Author Question: Provide an example of a phase-transfer catalyst other than the one used in this ... (Read 34 times)

biggirl4568

  • Hero Member
  • *****
  • Posts: 551
Provide an example of a phase-transfer catalyst other than the one used in this experiment.

Question 2

Identify each of the following reactions as an oxidative addition or reductive elimination.
 
Question 3

ByGsFEzhcExkpxh3Wqz88IkmApxqyAtMgpiNYgv8rlSewm+mykOjpfbD3BELFgzwAAABVy2fxjEOhAzxNnxvnJszxZKfaE9GskvCImT4zRhXow8PlooyIkMl8dZlskLGcVbeaKA2FGbdH5gCMRwpaFHijLjEmU80bOF/IRIiJUg7hRlx4bJfR8WZbIiR22E4hgJZ2OI36YLA2NkNphmrmg0L8yGw5bOBdcC5lOQGRcs88WSeKKk8FEOXJ5/gIwDxuUJ4uXcMLi6/GLkvqX5OdFye2wrLycoRlZn7KCoMHbUt7sALjBZHbBHWezQaPlc7/ILouNk3HAUhAMW8AdMIIYtDeSBLMDvGGgagP/JRgIBGwhBBuABa7lm1CNROiKA31hQBP6AiAdEY35+0lEeKIT6L2Na2dcapEtHC6Ue2eApxLm4Nu6Fe+Dh8OsDmz3uiruN+jGVR2clBhD9icHEQKLFGA8OZJ0DmxDw/40uDPY8mJ2Ei2A0h2/xCE8JXYRHhBuEHsIdkACeSKPIrWbwi4U/MGeCCNADowXKs0v7PjvcFLJ2wv1wT8gfcscZuDawxh1hJr64N8zNCWq/Zyge4/atlj/OJ2H9fT5yvZKlkpOcRdrYL8Mas/oxCuu7GnFhH/ajJbYMO4xdwE5jl7BWrAkwsZNYM9aOHZfgsZXwRLoSRmeLkXLLhnH4oza29bb9tp9/mJstn19SL1EBb3aBZDOw8vLnCPkZmQVMX3ga85ghAo7NBKa9rZ0LAJKzXXZ0vGFIz2yEcfmbrlgZgEkfR0ZGWr/pwk0AOFIKAOXpN515DdyuiwG4WM4RCwtlOslxDAiAApThrtACesAImMN87IEz8AA+IACEgigQB5LBdFjxTJALOc8C88BiUArKwWqwHmwG28BOUAv2g0OgCbSC0+A8uAI6wQ1wD66LPvASDIJ3YBhBEBJCQ+iIFqKPmCBWiD3iinghAUg4EoMkI6lIBiJAxMg8ZAlSjlQgm5EdSB3yK3IMOY1cQrqQO0gv0o/8hXxCMZSKqqO6qCk6EXVFfdEwNA6dhmagM9EitARdiW5Ea9B9aCN6Gr2C3kB70JfoEAYwRYyBGWDWmCvGwqKwFCwdE2ILsDKsEqvBGrAW+Dtfw3qwAewjTsTpOBO3hmszGI/HOfhMfAG+At+M1+KN+Fn8Gt6LD+JfCTSCDsGK4E4IISQRMgizCKWESsJuwlHCObhv+gjviEQig2hGdIH7MpmYRZxLXEHcQjxAPEXsIj4mDpFIJC2SFcmTFEVikwpIpaRNpH2kk6RuUh/pA1mRrE+2JweSU8gCcjG5kryXfILcTX5GHlZQUTBRcFeIUuAqzFFYpbBLoUXhqkKfwjBFlWJG8aTEUbIoiykbKQ2Uc5T7lDeKioqGim6KkxX5iosUNyoeVLyo2Kv4kapGtaSyqFOpYupK6h7qKeod6hsajWZK86Gl0ApoK2l1tDO0h7QPSnQlG6UQJa7SQqUqpUalbqVXygrKJsq+ytOVi5QrlQ8rX1UeUFFQMVVhqbBVFqhUqRxTuaUypEpXtVONUs1VXaG6V/WS6nM1kpqpWoAaV61EbafaGbXHdIxuRGfROfQl9F30c/Q+daK6mXqIepZ6ufp+9Q71QQ01DUeNBI3ZGlUaxzV6GBjDlBHCyGGsYhxi3GR8Gqc7znccb9zycQ3juse91xyv6aPJ0yzTPKB5Q/OTFlMrQCtba41Wk9YDbVzbUnuy9iztrdrntAfGq4/3GM8ZXzb+0Pi7OqiOpU6MzlydnTrtOkO6erpBuvm6m3TP6A7oMfR89LL01umd0OvXp+t76fP11+mf1H/B1GD6MnOYG5lnmYMGOgbBBmKDHQYdBsOGZobxhsWGBwwfGFGMXI3SjdYZtRkNGusbRxjPM643vmuiYOJqkmmyweSCyXtTM9NE06WmTabPzTTNQsyKzOrN7pvTzL3NZ5rXmF+3IFq4WmRbbLHotEQtnSwzLassr1qhVs5WfKstVl0TCBPcJggm1Ey4ZU219rUutK637rVh2ITbFNs02byaaDwxZeKaiRcmfrV1ss2x3WV7z07NLtSu2K7F7i97S3uOfZX9dQeaQ6DDQodmh9eOVo48x62Ot53oThFOS53anL44uzgLnRuc+12MXVJdql1uuaq7RruucL3oRnDzc1vo1ur20d3ZvcD9kPufHtYe2R57PZ5PMpvEm7Rr0mNPQ0+25w7PHi+mV6rXdq8ebwNvtneN9yMfIx+uz26fZ74Wvlm++3xf+dn6Cf2O+r1nubPms075Y/5B/mX+HQFqAfEBmwMeBhoGZgTWBw4GOQXNDToVTAgOC14TfCtEN4QTUhcyGOoSOj/0bBg1LDZsc9ijcMtwYXhLBBoRGrE24n6kSaQgsikKRIVErY16EG0WPTP6t8nEydGTqyY/jbGLmRdzIZYeOyN2b+y7OL+4VXH34s3jxfFtCcoJUxPqEt4n+idWJPYkTUyan3QlWTuZn9ycQkpJSNmdMjQlYMr6KX1TnaaWTr05zWza7GmXpmtPz5l+fIbyDPaMw6mE1MTUvamf2VHsGvZQWkhaddogh8XZwHnJ9eGu4/bzPHkVvGfpnukV6c8zPDPWZvRnemdWZg7wWfzN/NdZwVnbst5nR2XvyR7JScw5kEvOTc09JlATZAvO5unlzc7ryrfKL83vmek+c/3MQWGYcLcIEU0TNReow2tOu9hc/JO4t9CrsKrww6yEWYdnq84WzG6fYzln+ZxnRYFFv8zF53Lmts0zmLd4Xu983/k7FiAL0ha0LTRaWLKwb1HQotrFlMXZi38vti2uKH67JHFJS4luyaKSxz8F/VRfqlQqLL211GPptmX4Mv6yjuUOyzct/1rGLbtcblteWf55BWfF5Z/tft7488jK9JUdq5xXbV1NXC1YfXON95raCtWKoorHayPWNq5jritb93b9jPWXKh0rt22gbBBv6NkYvrF5k/Gm1Zs+b87cfKPKr+pAtU718ur3W7hburf6bG3YprutfNun7fztt3cE7WisMa2p3EncWbjz6a6EXRd+cf2lbrf27vLdX/YI9vTUxtSerXOpq9urs3dVPVovru/fN3Vf537//c0N1g07DjAOlB8EB8UHX/ya+uvNQ2GH2g67Hm44YnKk+ij9aFkj0jincbAps6mnObm561josbYWj5ajv9n8tqfVoLXquMbxVScoJ0pOjJwsOjl0Kv/UwOmM04/bZrTdO5N05vrZyWc7zoWdu3g+8PyZC74XTl70vNh6yf3Sscuul5uuOF9pbHdqP/q70+9HO5w7Gq+6XG3udOts6ZrUdaLbu/v0Nf9r56+HXL9yI/JG1834m7dvTb3Vc5t7+/mdnDuv7xbeHb636D7hftkDlQeVD3Ue1vzD4h8Hepx7jvf697Y/in107zHn8csnoief+0qe0p5WPtN/Vvfc/nlrf2B/54spL/pe5r8cHij9Q/WP6lfmr4786fNn+2DSYN9r4euRv1a80Xqz563j27ah6KGH73LfDb8v+6D1ofaj68cLnxI/PRue9Zn0eeMXiy8tX8O+3h/JHRnJZwvZ0qsABhuang7AX3sAoCUDQO+E9wcl2dtLKojsvShF4D9h2ftMKs4ANMBOcuVmnQLgIGxmENMWASC5esf5ANTBYazJRZTuYC+LRYUvGMKHkZE3ugCQWgD4IhwZGd4yMvJlFyR7B4BTM2VvPokQ4f1+u6MEdTNmLwI/yD8Bd0Rs573ioiIAAAAJcEhZcwAAFiUAABYlAUlSJPAAAAGcaVRYdFhNTDpjb20uYWRvYmUueG1wAAAAAAA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJYTVAgQ29yZSA1LjQuMCI+CiAgIDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+CiAgICAgIDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiCiAgICAgICAgICAgIHhtbG5zOmV4aWY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vZXhpZi8xLjAvI

Question 4

j4KICAgICAgICAgPGV4aWY6UGl4ZWxYRGltZW5zaW9uPjMzMDwvZXhpZjpQaXhlbFhEaW1lbnNpb24+CiAgICAgICAgIDxleGlmOlBpeGVsWURpbWVuc2lvbj43MDwvZXhpZjpQaXhlbFlEaW1lbnNpb24+CiAgICAgIDwvcmRmOkRlc2NyaXB0aW9uPgogICA8L3JkZjpSREY+CjwveDp4bXBtZXRhPgoc0SEOAAAAHGlET1QAAAACAAAAAAAAACMAAAAoAAAAIwAAACMAAAYNU8Lu4gAABdlJREFUeAHsnVtMFUcYx9cg94uADa2iUrViK4i0BVsT++DBQhNBa4VqL/SCrReSmprUt/piI32wgDbSWAtvhBdqTU0r+FJMbKw0AuH2UHjh9sALlwAh3L/uN8mQsxwOw56zR/cc/5Ns5ux+s3N2fvN9/zMzO4Q1pCcNCQRAAARAwC2BNRBKt2xgAAEQAAFBAEIJRwABEAABBQEIpQIQzCAAAiAAoYQPgAAIgICCAIRSAQhmEAABEIBQwgdAAARAQEEAQqkABDMIgAAIQCjhAyAAAiCgIAChVACCGQRAAAQglPABEAABEFAQgFAqAMEMAiAAAhBK+AAIgAAIKAhAKBWAYAYBEAABCCV8AARAAAQUBCCUCkAwgwAIgACEEj4AAiAAAgoCEEoFIJhBAARAAEIJHwABEAABBQEIpQIQzCAAAiAAoYQPgAAIgICCAIRSAQhmEAABEIBQwgdAAARAQEWA/wuj2TQxMUFrg4NWddy+/ZvZ6v2ifF3dXfq48CPamLhBcAgLD6WMzNep5PsSmpycNLRBsrr24zXDdZyAgL8SeBIaYKcY82hEOTMzo50tPuNWg7v+69IeNT4S9nv19zSHI8ttWX8z6CKoFX5SqN2587sWFBSk7d//lpaUtEUbHh7R7t9v0HQH0tLT07U//7irJSQkiOYFh6wVeWlpmXbuq3P+1mQ8Lwi4EPClBtgyxqz+Revv76fETRvFKOv8+a+trv6p1/fBhydE2w7lHqKBgQHD84yMjFDe4TxhdzgO0MLCgrBjRGnAhJMAJ+CtBtgxxjQr+2x4eJhefS1dCMWx/GM0Pz9vZfWm6oqMiqC0PbtN3aMqzFMBFr1dKa8QTz2WS6Ojo/TChudFOS7PCUK5HClca21tpdnZ2YAC4a0G2DXGLBNK7nA5muK1uvHx8UUHcGQ56OQXRdTV1UX5Bfm0LjZGiAcL2fWK64vlrPzgC6GUv3QVP1Ws+KgP/3lILS0tGFGuSOnZNupLUyIG9GUZysnJpqtXy6m3t9evoVihAXaNMcuEsrj4rOj4rdtedJmS8oiKR1k8JU9J3UWfff4pZevOwU7Ctpu/3LTcQXwhlFuSNovn7ezsNPW8GFGawvVMFOZlmb1vZC7GQFR0JEVEhtOmzYlUdLKIqqurqa+vz69YWKEBdo0xS4SyrLxMCEhcfKwYSS3tXSkUl767ZDDV1taK+/bte9Nw3ZOTqqoqcj7CI8KIoTtf4+/zJsl2TE1NmapG3oe33qawBXzhjo4O4t0S0j9kzgMInnVxnpKaQhcvfksNDX+57KawEyCrNEAysFuMeS2Ut279SiGhwaLD5Zrc0g7kxsesi6bp6WmDic9Z0Ha+nGy47smJBLxS7u33yLrt1ome8MI99iDgyDrgIpTSz2QeGhZCcfFxIlYyMjPoyg9XqKmpifQ3z7ZohJUaINtstxjzSigfNz3WOzBWdPRKoyVu/J70tGU7lafI3goYV8zrgs4HT2N2JL9kuNbc3LzsM6z2Ii8bcFt4Ed5Mkp0vGfG67O60VFFXdEwU5byTQ21tbWaqtLysfEbkq9sfbBdOvNPiaSarNcCuMeaxUJrZAsBO5WuhXOosvlijPHX6SyFuqpc5pWWlYi1WvqiSQcVCWa4v2vMomvPu7m5q/LeRcvNyKX59nMva7tI2+fJcPiNyewolT8XZpzl/O/sglek+Vl9f50uXUNbtCw2wa4x5JJRmtwAEilA++PuBEMrknTvcbg/ibUPbtm8V5WpqaoSzSfFhoTx95hRduPCNwQnHxsZE+Rs/3zBcx0lgE+jp6RHiJ/3DOZfCuP65eDp+4jhVVlYSvym3y3YiX2mAXWPMI6GU24BYENrb24k73N0xNDQkROBJjygz92bQ0feOWh5pBe8XiPbwhnNus3MaHBykI+8eEXZ+ozk3NyfMMgDk1Nv5Hv7M024uE6h/7rm0vTgnscc4S982x+uP3PfyrTePGrMOOuhyyWVi0ZA+ZDdmvtQAO8bY/wAAAP//8fd5nQAABEpJREFU7d29T1NRGAbwhyBaxJJYWLAEHRo1/fKjVSaVSYwOUokSMVHEQFUcdNH4McEAEROLmqjAplRKTYhff4AYXRTxiqJuDGVgIgEaCG040sY2Ia1yCmLwnqcJoT3nvbd9f2/vQ2EBYhG3VTnZQvaroeF8vHbbdmfaZ8pbt1Zs2bo57d5KXAyHw+LgoYPxntYYVouysn2i9sxpUeGpEOuMefF1l3unGBkZSb78hFXbnbbkWuJOKBQSDqdd7C7dJSKRSGKZ33UuoGla8hoqP7BftLQ0i743fWJmZua/6Dzxnpb5nmkGrMRrLCs2FWR4a2xqlD7C7XLhcMVh2Gw2fBrQUo6bCxcUFxfj+7cfKXsrdSEajSIQCKDL34UPH95jbGwMBoMBDrsDx6qq4K33Ijc3N/nyE17l5eUo3V2aXB8YGMCRSg9MJhOeP3sBs9mc3OMd/QsMDg7CarUiOzv7v2s28Z6WeeGLyYCVdo0tKihlcFjzZwFfmw/Xrl2Fx+PBg/sPYTQa/3wAdylAgYwE/uY1xqDMiH7pxbGflGfPedHb24vWm7dQW1u79JPyDBSgQFJgOa4xBmWS99/caW5pRtPcny5aW2/BbrfPe1LzBjMsFsu8NT6gAAUyE1iOa4xBmdkMllxdUGjC+Ph42vNcaLiA27d9afe4SAEKyAksxzXGoJSzZxUFKKCwAINS4eGzdQpQQE6AQSnnxCoKUEBhAQalwsNn6xSggJwAg1LOiVUUoIDCAgxKhYfP1ilAATkBBqWcE6soQAGFBRiUCg+frVOAAnICDEo5J1ZRgAIKCzAoFR4+W6cABeQEGJRyTqyiAAUUFmBQKjx8tk4BCsgJMCjlnFhFAQooLMCgVHj4bJ0CFJATYFDKObGKAhRQWIBBqfDw2ToFKCAnwKCUc2IVBSigsACDUuHhs3UKUEBOgEEp58QqClBAYQEGpcLDZ+sUoICcAINSzolVFKCAwgIMSoWHz9YpQAE5AQblL6fYv5C9d+8uXve9xssXr5CTkyMnyCoKUED3AsoHZf/HfrS3P0QgEIDb7cbo6CgKCwrh9z9BUVGR7t8AbJACFFhYQMmgnJycRHd3Nzo62zE8PIyaUzWoq6uHxWJBJBLBlSuX0RPsiYfl3j17F1ZkBQUooGsBpYJS0zR0dLSjy98Fh90Br/csKisrYTAYUoYc+4R5vuEcrl+/gUsXLyErKyulhgsUoIAaAroPyqmpKQSDwfiv11++fsGJ6hPxgHQ6nQtOeGhoCMeqjsJqtaGzoxP5+fkLHsMCClBAfwK6DcpYyMU+PT56/AglJSXxcKw+Xg2j0Zh2itFoFNpnDa6drnn7ExMTqKuvw+e5vWDPU9hstnn7fEABCiggIHR0m56eFn6/X5SV7RNr83LFqZqT4u27t2J2dva3XYZCIdHY1Cg2bioR23dsE+FwOKU2dryvzSdMBevj508p4AIFKKBrgZ9tiSeZW446tgAAAABJRU5ErkJggg== />
 
Question 5

Based on your background reading about the Wittig reaction, propose a synthesis of the phosphorane used in this experiment, starting with triphenylphosphine and whatever other commercially available reactants and reagents you choose.

Question 6

The Horner-Wadsworth-Emmons reaction is a commonly used variant of the Wittig reaction. What feature of this reaction, shown below, is particularly useful compared with the Wittig reaction? Hint: Consider the structure of the product(s).
 

Question 7

A researcher used column chromatography to separate two compounds. The desired compound, which was quite valuable, had an Rf approximately equal to 0.5. Two-mL fractions were collected, giving the TLC results shown below. Based on these results, explain what the researcher needs to do to maximize recovery of the desired compound, including the use of additional separations.



katara

  • Sr. Member
  • ****
  • Posts: 305
Answer to Question 1

Tetraoctylammonium bromide is just one of many possibilities.

Answer to Question 2



Answer to Question 3



Answer to Question 4

iVBORw0KGgoAAAANSUhEUgAAAhIAAAB4CAYAAACnzRuqAAAMFGlDQ1BJQ0MgUHJvZmlsZQAASImVVwdUk8kWnr+kEBJaIAJSQm+C9Co19C4dbIQkQCgBE4KKHVlUcC2oWMCGroIouhZAFht2ZRGw1wcqKsq6uIoNlTcpoOtr513O/PNx5947372ZmTMDgLItOz8/B1UBIFdQIIwJ8mMmJacwSb2ACEhAEf5NZHNE+b7R0eEAymj/d3l3EyCS/pq1JNa/jv9XUeXyRBwAkGiI07giTi7ERwDANTn5wgIACO1QbzSrIF+CByFWF0KCABBxCc6QYU0JTpPhCVKbuBgWxD4AkKlstjADACUJb2YhJwPGUZJwtBVw+QKIqyH24mSyuRDfh3hCbm4exMpkiM3TvouT8beYaWMx2eyMMSzLRSpkf74oP4c95/8sx/+W3Bzx6ByGsFEzhcExkpxh3Wqz88IkmApxqyAtMgpiNYgv8rlSewm+mykOjpfbD3BELFgzwAAABVy2fxjEOhAzxNnxvnJszxZKfaE9GskvCImT4zRhXow8PlooyIkMl8dZlskLGcVbeaKA2FGbdH5gCMRwpaFHijLjEmU80bOF/IRIiJUg7hRlx4bJfR8WZbIiR22E4hgJZ2OI36YLA2NkNphmrmg0L8yGw5bOBdcC5lOQGRcs88WSeKKk8FEOXJ5/gIwDxuUJ4uXcMLi6/GLkvqX5OdFye2wrLycoRlZn7KCoMHbUt7sALjBZHbBHWezQaPlc7/ILouNk3HAUhAMW8AdMIIYtDeSBLMDvGGgagP/JRgIBGwhBBuABa7lm1CNROiKA31hQBP6AiAdEY35+0lEeKIT6L2Na2dcapEtHC6Ue2eApxLm4Nu6Fe+Dh8OsDmz3uiruN+jGVR2clBhD9icHEQKLFGA8OZJ0DmxDw/40uDPY8mJ2Ei2A0h2/xCE8JXYRHhBuEHsIdkACeSKPIrWbwi4U/MGeCCNADowXKs0v7PjvcFLJ2wv1wT8gfcscZuDawxh1hJr64N8zNCWq/Zyge4/atlj/OJ2H9fT5yvZKlkpOcRdrYL8Mas/oxCuu7GnFhH/ajJbYMO4xdwE5jl7BWrAkwsZNYM9aOHZfgsZXwRLoSRmeLkXLLhnH4oza29bb9tp9/mJstn19SL1EBb3aBZDOw8vLnCPkZmQVMX3ga85ghAo7NBKa9rZ0LAJKzXXZ0vGFIz2yEcfmbrlgZgEkfR0ZGWr/pwk0AOFIKAOXpN515DdyuiwG4WM4RCwtlOslxDAiAApThrtACesAImMN87IEz8AA+IACEgigQB5LBdFjxTJALOc8C88BiUArKwWqwHmwG28BOUAv2g0OgCbSC0+A8uAI6wQ1wD66LPvASDIJ3YBhBEBJCQ+iIFqKPmCBWiD3iinghAUg4EoMkI6lIBiJAxMg8ZAlSjlQgm5EdSB3yK3IMOY1cQrqQO0gv0o/8hXxCMZSKqqO6qCk6EXVFfdEwNA6dhmagM9EitARdiW5Ea9B9aCN6Gr2C3kB70JfoEAYwRYyBGWDWmCvGwqKwFCwdE2ILsDKsEqvBGrAW+Dtfw3qwAewjTsTpOBO3hmszGI/HOfhMfAG+At+M1+KN+Fn8Gt6LD+JfCTSCDsGK4E4IISQRMgizCKWESsJuwlHCObhv+gjviEQig2hGdIH7MpmYRZxLXEHcQjxAPEXsIj4mDpFIJC2SFcmTFEVikwpIpaRNpH2kk6RuUh/pA1mRrE+2JweSU8gCcjG5kryXfILcTX5GHlZQUTBRcFeIUuAqzFFYpbBLoUXhqkKfwjBFlWJG8aTEUbIoiykbKQ2Uc5T7lDeKioqGim6KkxX5iosUNyoeVLyo2Kv4kapGtaSyqFOpYupK6h7qKeod6hsajWZK86Gl0ApoK2l1tDO0h7QPSnQlG6UQJa7SQqUqpUalbqVXygrKJsq+ytOVi5QrlQ8rX1UeUFFQMVVhqbBVFqhUqRxTuaUypEpXtVONUs1VXaG6V/WS6nM1kpqpWoAaV61EbafaGbXHdIxuRGfROfQl9F30c/Q+daK6mXqIepZ6ufp+9Q71QQ01DUeNBI3ZGlUaxzV6GBjDlBHCyGGsYhxi3GR8Gqc7znccb9zycQ3juse91xyv6aPJ0yzTPKB5Q/OTFlMrQCtba41Wk9YDbVzbUnuy9iztrdrntAfGq4/3GM8ZXzb+0Pi7OqiOpU6MzlydnTrtOkO6erpBuvm6m3TP6A7oMfR89LL01umd0OvXp+t76fP11+mf1H/B1GD6MnOYG5lnmYMGOgbBBmKDHQYdBsOGZobxhsWGBwwfGFGMXI3SjdYZtRkNGusbRxjPM643vmuiYOJqkmmyweSCyXtTM9NE06WmTabPzTTNQsyKzOrN7pvTzL3NZ5rXmF+3IFq4WmRbbLHotEQtnSwzLassr1qhVs5WfKstVl0TCBPcJggm1Ey4ZU219rUutK637rVh2ITbFNs02byaaDwxZeKaiRcmfrV1ss2x3WV7z07NLtSu2K7F7i97S3uOfZX9dQeaQ6DDQodmh9eOVo48x62Ot53oThFOS53anL44uzgLnRuc+12MXVJdql1uuaq7RruucL3oRnDzc1vo1ur20d3ZvcD9kPufHtYe2R57PZ5PMpvEm7Rr0mNPQ0+25w7PHi+mV6rXdq8ebwNvtneN9yMfIx+uz26fZ74Wvlm++3xf+dn6Cf2O+r1nubPms075Y/5B/mX+HQFqAfEBmwMeBhoGZgTWBw4GOQXNDToVTAgOC14TfCtEN4QTUhcyGOoSOj/0bBg1LDZsc9ijcMtwYXhLBBoRGrE24n6kSaQgsikKRIVErY16EG0WPTP6t8nEydGTqyY/jbGLmRdzIZYeOyN2b+y7OL+4VXH34s3jxfFtCcoJUxPqEt4n+idWJPYkTUyan3QlWTuZn9ycQkpJSNmdMjQlYMr6KX1TnaaWTr05zWza7GmXpmtPz5l+fIbyDPaMw6mE1MTUvamf2VHsGvZQWkhaddogh8XZwHnJ9eGu4/bzPHkVvGfpnukV6c8zPDPWZvRnemdWZg7wWfzN/NdZwVnbst5nR2XvyR7JScw5kEvOTc09JlATZAvO5unlzc7ryrfKL83vmek+c/3MQWGYcLcIEU0TNReow2tOu9hc/JO4t9CrsKrww6yEWYdnq84WzG6fYzln+ZxnRYFFv8zF53Lmts0zmLd4Xu983/k7FiAL0ha0LTRaWLKwb1HQotrFlMXZi38vti2uKH67JHFJS4luyaKSxz8F/VRfqlQqLL211GPptmX4Mv6yjuUOyzct/1rGLbtcblteWf55BWfF5Z/tft7488jK9JUdq5xXbV1NXC1YfXON95raCtWKoorHayPWNq5jritb93b9jPWXKh0rt22gbBBv6NkYvrF5k/Gm1Zs+b87cfKPKr+pAtU718ur3W7hburf6bG3YprutfNun7fztt3cE7WisMa2p3EncWbjz6a6EXRd+cf2lbrf27vLdX/YI9vTUxtSerXOpq9urs3dVPVovru/fN3Vf537//c0N1g07DjAOlB8EB8UHX/ya+uvNQ2GH2g67Hm44YnKk+ij9aFkj0jincbAps6mnObm561josbYWj5ajv9n8tqfVoLXquMbxVScoJ0pOjJwsOjl0Kv/UwOmM04/bZrTdO5N05vrZyWc7zoWdu3g+8PyZC74XTl70vNh6yf3Sscuul5uuOF9pbHdqP/q70+9HO5w7Gq+6XG3udOts6ZrUdaLbu/v0Nf9r56+HXL9yI/JG1834m7dvTb3Vc5t7+/mdnDuv7xbeHb636D7hftkDlQeVD3Ue1vzD4h8Hepx7jvf697Y/in107zHn8csnoief+0qe0p5WPtN/Vvfc/nlrf2B/54spL/pe5r8cHij9Q/WP6lfmr4786fNn+2DSYN9r4euRv1a80Xqz563j27ah6KGH73LfDb8v+6D1ofaj68cLnxI/PRue9Zn0eeMXiy8tX8O+3h/JHRnJZwvZ0qsABhuang7AX3sAoCUDQO+E9wcl2dtLKojsvShF4D9h2ftMKs4ANMBOcuVmnQLgIGxmENMWASC5esf5ANTBYazJRZTuYC+LRYUvGMKHkZE3ugCQWgD4IhwZGd4yMvJlFyR7B4BTM2VvPokQ4f1+u6MEdTNmLwI/yD8Bd0Rs573ioiIAAAAJcEhZcwAAFiUAABYlAUlSJPAAAAGdaVRYdFhNTDpjb20uYWRvYmUueG1wAAAAAAA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJYTVAgQ29yZSA1LjQuMCI+CiAgIDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+CiAgICAgIDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiCiAgICAgICAgICAgIHhtbG5zOmV4aWY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vZXhpZi8xLjAvIj4KICAgICAgICAgPGV4aWY6UGl4ZWxYRGltZW5zaW9uPjUzMDwvZXhpZjpQaXhlbFhEaW1lbnNpb24+CiAgICAgICAgIDxleGlmOlBpeGVsWURpbWVuc2lvbj4xMjA8L2V4aWY6UGl4ZWxZRGltZW5zaW9uPgogICAgICA8L3JkZjpEZXNjcmlwdGlvbj4KICAgPC9yZGY6UkRGPgo8L3g6eG1wbWV0YT4Kgk3/8AAAABxpRE9UAAAAAgAAAAAAAAA8AAAAKAAAADwAAAA8AAAN0uZA3zcAAA2eSURBVHgB7J15kBXFHccbl0vWA/Dg9OJYUBCTKKAVowgpxSgEjAp4gIoJKKClEhUNKikFTZXxIEYOi3CU5R8iGIgxWqAkUVMaA8LCLljIoVxquEFFxc78utKvZt7O252Z1++9AT9TtTUzPb/+dffn12/mOz09s/W0tygWCEAAAhCAAAQgkIBAPYREAmpkgQAEIAABCEDAEEBI0BEgAAEIQAACEEhMACGRGB0ZIQABCEAAAhBASNAHIAABCEAAAhBITAAhkRgdGSEAAQhAAAIQQEjQByAAAQhAAAIQSEwAIZEYHRkhAAEIQAACEEBI0AcgAAEIQAACEEhMACGRGB0ZIQABCEAAAhBASNAHIAABCEAAAhBITAAhkRgdGSEAAQhAAAIQQEjQByAAAQhAAAIQSEwAIZEYHRkhAAEIQAACEEBI0AcgAAEIQAACEEhMACGRGB0ZIQABCEAAAhBASNAHIAABCEDgkCPQoGF9U+ddO3er8vLy0PqPHj1KTZ02VT322O/UnXfcGWpDYv4EEBL5M8QDBCAAAQgUmQBCosjAaykOIVELHA5BAAIQgEA6CSAk0hMXhER6YkFNIAABCEAgIgGERERQRTBDSBQBMkVAAAIQgIBbAggJtzzz8YaQyIceeSEAAQhAoCQErJAYOWKkatCgQWgdlvx9iaqsrGSyZSgdd4kICXcs8QQBCEAAAkUiYIVElOJ4ayMKpeQ2CInk7MgJAQhAAAIlImCFxNYt23K+/nnnXXeo5557jhGJAscIIVFgwLiHAAQgAAH3BKyQ4DsS7tnG9YiQiEsMewhAAAIQKDkBhETJQ5CpAEIig4INCEAAAhA4VAggJNITKYREemJBTSAAAQhAICIBhEREUEUwQ0gUATJFQAACEICAWwIICbc88/GGkMiHHnkhAAEIQKAkBObOnWvKHThwoCorKwutw9KlS9W6detUt27dVEVFRagNifkTQEjkzxAPEIAABCAAge8tAYTE9zb0NBwCEIDA4UWgurpa7dm7R/Xs0fPwaljKW4OQSHmAqB4EIAABCEQjMOnRSerDD9eoP82YGS0DVk4IICScYMQJBCAAAQiUmgBCojQRQEiUhjulQgACEICAYwIICcdAI7pDSEQEhRkEIAABCKSbAEKiNPFBSJSGO6VCAAIQgIBjAggJx0AjukNIRASFGQQgAAEIpJsAQqI08UFIlIY7pUIAAhCAgGMCCAnHQCO6Q0hEBIUZBCAAAQikmwBCojTxQUiUhjulQgACEICAYwIICcdAI7pDSEQEhRkEIAABCKSbAEKiNPFBSJSGO6VCAAIQgIBjAggJx0AjukNIRASFGQQgAIE0ELD/PjusLm3btlU9vP8zMXbsWNX9nO7GROy7dOmiPli2PCxL5LS45UZ27NCw1EIiLqMk9i5i6RC5cYWQcE0UfxCAAAQKSMBefIYNG6bq168fKKm6qlq98693VMOGDdXCBQtV7959lNi7uPjELTdQsSLtpEVIxImNoIlj7yKWzsOhWSAAAQhA4JAhUL9BmZa/ffv2hdb5kYmPmOM9e/Ywx8X2rB90C7WNkxi33Di+XdlOnDRR33DjMFfuYvuJyyiJvYtYxm5YHRkYkXAuzXAIAQhAoHAE7MjArp27VXl5eY2C9u/fr5o2O1YdccQRaueOXerYpsdkRiRktGLRokXqwFdfeWld1YABA1STJk1q+AhLiFtuVL9hZSVNS8uIRJzYSFvj2NsRiXximZRvrnwIiVxkSIcABCCQQgJ1XdB37dqlTjjxeNWoUSO1/b871FFHl6tOnTqprl3PVC+9NDfQojZt2qjX/va6OR44ELITt1wpv9hL2oVEWGyEUS4hEWbvIpbO41LHiAWHIQABCEAgRQRqGw7/4osv9MhbRphHG/369zO1tvbdzjpTL1y4QG/fvl2vXr1aX/GLK4zddddfG6l11k/YI5WwciM5dWyU5kcbYYziMrX2+cbSMXbNiIRzaYZDCEAAAoUjYEcGLrmkryorK8sU5F2oVGXlCuUJBdW8eXP1z3+8pSoqKsxkS3nMUV21WrVr1y5jv23bNnXKqSerzp07q+UfrMik59qIW674keH3nt5bJP565vLvIj0tIxJxYiPtjmPvIpYuWPt9ICT8NNiGAAQgkHIC9oLesmVLVa9evUxtZbtDh47ehbuHGj16jGrdurU5JvYiKFatrMrY2g157CGvjK6uXmOSnvnjM+rJJ59QGzZsMOlDrx+qxo9/wLwdErfcTZs2qYpOHdX6dRtUixYtbJEFXRdLSHz00UdGlPn5S8PiMkpi7yKWzoPgeogDfxCAAAQgUDgCdng77BFDWKlin2umf/lRTXSnzhUm29RpU/WRTRrrpyc/rdevX6+9+RT6xBYn6Lvv/rU5Hrfc8eN/oy/vd3lYlQqWVqxHG6e1O9U8JspuSFxGSexdxDK73vnuMyLhXJrhEAIQgEDhCNi72FwT9LJLFns70z/7mH9EYsKEh9Q333yjHn74kYzZmDGj1eI3FquqVdWZu+0o5X7lvRXiXWzVtKnTVL9+/TP+9u7dqyZNmqgmTpyUSXO5UawRifvvv0+tqKw03+rw1z9JbCR/FKZi5yqW4svpkq8SIT8EIAABCBSPQKHuYrNbsGbNGt2xooO+7bYx5lCccmfPnq1PPuUk7QmTgNunnn5KX3zJxYE0lzuFGJF479/v6SlTpwSquXHjRt34yEZa1v4lDiPJl8Q+yoiEv06ynR3L7OP57qt8HZC/OAReffWvWmZXt27TynQ+6cTndD9byw9HZgOzQAAC3w8Chb74bN68WXfo2F43bNRA/+jsH+odO3YYsHHKPffcnvqhhx4MBOTbb7/V3pwJPXfui4H07777Th88eDCQlnSnEELi/f+8r5s1b6q973MEqnXlVVfWaGMcRuIsiX0cIZErloGGONgpiJAYN+5efUaX0/WePXtMFS2s7PVxxzfXF154gX7xxWDHErubht+YV/Oyy/Lvn3raKfrqQVdrUZp2ufa6a/RFF/XS3pCcTYq09vvN3vaGDfWZ3brqBx98QB84cCDjT+xydYaM0f83pPPa17QaNW6o+/y0j2EzYOAA7X10xnREERSffvqpyWHrIMr/cFpsu2p7Ljxq1K2Gx+O/f/xwajptgUCAQJTfgj9Dbecb/xwJm0duTKqqqvRbb79lzjedT++kd+7cGfmiJ8Jg7Ni79JYtW6xLs5ZXT+VG6Ouvvw6kz5v3kh40eFAgLenOCy+8oB997NGk2U2+L7/8skb+7j3O0TNnzgykL1nypj7p5LaBUZcksZE8tZ3X/IW6iqXfp4tt50JCAil3y6Li7CKNl4veiJG/CvwNHjJIH3Ps0aaDzpgxw5qbfVdCYvjNNwXKlDpccMFPTBlNyo/UixcvMuWK6GnX/jTzDnamIhE2bMe5+ZfDa5Qj73Hb9olwsUttncHa2PWQawabul52+WXamwVtk81aftxShvjr3fsiLT9gWx+ERAAVOxAIJeC9nqi958568h8m6xUrVoTapC1RbrzkT+7woyxi+/rrr4WaykVcRjtzLVu3bjXnFHlUEbfcbJ8i9GUCZvbSq9eFetr0adnJJduXm7WXX54fKF8mop5//o8DaXK+lWuY/7wcl1ESexexDDTEwY5TISHPi2QI6PbbbwtUTS5u7Tu0C6TZnXffe9fMFJbnaXYRe1dCIpfSy/4evZQts5TlpDJ//jxblTrX9sKdayRj7dq1honYrVy50viT7SgjEvIDF1sZ3cnVDu/LZ7plqxbGztpLnlIJCRmFidK2OsFmGUib5C8XBzFnRCILGrt1EpATufQrufmREb82bVvrIUMG6zlz5uiPP/64zvyHk8Ett4zU/hs6advnn39u+GTfjSdpt4x0ZJ8n5ZzofcI7M3pt/a733hrx87e//7C1nHPkA03eZNHAaIfYJjkXPTvlWd330r62KmYtN5rNj2umvW9vBNLTulPoWGa326mQuOrqq7QMlUnn8y8S0FxCQuzOO+9c01k/+eQTk03sRUjIENOsWbP0PffcbV5JihNE2+FyXXgkXWzkOaD/2Zc825ORCW92sb8JObdtOdk/EH8GUa1iJ22RRbZtB3/7nbf1hN9O0PfdN04///zzgbrY0Qjv3W6/uxrbcle1bNmyVIxIICRqhIeElBMYNfpWLf3W/pZlbfdbtW6ph90wVL/yyl9qFbEpb2Kk6l0/9Dot7ZWbO1nk0UT/n/fXbU9qU+OcHslhBCMpY8GCP9ewlMe5Tzz5RCbdxkZiIdcG/59c9G285JxpF/951qZlr2USoohG/7J7924jbrxvafiTa4idwMGU7RQ7ls6EhHxyVRS9P5CWrQS0NiEhz/jF5rPPPjNZZPvSn12qu3Q9I/DjljkVtpNb37nW4kP+cgkJ+8xPhI9fBMjsXBmVmD59ei7XgXRbjt+H30BmLYtaFrs333zDHJJtaZs8F7T57dr70pz5fK0YyiiNpK9atcrvstZt64cRiVoxcRACGQJyLpDvJ9jfTvZabjaaNmtqbjrkBuBebw6YPBLNfiMh4/AQ3ZBzpVyA5Jwoj2TlfN67T2+9fPnyorZIJl7KJE/5lLddbExynWfl+iMjG2JXXV1tssm2vWGzfrLXMiJy/AnH1bhxlJuzQ3kSe7Fj+T8AAAD///CSuloAABV0SURBVO2dB3wVxb7H/yABSei9JrRgIBQB6RcUJNJFMCFcMSB6lSQELsUGPEXhWiihqPikygXE54eilASvooaiF5DQcukEEUQFqUoRVObNf96bdffknMM5OZvkHM5vPp9kZ6fPd/bs/nZ2SiEhDdlgxo0bS9NSp9Gy996n2NhYS4ohRYtQREQEHT2SbXHnkxUrVtBfHxlATZo0ocwdO5U/h2fTv39/Gjd2PFWoUIGWLF1CY8c+Tw8+2IdWrlip/N3902lcvHCJwsLCLEGvXbtGo8eMovnz51P37j1ozeo1hv+ZM2eoRs3q1KplK9qy5UvD3ZVF58NhQ4qEWIKdPHmCZr/9Nn3xxeeqftu2bqciRYqQjtOwYUN65R+vULt27emnn36icePH0Zo1q2nAgAG0ZPFSI9zlX65QsWLFLGm7OtFpp6ZOpxHDR7gKZpv7hx+usqQ18NGBVKVKFUqdlmq4lyhRgmJiHjDOc2PR9UocmkghIVbOOr2MjRmUlZVFkydPodGjRmvngDnqOgZMgYO0oHfccYf6PV69epXY3qFDR/r0k09vGxqXL1+mEydOULly5dRv2R8qpn8b7u6F8QPiadWqlbRg/kIaNGiQun9GR0fT7l17aO/evfTphk/p119/pcaNGqn7vr6PTJjwIiUnD6PKlSv7Q1VtLUN+tWUhu4RE+/bt6OsdX9ORw0eVaDDT4IugePHi1KlTZ7MzHTuWTQcPHlQPhrR1aYY/h69duzbt+89+y0OjYXQDFX//vgOWdJyd6Auva9du6seuw/CPPytrL507d079UDZv2kL169fX3uoYWb8enTp1in784TSVKlXK4ud4ovNxdNfnLBx69OhJc+fMpfLlyytnjlO4cGE6sP8g1alTRwelH3/8kSJqhVNUVBTt2b03IIRE0WLOH+pGpaSlbt26qq5mN2/tt+JsTg9CwkwD9rwgwOKYb9La/Hbjd23FMQ8I6N+/KyHB78P3tGyhBMP69PXUpUuMun82aNCAWrduTYsWLbKUiu+7H6//l3rOWDxwkjsCLCTsMKXLlBL89/vvv+dIrkjIHaLYnUVFzfAalr+7mzUVT/ztcZGZmWmJw+ETBj1qceOTzvd3FnXr1THc35r9lqgXWVdw+Fq1I8SLL74gfvvtN+XPbvwnexcseYZH1FTpyN4NIcWCkZbZ0qNnDyEvXCGFkXL2JB8OM2fuHPU3bFiyKFEyTFSrXlVs/3q7OWll53JJUZTDnR3CSoSKu6LqK7/oRg1VHfbs2eM0rDNHXe9Zb8xy5m27m3wDEOa/4qF3itp1alncPvnkXz7nq+sle26EFINO/xKThipeqdNTVX7cJo2bNFJuJUuVEF27dRXyzcTnsiCB24vApUuXBF+3+hpzPEqxLMqWKyP4WLFSBdE/vr9Yvny5+OGHH24vEH5cG90mhw4dEsePH7f8bdy0UTwc+7Bqv6gGd4nr16+rmug4/MxYvHixyM7OFlu3bRVdYrqosEMef8yPaxxYRSO7issPXv6xOTPcoGYB4CyM2Y3DP/7EELOTspuFBD+0+cf/xptviG+++UasXLlCVKpcUTz77DMqrL6I5FtDjnRu5fBQ34eUkOAL1NN8ZJeZJdmMjC9EaFhxUbVaFbEjc4fFj8vW9O4mFjd9YhYSTw19Ul3ws9+erb2dHvnByaKDH5y63vklJBwLxALKVd0cw3pzruvlrj1ZwHE45jFj5gx1ffDxyJEjYtv2baJX716iXPmy4rvvvvMma4S9zQmMGjVSCX99jfGRf4d8rFylkoiXwoHvA7L3VNy8efM2p+Gf1TO3jSt7hw5/ESdPnjQqwOH4ubRv3z7DjS3ys41y5xdZGHsI2CYkuDeC3/q0GjQXjxvUbiHx0ksTxPjx48zZiJSUYaJBwyjlpi82dw8eS2TTScwDMUaPhKf5OAoJTo4FAJeDe0vOnj1r5MBurh62ZiGxectmFb/+XZHCVT3YvU7d2ircsmXL1JHTD3YhMTTxKfHMM08bzNny888/Kz7vzHnH4o6T4CWQlpamrok7ixcT/FelamXRv3+ckF3h6gUFwsE/rg19P+de55cnvqz+uBeCe4mq16gmvvzqyxwF5Th873RmzPdZZ/5w846AbUKiXbu26uF79OjRHCXgBrVbSDhmwl1ecmyDGDFiuPLSF56rB7BjfPM5P/i5t4O7PB2Nq3ycCQmO2+ehPupG9diQwUZSXDZPhARHiJM3NQ7fs1dP1Z1nJCItckyFkX6r1i3VZyVd72AXEmZO2s6fNZiPHCCqnXAMcgI7d2YK7g6fO2+uEg5BjsNvq6/va473Wf7ExL0OfO93fPZwHE/vs35b8QApmG1CgscccIPyW7Gj4QbNKyHB4xx4nAQr0+Ytmonz58+r7PWF562Q4G5vroccPGqpxq3ycbzAdeTvv/9efVfl8vBYAjbeXOBXrlwRPGaD4/A4k/vuu1d99uHPL/wZgd1b3NPcGO/B5/xXUEJC19vuo66Xu/Y0f9pwzJ/blcdLsODS42gcw+AcBEDAPwno37+z+yz3ULB/o8bRgu+X2rAbhISmkbdH24QEfz/kB11sXGyOEnOD5pWQ4IF3+/fvF1u+3CLu73K/eru4cOGCurA4X3cPnhwFlQ5vvvWmEhLz5s2zeN8qH2cXuE5g6dKlqjw82PT06dPK7s0Fzg8+TqN7j+6GKGER0bZtGzUWgMumDdeZ/yAkNBEhdu7cqT4vsdDE+Ig/ucAGAoFCQN/XnN1n+f7YsWMHdd977rlnjSpxHG/us0ZEWLwmYNv0T54z8sjAv8p1ENaoqX41a9Y0ppHwWhFhYaFq7q7h6MbC4SNqRVDLe1paQsnBj3T1yhWX6fD0SfmwpoUL3lXTTTly3759LdM/LQk6nMjvoSTf7kl+SyeeYupq7QZn+fTr109N6XRI0jhdu3YNXb9+g5o1a0a7du2i0qVLOV1bgddl4Kmy3bp1N+J6Y2F2bJo2bUqRkZHeRPXrsLpe7tpTCgY5pfiYWrNDT+mdOWsm8RonHO+d/55DJUuW9Ot6onAgAAI5CcheYuXoavrngQMHqHWbVmqdiIyMjdSubTvLOhKOKcoXMapRowYdPHDI0QvnuSHgtfRwE+Hbb79VMzeSk5PchLLHKykpUSxcuNCSGE8NZBXKA6VyYz744APVG2H+hp4X+eSmbIjjHQF+S+GpxTxLY8GCBd5FRmgQAAG/IuCuR0IXdPKUyer+zzPYuJcWPRKaTN4fbe2RYCEjH+40LCVZrQrZonmL3Ggbj+IMGpxAGzZsoI8+Wq1WoZRzuikxKZHk4CnatXO3Wg3To4T+P9Avv/xCcjqQXKWuAy16959GVLvzMRKGJU8JvPb6azRp0kSaOnUaNZIr2ZlN9WrVqV69emYn2EEABPyEgJzOT4sX/5N69e5N+hkyUf6W2YwfN95lD/Mff/xBU6dNpRs3blDvXr1p7bq1VKlSJeLVcB3Nq6+9qhYbTBmWoryk8KDt27epVUp5tVIYLwnkhVZ5+ukxgufomge+2J0Pj33gRat4Gk+p0iXV+AxeZ8KbxZvMZfrbk0+ITp3uyzGmwu58zHnCnncEuCdCv8U4HkeO/HveZYyUQQAEvCbAa728Pvl1cffdTdXvtkLF8iI9Pc3rdHIb4bPPNqjeaF6LKGV4iti0eZOQwiS3yQVdPNt7JLzUMT4Hlw/6fFkXPr/y8RkIEgABEACBACAgp9LTSrk3hlxMUC1tzUUuVKgQJSUm0UsvvUxly5bN11pkyt7sp5560ihL1apVKfbhWIqNi6M2rdu4HQOXrwX1w8wCXkj4IVMUCQRAAARAwAkBucqkEg9yKjyx3Wzay80LZ816Qw0UN7t7Y5cz+OjipYtqsKU38XRYucUDyRlvUshMUAM3tTsPzGRRESc3kuRJACx4YP4kACHxJwvYQAAEQAAEbCQg+/jVjrwsHLj3gTdpdDS8W/CUyVPVrse+PqB5bNThw4fo3YWLHLPx6pxnfyUPSyb5ySNHPN7JOi42TvVUNG/WHKJCEoKQyHGZwAEEQAAEQCC3BFg88BR3LR7kipNOk+JBjSP/PpLGj/8v26Zl2yUkuMBcj/fff59Gjxmldot2VgneRZRFRVxcfzXt3Fch5CyPgHALulEhqDAIgAAIBBgBxwHD5nNe0p93JDXvNMz+rhZj8qbq5nzM9vIVyol77+2odkE1p8dTMHm5anNYZ3beiVeu/WCOaotdzsYQ5u0I7EiUlxXgNJ3Vw+zGOzrz5oBms27dWjHw0UfUTtAclvdzkdudi1defSXHwH6dViAuJogeiYCQeygkCIBAMBPQCzINHjyYihT5v8WZNI8D+w/QV//+iooWLUpr16ylzp3vd7sYk47nyZHzLVGiBMXHx1uCy32IKD09nXja5Nw582jIkCHKXz4g1fgCS2DTSXh4OKVOS6U+fR7Kk08CdvZImIqtrPyZIyk5iXh6qjNTsWJFOnL4qFx8MYx4OYGEQQmUlrZOLWzYseO9FB5eky5cuEiff/4ZXbx4UfVgrFubRjyok41u49TU6TRi+AhnWfivm1k9wQ4CIAACIOB/BPTbKk9Hd2b4DZfDtG7dSnmz3a4eCVfbG/DbN29uGB5R0ygS73XE0/F1efUxNKy44J2U83JJAC5EXvRIGJWTFi4/7yvFezvpuulj6vRUIyhvFcHuffv1FXKNI8OdLbwZJO9cyv68tLeeZqrTCcQeCdv22rCQwgkIgAAIgIBtBPRDxpWQYHcOww84ftixXQsJ3mKbN7aSS8WL9957z6uHOafjSkhw5Xi/Hw5z8uRJo65jxoxWbuzOf7zBYHZ2tuGfl5a8FhK67HIMiBJtuo5Vq1UxPlWsWbPa4G/eB0nH5aPssRA1alZX4T7+eL3y0mlBSJhJwQ4CIAACIGALAf2QcSUk9EaFvEAfb2zF4Xmp6PgB8cqu4/Mxola44E0WPTEc3p2Q4O/9HObMmTNGcvwGzj0QvD37+vXphnt+WPJLSHBd5FRRIffyUT0w5t4IHq/CTObMneO2yixGzFufcxz+g5Bwiw2eIAACIAACuSGgHzLOhAS/9SYmDVUPod4P9lbJ6/BNmjYWcsNAce7cOSUe+j3cT4V7NGGgR8XgdFwJieXLl6u0eFddRyPHEyhB4+ie1+f5KSR0XY4fP270RrBb9RrVFJfDhw/rIB4ddZsFopDAYEv/Hb6CkoEACICAIqAH4nXt2s2y1wQPdszK2qumJ5YrV442b9pCvPMthy9cuLDaiZmnKGrDOxfLHgmKioqiPbv3ameXR06HdyPu1KmzJcyxY9lqTYiQkBBKW5eWw98SOB9P8nKwpafV0G115fJVNQDW23iBONgSQsLTVkY4EAABECggAvrhxIs3mdcqYHu9epHUulUrSkkZTtWqVVMl5PAsKPb9Z3+OEpu30J799myaOXMGybdqta32oIRB9MILLxozQzgdXu+BN78ym/Lly1OLFi0oOWkYNW/e3OxVoHZ/EBJyiifxBmKXLv5MoaGhHvPQbQwh4TEyBAQBEAABEPCUgH7IXLxwSU0vvFU8Dh8dHU27d+3JEVQLidGjx5DcwI4mT56idsvknZN5euNjgx9TbhyR0+GVHI8eyc6Rjj86+IOQ4F2kefnvbVu3uxVZciyL6rHgniM2uo0DUUhg1oZHX68QCARAAAQKjoD+fu5sjISzUnF4PWvD0Z8HZN4VVV9Nxxw/fpzFOyVlmGjQMMpwczdGwgjkR5aCGCPhWP0RI4arMRJTpk5x9LKc80wa3qV40j8mKXfdxhgj4Y8SFWUCARAAgQAnoN9W7eyROHjgkIWKHBxIvXr3pO7duqvNs9gTPRIWRB6dZGVlkZzNQpUrV6ZdO3cTfwZyNHLwKzVqHE1nz55Vi4h1k8x1G6NHwqK3cAICIAACIGAHAf22amePhC7XqVOnRL3IumoNCp6BcV4uKqUNeiQ0Ce+Ow4enGDNaMjZmiJs3bxoJZGZmilatWyr/Xr17GX66jdEj4Si7cA4CIAACIOAzAf22mhc9EteuXVODLc9fOE8TJkygU6e+o39/tZXKlCmDHolctpwUDiQ/cZBcS0KlwINk69SuQ8xY74Daq1dvWrJ4iVqCnAPpNg7EHgnM2sjlhYJoIAACIJBfBFasWKGy6tu3r2X6p6v8OXzp0qUoJuaBHEE+/HCVmtLJ3emOhqeH1gyvQQsXvEsJCQnE6YSFhVL37j0cg/rluT8MtjSD2ZG5g/5H7iC6Y8cOunDxAhW/szhFN4qm/nK3UJ7Kaza6jZs2bUqRkZFmL7+3Q0j4fROhgCAAAiBgP4FkOUOjZctWxoZbnAN/s5fLPdP8eQuINwgLNONvQiLQ+OW2vBASuSWHeCAAAiAQwAQGDU6gDRs20EcfraZWUlDIpa0pMSmReBooDxKsUKFCwNUOQqJgmgxComC4I1cQAAEQKFACcnMvuW5EIq1atUp9Lrl+/Tq1b/8XmjF9htriukALl8vMISRyCc7HaBASPgJEdBAAARAIZAJyJgidOHGCeIltHhQYyCYj4ws6ffoMxcfHB3I1Aq7sEBIB12QoMAiAAAiAAAj4DwEICf9pC5QEBEAABEDAQwJ6uqS7KbFypU41BZOXAR89arSHKSOYtwQgJLwlhvAgAAIgAAIFTgBCosCbwCgAhISBAhYQAAEQAIFAIQAh4T8tBSHhP22BkoAACIAACHhIAELCQ1D5EAxCIh8gIwsQAAEQAAF7CUBI2MvTl9QgJHyhh7ggAAIgAAIFQkALieefe17uU1HUaRnWp6cTL1ONwZZO8djmCCFhG0okBAIgAAIgkF8EtJDwJD8ICU8o5T4MhETu2SEmCIAACIBAARHQQmLvniwKDQ11WooXJ7xAy5YtQ4+EUzr2OUJI2McSKYEACIAACOQTAS0ksI5EPgF3kw2EhBs48AIBEAABEPBPAhAS/tMuEBL+0xYoCQiAAAiAgIcEICQ8BJUPwSAk8gEysgABEAABELCXAISEvTx9SQ1Cwhd6iAsCIAACIFAgBCAkCgS700whJJxigSMIgAAIgIA/E5g4aaIq3tjnx1JISIjToqanp8l1JDIpJiaG2rZp6zQMHH0nACHhO0OkAAIgAAIgAAJBSwBCImibHhUHARAAARAAAd8JQEj4zhApgAAIgAAIgEDQEoCQCNqmR8VBAARAAARAwHcCEBK+M0QKIAACIAACIBC0BCAkgrbpUXEQAAEQAAEQ8J0AhITvDJECCIAACIAACAQtAQiJoG16VBwEQAAEQAAEfCcAIeE7Q6QAAiAAAiAAAkFLAEIiaJseFQcBEAABEAAB3wlASPjOECmAAAiAAAiAQNAS+F8XYC4ziuSlZgAAAABJRU5ErkJggg== />
Answer to Question 5

One example is shown below.

Answer to Question 6

The phosphorus-containing product is water soluble, allowing for the separation of the alkene from the reaction mixture by a simple aqueous extraction.

Answer to Question 7



Answer to Question 8

First combine fractions 6-10 and then evaporate off the solvent to isolate the compound. Combine fractions 3-5, evaporate off the solvent and add this mixture to a new column. In addition, one could collect smaller fractions or use a more non-polar solvent system to more effectively separate these two compounds.

Answer to Question 9

If product were dissolved in the eluent when elution began, it would result in the continuous addition of product to the column throughout the separation. This would lead to little or no separation of the product(s).



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
 

Did you know?

Patients who cannot swallow may receive nutrition via a parenteral route—usually, a catheter is inserted through the chest into a large vein going into the heart.

Did you know?

Methicillin-resistant Staphylococcus aureus or MRSA was discovered in 1961 in the United Kingdom. It if often referred to as a superbug. MRSA infections cause more deaths in the United States every year than AIDS.

Methicilli ...
Did you know?

In ancient Rome, many of the richer people in the population had lead-induced gout. The reason for this is unclear. Lead poisoning has also been linked to madness.

Did you know?

The Centers for Disease Control and Prevention has released reports detailing the deaths of infants (younger than 1 year of age) who died after being given cold and cough medications. This underscores the importance of educating parents that children younger than 2 years of age should never be given over-the-counter cold and cough medications without consulting their physicians.

Did you know?

Every 10 seconds, a person in the United States goes to the emergency room complaining of head pain. About 1.2 million visits are for acute migraine attacks.

For a complete list of videos, visit our video library