR8VBAARAAARAwHcCEBK+M0QKIAACIAACIBC0BCAkgrbpUXEQAAEQAAEQ8J0AhITvDJECCIAACIAACAQtAQiJoG16VBwEQAAEQAAEfCcAIeE7Q6QAAiAAAiAAAkFLAEIiaJseFQcBEAABEAAB3wlASPjOECmAAAiAAAiAQNAS+F8XYC4ziuSlZgAAAABJRU5ErkJggg== />
Answer to Question 5

One example is shown below.

Answer to Question 6

The phosphorus-containing product is water soluble, allowing for the separation of the alkene from the reaction mixture by a simple aqueous extraction.

Answer to Question 7



Answer to Question 8

First combine fractions 6-10 and then evaporate off the solvent to isolate the compound. Combine fractions 3-5, evaporate off the solvent and add this mixture to a new column. In addition, one could collect smaller fractions or use a more non-polar solvent system to more effectively separate these two compounds.

Answer to Question 9

If product were dissolved in the eluent when elution began, it would result in the continuous addition of product to the column throughout the separation. This would lead to little or no separation of the product(s).



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
 

Did you know?

The modern decimal position system was the invention of the Hindus (around 800 AD), involving the placing of numerals to indicate their value (units, tens, hundreds, and so on).

Did you know?

Historic treatments for rheumatoid arthritis have included gold salts, acupuncture, a diet consisting of apples or rhubarb, nutmeg, nettles, bee venom, bracelets made of copper, prayer, rest, tooth extractions, fasting, honey, vitamins, insulin, snow collected on Christmas, magnets, and electric convulsion therapy.

Did you know?

The eye muscles are the most active muscles in the whole body. The external muscles that move the eyes are the strongest muscles in the human body for the job they have to do. They are 100 times more powerful than they need to be.

Did you know?

Nitroglycerin is used to alleviate various heart-related conditions, and it is also the chief component of dynamite (but mixed in a solid clay base to stabilize it).

Did you know?

Over time, chronic hepatitis B virus and hepatitis C virus infections can progress to advanced liver disease, liver failure, and hepatocellular carcinoma. Unlike other forms, more than 80% of hepatitis C infections become chronic and lead to liver disease. When combined with hepatitis B, hepatitis C now accounts for 75% percent of all cases of liver disease around the world. Liver failure caused by hepatitis C is now leading cause of liver transplants in the United States.

For a complete list of videos, visit our video library