This topic contains a solution. Click here to go to the answer

Author Question: Which of the following is the best candidate for a crossed Claisen reaction with ethyl acetate? ... (Read 89 times)

jeatrice

  • Hero Member
  • *****
  • Posts: 543
Which of the following is the best candidate for a crossed Claisen reaction with ethyl acetate?
 

Question 2

Predict the aldol reaction product(s) of the following ketone.
 
  1. A
  2. B
  3. Both A and C
  4. Both B and D
  5. A, B, and C

Question 3

Which of the following would not be produced in the aldol reaction between 2-butanone and acetophenone?
 

Question 4

Which of the following reactions will yield the compound shown below?
 
 



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

KKcool

  • Sr. Member
  • ****
  • Posts: 340
Answer to Question 1

2

Answer to Question 2

4

Answer to Question 3

4

Answer to Question 4

3

Answer to Question 5

3

Answer to Question 6

4

Answer to Question 7

2

Answer to Question 8

2

Answer to Question 9

3

Answer to Question 10

4

Answer to Question 11

1

Answer to Question 12



Answer to Question 13



Answer to Question 14

iVBORw0KGgoAAAANSUhEUgAAAaUAAAC2CAYAAAB555IvAAAgAElEQVR4Ae2dB3hUxfrGv6VK7yCgoSX0IiKCCVVQSbwgcGkCXkAlUSyJ8QIW7h9RKYpcExW8CUqRIoIoICYKSjVBRAEVgpBQRJDee53/8w6cJdlski1nk93NO88TdvecOd/M/GaZd6d9Y1FKKWEgARIgARIgAS8gUMAL8sAskAAJkAAJkIAmQFHiF4EESIAESMBrCFCUvKYqmBESIAESIAGKEr8DJEACJEACXkOAouQ1VcGMkAAJkAAJUJT4HSABEiABEvAaAhQlr6kKZoQESIAESICixO8ACZAACZCA1xCgKHlNVTAjJEACJEACFCV+B0iABEiABLyGAEXJa6qCGSEBEiABEqAo8TtAAiRAAiTgNQQoSl5TFcwICZAACZAARYnfARIgARIgAa8hQFHymqpgRkiABEiABChK/A6QAAmQAAl4DYFCXpMTH8/Ili1bZMOGDboU9evXl/vuu8/HS8TskwAJeCsBf25vLHl98iwOvrVYLN5a9w7l688//5T27dvL9evXpXDhwnL69Gn5+uuv5d5773XoeUYiARLIHQL+0t60a9dOUBajvUlISJCWLVvmDsSbqXiKZZ4P3/m6IG3cuFHatGkjlStXlk2bNskff/yhxej++++X77//Ple/JEyMBEggewL+0N6EhIRIlSpVZPPmzbq9gRh17NhRVqxYkX3hfeRunouSj3DKMptLly7VPSMIUIUKFfQvl8WLF0u1atXkk08+0b9msnyYN0iABEjACQJob86cOaMFqHz58rq9WbJkiVStWlVmzpzphCXvjUpRcrNu0H0uXbq0lCxZ0mqpUKFCUrFiRSlSpIj1Gt+QAAmQgLsE8kN7Q1Fy81uCeaRjx47JX3/9ZbV0/Phx2bdvn55jsl7kGxIgARJwk0B+aG8oSm5+Sfr16ydBQUF6td3WrVu1GGF898qVK/Lcc8/5/CION/HwcRIgARMJoL0JDAyU1q1bS0pKim5vOnToIFevXpXnn3/exJTyzpRzopQWKyGWCEnMu/w6lPLPP/8sFy9edCiuu5Hq1KmjFzSUKVNGGjduLHXr1hX0lLAa5q677nLXPJ8ngXxKIE1iQyz6Rx0WJ+AvJDbNK1msW7cuV9sbLGjAlEGjRo10e3PixAlJTEyUZs2aeSUfZzPlxD6lRIkIipJkCXc2DY/Hv3z5smzfvl0WLFig/7AC7vHHH5f33ntPSpQo4fH0L1y4IJ999pkcPnxY9u7dKxCq5s2bezxdJkAC/kkAghQkUcnBEpOaJJGBImmxIRIUFSSWlARRcaF5WuxLly7Jtm3bZM6cObJ+/XpJTU2VsLAwef/996V48eIezxvam/nz52dob/zpB7BjPaXECLFYwiTe47idSwDd16ioKOnSpYs0bdpUli1bJqGhofLiiy/KtGnT5JtvvnHOoIuxO3XqpMXQWAYeGxvLVXcusuRjJCBpX8v8ZJHwhBuCBCKBkUmSGhMsEr8oz0Zq0N5ER0dLjx49BP/nsaDpX//6l/7xi/Zm+fLluVJ5aGfwAxx5+O677wTtjT+FnHtKEKSweAmOSZWkuhPFEpa3xUfXNS0tTf7v//5PfylKlSolDzzwgK6YWrVqWVfBNWzYUMeBWGHOx5MBk4/49YJw8uRJuXbtmieTo20S8G8CgZGSpCIzlTGwbmMR2SI70kRCAzPd9sgFo735z3/+o5dfV69eXd5++22544479IiIkeiYMWPk6aef1iMkAQEBxmWPvNq2N/jsTyFnUQqNE6XibpQ5DyaTMDcEDwkvvfSSHDp0SPd+8IUYMWKEFpuuXbvarQ8M382dO1dvbMUCBCzR9lQoWLCgFChwo9OJV+x0ZiABEjCXQOIijNWES10PCpLR3owcOVIPj2G0Be0NPuPHbXbtzbx586Rt27aCDfXYs+ipYNveeCqdvLLr2PBdHuRu9erVejMYJvNq166te0foFcGlz2+//aa70Vl9QYzsTp06Ve8Vio/3toFHI4d8JQEScIhAYoSExYsExwwXT8wo2bY3O3fuFLQ3mCN2pL2BcH377bf6B+n06dMdKhIj2SeQc0/J/nOmX8WwF3YqQ0DQZU5OTtaLFLCiZNKkSdK9e3en08RwXlJSkjz44IOC3c9Dhw4V/MpgIAES8CECN6cQJDxBkrDqwYRgtDdxcXGycuVKU9qbO++8U15//XUZMmSIHpnBfJMxgmJClvONCa/pKb3xxhu6e/zmm2/q7vJrr70mR48elR9++MElQTJqEOO7+OINGzZMd8eN63wlARLwAQLp5rTNXHWH9garZMeOHWtqewMhwtwShAntF4PzBLxGlLDMEn+YRMTy6tGjR8ttt91myuZTeOtGLwlfFqTBQAIk4P0EsAzcusjKpB6SUWps38AmVOxpNLO9Qc8I899FixbVm1m56Mkg7vir1wzfGd1cnEVkdihWrJjuLeGL0rNnT4FTQ1/3Fmw2I9ojAW8icGNfUrKEJyjxxLYkrFirVKmStGjRwvRiY3QGR9dgqwo8LXz++eemp+HPBr2mp2RA9qQnBvwigjdv4zA+I013XzE+ff78eW0G82L4YyABEnCRQFqsDIpK1ttQPCFIyBV+lHqyF4M9RNi8v3DhQvn1119dBGH/MX9vb0wQpZvuQCLyYL24/TrL8ioWS/Tu3Vuw+QzLNs0K//vf//QYMr7o7777rv4ysidmFl3ayW8E0r6eL8kikgwPDjddDN16DZEb3oa8v93p1auX4DA+CBTOWjMrGHPksBcTEyMTJ040y7RX2Mnzk2cNCnAmCDcdcJ8B4fBUwFgyHKZisyuWfZopHuim49cXdnrji1i2bFmXioGjjn/88Uf97N133y34Qzh48KDu6WEIEkOSCNhHgVU/WDrPQAIk4BiBgQMHyp49e/RCKseecC0W/NLhUD7MZaO9MSvs2rVLtwXwgQcXQ/Xq1XPZdFbtDYYg0V5iCNII2O8JjxYInjp5Foa9Ijz33HPYcarmz5/v8fwcPnxYVa5cWY0fP96UtI4cOaK6dOmibZYuXVqXo23btgrXnQ3r169XxYsX138lS5ZUhQoVUitXrtRmEhISlMViUfv27bOarVevnnrrrbesn/mGBEggZwIDBgxQISEhOUc0IcaiRYt0mxATE2OCNaWio6NV3bp1FdqaEiVKqIIFC6rExESXbKO9KVasWIb2Zs2aNdpWlSpVdL6RjvHXoUMHfQ/8jHguJZzNQ/lSlMBj7NixuoF/9913s8Hj2K1x48ZpW5s3b1aXL19WP/30k65kCO3169cdM6KUfq5q1aqqVatW6vjx4+rs2bOqffv2qmzZsvreunXrVIECBdTp06etNu+77z6KkpUG35CAYwRyU5TQBowZM8YUYfrll19U0aJFVVRUlG5r0BZ07NhRlSlTxrGCp4uFdur222/X7c2JEyd0e9OuXTtVvnx5lZSUpGrWrKnee++9dE8o3Z7hxzE6EN26dVMXLlzIcN+MD16z+s7oHubW6yuvvKK70+PGjZPg4GCXhvFwCiS6zphTwv4E+NvDtZYtW8rmzZv1MB6cOBqLILIrG57FscbweI7FGIZ3c+wSh3uTL774QjDkgLBq1SqrG5NTp05lZ5b3SIAE8pgApgjgq3P37t16XxTaG1cCViZjuB6eyNF+oa3BH47JQTtz4MABfb6SI7aN9gbnvsFZgeHdHE6tMRQ4e/ZsKVeunG4j0y8Ma9KkiV64AScESBPPY+uOmSHfihIgYp8CNri1atXKJab4QmCsGAIC4cBnIxhOYLE8NP2ptMZ921dsEsZ4LeahjC8I4mAZO/xoYZ7K8KvXrVs328f5mQRIwMsJ4Ky1GTNmCPZNuhLgERzL2NHe4NUIEAXMO0P4sCnYkQBPN9m1N0WKFNFnNsEDeXov5Fgghn1YWNAFYYQrJrNDvhUl7FWaMGGCdVGCK2ANJ6/4tYCeEV4NYcLBXxAUCIgjE5ywhcUXR44c0Y5nb7/9dp0lHLWOBQ7YV4FFFPjVBduVK1fW941JR1fyz2dIgARyhwDam/Hjx+v2AYugXAlVqlQROJeGg2r4AK1Ro4Y2gx/WONcJh4xib5Qjwba9gW0EtDfocaGtwSINODEID791hl7VqlX1PY8tckAmzBgDNMNGbi50QH6bNm2qx0XnzJnjdvY//PBDPae0atUqdejQIfXFF1/oz5iQdGZOKSUlRU9g1q5dW6Wlpam9e/eqhg0bqjvuuENt27ZNj/NioQPmm4yA+ScudDBo8JUEHCOQm3NKyFGTJk10ezN37lzHMphFrO3bt+uFCYMHD9Ztza5du1StWrVUuXLlsngi68tob4KCghTam507d+r2pkGDBiogIED9/vvvqkaNGgrz5WfOnLH+nTx5Ul25ckVVqlRJTZo0yan2LeucZLyT70Tp2rVrKiIiQlfsp59+mpGGi58gEk888YRekICFCKjMF154QZ07d85pizt27FDVq1fXX2AIECr/119/1Xa++eYbLXb79++32sWXnaJkxcE3JOAQgdwSJfwoDQ8P1+3NvHnzHMpbTpEmTJigmjVrphc9YdFDjx491IYNG3J6zO59tDfVqlXL0N5s2bJFx4U4od+CNs34a926tb6HBRIVKlRQECmzQ74bvsP6fngih3uRvn37OtLTzTEOJgQ/+ugjfQQ7vDnAOznGj10JmIvCHiV00xEw6VizZk39HmPRWARhDBviIk68TD++rCPyHxIgAa8ggIVUaG8wb21We4OznbDoCfuLMPeDfZeuBrQ3GPqz197gdFsspEp/iGCZMmV0Ul9++aWebjAWZLmavr3n8pUo7d+/X7DLGmOvn376qUsr7uxBNK65uqrGeN54xdks+LMNED/bL+A999xjG42fSYAEvIAAfgDPnDlTsGINB46aGXACLv7MCFm1N9ktyGjdujVG2UxvQ1GefCVKs2bN0gd24Th1HBzIQAIkQAKeIoBFSKmpqXopuDHa4am0/MmuCb7vfAMH9gBhCeNTTz2lh9d8I9fMJQmQgC8SwEgMTqzFcTkUJOdq0OtEyVhS7Vwxso+NvUQ4zAsHb02ePNkjXc7sc8C7JEAC3kQAQ0/GcTlm5wtDdv3799fnKU2ZMsVs835vz2uG786ePathHzp0SG9IxR4fs8KTTz4pP/30k94NbaYDVrPyRzskQAK5SwB7AuFsFH/Gnj+zcoARGYQxY8aYZTJf2Sn4Gs4d94KA3gxWeuAMEqwwO378uHZfUa1aNbdyh7NMXn75ZT3R2Lx5c/aS3KLJh0nAfwjAS/iIESP0hD3mmdE+uBOweR6r4uB+B27BsKDK338Ee6J8XnN0Bb4MqFS4v4D/JSx1hvsM/GFctkOHDtKsWTOnvjPwOYdfQf/9738z7Ep2yggjkwAJ+CUB+Jlcu3atPiUWHhewlQNHwqCnA/dghlcVRwsPH3FYsfbJJ5/IY4895uhjPhvPU6vvvEqUbGsHzkjh7ykxMVGvo4fLHrjWGD58uD5DyDa+7Wd0AnE+E7548B/HQAIkQAJZEcBiqOTkZD3MjzOEHnroIb2/6J///KfAAWl2AXuGEB/tE84hwvYNfw/5UpSMSsVQHvy/YSMaTnDEZwBBDwgrW+ztD4KQRUdHy+rVq00fMzbyxVcSIAH/IwD/b3CijPYGUwrwXfnAAw8ITq5u27ZtBofJRumxZwib2tHeuHq4p2HLV17ztSjZVtK8efMEG2HxpYFAde3aVR8bgW43dhhfvHhRD/eNGjVKHnnkEdvH+ZkESIAEHCaAja9wUor2Bh4QIECYp8ZREiVLlhSssHvmmWdk+fLl0rlzZ4ft+npEipKdGoQg4SyjlStX6mE+rNjDWUZYVo7zQiZNmqQ9ddt5lJdIgARIwCkCaG/QpsAtD/YgYU4KQ3uY/4Y37VdffdV6SoBThn00MkUph4rDFwVdbsw3Pfzww/L+++/7/cqXHJDwNgmQgIcIYEEWek+YIujTp4+88847HkrJe81SlBysm/RnGjn4CKORAAmQgEsE8nN747ei5KmCufQN40MkQAJ+TYDtjfdXr1cvCfd+fMwhCZAACZCAmQS8zvedmYWjLRIgARIgAd8iQFHyrfpibkmABEjArwlQlPy6elk4EiABEvAtAhQl36ov5pYESIAE/JoARcmvq5eFIwESIAHfIkBR8q36Ym5JgARIwK8JUJT8unpZOBIgARLwLQIUJd+qL+aWBEiABPyaAEXJr6uXhSMBEiAB3yJAUfKt+mJuSYAESMCvCVCU/Lp6WTgSIAES8C0CFCXfqi/mlgRIgAT8mgBFya+rl4UjARIgAd8iQFHyrfpibkmABEjArwlQlPy6elk4EiABEvAtAhQl36ov5pYESIAE/JpAIb8uHQvn0wRwSiiDuQSGDx8uycnJUqBAAfnkk0+kVq1apiZgsVhMtUdj+Y8ARSn/1bnPlJgNnLlVNWrUKFm2bJlMnz5dli5dKt26dZPvv/9eqlSpYm5CtEYCbhDgcehuwOOjniWAnhKFyRzGp0+flqCgIFm9erXUr19fG+3UqZPg75VXXjEnEVohARMIcE7JBIg0QQLeTgACX6RIEalQoYI1q+XKlZOrV69aP/MNCXgDAYqSN9QC80ACHiZQvHhxadKkifTu3VsOHz4sM2fO1EN3nTt39nDKNE8CzhHg8J1zvBg7Fwlw+M582L169ZKUlBQpWrSoTJw4UShK5jOmRfcIsKfkHj8+fZNAWmyInv/BHJDFEiKxaUTjbQSwyOHxxx+Xb7/9Vi9ywHwSAwl4GwGKkrfViA/mB4IUFNVYEpQS9G5UQmOJCqIweVtVLlmyRPBXqVIlmTFjhpw5c8bbssj8kIBQlPglcJNAokyMSpbgmOESalgKHS4xwckSNTHRuMJXLyBQokQJKVasmFy5ckVKlizJlY1eUCfMQmYC3KeUmQmvOEUgVOK4ydUpYoxMAiSQNQGKUtZseMdFAmmxgyQqOVhiZlr7Ti5a4mMkQAL5jQBFKb/VuCfLmxghlrB4nUJwTKpEBnoyMdomARLwRwKcU/LHWs2rMoXG3VjooFKlz/wgsYTEChfh5VVlMF0S8E0CFCXfrDcvz3WgRI4KF0meL19Tlby8rpg9EvAuAhy+86768J/cBDWUYImXlFQRcWEY7/z58/Lll1/K0aNHrUx69OghAQEB1s94M3/+fDlw4IC0bdtW7r777gz3+IEESMD3CLCn5Ht15l05TouVEItFImxXf6emSLKES3cX1zocO3ZMnnzySX3Mwo8//qhfjx8/LoMGDZIVK1ZoBiNGjJDo6GhZs2aNtGvXTpYvX+5dbLwwN9jcjGMrGEjAWwmwp+StNeMr+QqMlFHhURL2ZqwMD4282SlKk9g34wWLHVzUJF16nPUzb948636a3377TWbNmiWlSpXSjkThv23dunVSu3ZtiYuLk8cee0y70Clfvryv0MvVfGJjc8GCBaVw4cL6FZ8ZSMDbCPAnk7fViA/mJzROSULjKAnSLobgZihIUkYpSbIuv0uT2BCLWDJ1p7Iv7P79+6VRo0bSsGFDefTRRyUwMFBatGghXbt2Fdzr2LGj9ZC6iIgIKVu2rFy+fDl7oy7c3b17twwcOFCGDBkiBw8edMFCzo+cOHFChg4dKn379pVt27bl/IALMW6//XZZuHChdjF07do1Le4umOEjJOBRAhQlj+LNP8YhTNrF0E1XQ3EZukiBEpmkRGW8mCOcatWqyc8//yybNm2SuXPnCjxdw5Fo1apVtauctWvXyqFDh7Qd9KgwvIfG1qxw6dIliY+Pl1atWukhwlWrVsn9998vs2fPNi0dMMO8GAQWPul+//137SR18uTJcuHCBbOKog/3gyBBtI8cOSJ79+6VcePGmWafhkjANAKKgQS8kMDevXvVbbfdpsLDw1VERIR+/eOPP9Rdd92l31+5ckVfr1Wrlho8eLCOu3z5cjV9+nT17LPPqrS0NLdKNXXqVBUYGKgKFCignnjiCbVv3z51+fJlbdtisagGDRqoOXPmuJXGggULVNOmTRXsDRkyRF28eFFdu3ZNTZgwQRUqVEhVq1ZNxcbGupXGqlWrVPv27TFOp7p06aKOHj2q7c2bN08zCwkJUcuWLXMrDT5MAmYSwK9bBhLwOgJnzpxRH3zwgXrttdfU6NGj9d+ePXvU4sWL1ezZs635jYuL0/fQ+CKcO3dOQVDq16+vpk2bpiBezoRNmzap3r1760a8WbNmKiUlJdPjGzduVP369dON+qBBg9T27dszxcnuwq5du7SwFitWTPXs2VOtX78+U3SI6rBhw1ThwoXVww8/rH788cdMcbK7cOjQIfXyyy+rcuXKqQ4dOigItm04ePCgevHFF3VZ+/Tpo/7++2/bKPxMArlOgKKU68iZoKMErl+/7mjUTPHQ4L7++uuqU6dOaubMmboHkilSugunT59W48aN072W8uXLK/Ricgrr1q1TNWrU0I36lClTdE8nu2fQ00JPDj2jqlWrqhUrVmQXXd9LTU1VEEf0dEaNGqVOnjyZ4zNLlixRxYsXV6VLl1azZs3KMT56SuCEntlLL72kbLlv27ZNiyJ+KCAcOHBAQZghlPjbunVrjmkwAgk4SoCi5Cgpxst1AraNoysZSEhIUN26dVPt2rVTS5cuzWQCYoQeWUBAgG7Io6Ki1O7duzPFy+oCemIfffSRKlGihKpXr56aMWNGJnGCGM2dO1c1atRID8shPQzVORMWLVqk8wgxe/fdd9Xx48czPY7ytW7dWgsYBPnYsWOZ4mR3ITExUQ8n3nvvvVbBRNmqVKmih03R+zxx4oTuXSEfzZs3139PPfWU2rJli5o4cWImQcsuPd4jAXsEKEr2qPCaVxAwQ5SMgkyePFn3ODAkZojOL7/8ohtV9EJatGjh1i9+9BZ69eqlBQHzNGikETAP9sADD+jrGIbD8KCrAfNsmC9DfmvXrq2SkpK0qb/++kvPSeE6hGLt2rWuJqFFJzo6Wg/9rVy5UpUpU0bhFQFzdw8++KDq27eviomJyZDGgAED9FAje00ZsPCDCwQoSi5A4yO5Q8BMUUKOMckPwcCwFnoDaMQrVqyo0AsxK2C+Cz0K2DbSCAoK0sN2WMRgRkDvLzg42JoGFoRUr15d96DQ8zMrvPHGG6p///7W3s/58+dVq1attChBFNH7xN/mzZsVhi+xaOPIkSNmJU87+ZQAl4Sbto6RhrydQIUKFWTkyJHao0GhQoUEh9599dVX8sgjj5iW9QEDBsjWrVvlueeeE6QRHh4uW7ZskcGDB5vmSSE0NFSSkpJkzJgxOg3s20IaUVFRpu49whL89HumNm7cKKdOndKHBHbp0kXGjh2r/xo0aKD3i2GzMxgzkIA7BCwQY3cM8FkS8BQBfDXhFsfM8PHHH2shgl+9Zs2aaf96derUMTMJv7GF/UwQwOrVq0tYWJgW9IkTJ2pBhDhhoy8ChAi+CiHEGzZskCpVqvgNAxYk9wmwp5T7zJliHhKAyF29elXn4Pr16x7xAJGHxTM16UqVKsnq1aulXLlysnTpUhk/frz2OoFeEnqBc+bM0X9w9dS4cWNp06aNwDMFAwm4Q4C+79yhx2dJwM8JYIhzxowZGUrZr18/wZ9tgNcNBhJwlwB7Su4S5PMkQAIkQAKmEaAomYaShkiABEiABNwlQFFylyCfJwESIAESMI0ARck0lDREAiRAAiTgLgGKkrsE+TwJkAAJkIBpBChKpqGkIV8ggDOSzp49q7N6+vRp085F8oWyM48k4AsEuHnWF2opn+bRE5tncYrsyZMnpXnz5pKcnCwtW7bUx4PnU8QsNgl4HQH2lLyuSpghTxKAK5x9+/bpE2QnTZokO3fu9GRytE0CJOAkAYqSk8AY3bcJYCPokCFDZODAgVKvXj1p3769wKcbAwmQgHcQ4PCdd9QDc2GHgCeG7+rWrSujR48WOE5F6N+/vxQpUkSmT59uup89O0XiJRIggRwIsKeUAyDe9i8C8NmGHpIR8P7y5cvGR76SAAnkMQGKUh5XAJPPXQKtWrWS6Oho7dUaxzJMmTJFOnfuzF5S7lYDUyOBLAlw+C5LNLyR1wQ8carKtWvXpE+fPvr8oTNnzugziEaMGJHXRfWb9M0+asRvwLAgDhOgKDmMihH9icDevXt1cQICAvypWCwLCfg8AYqSz1chC0ACJEAC/kOAc0r+U5csCQmQAAn4PAGKks9XIQtAAiRAAv5DgKLkP3XJkpAACZCAzxOgKPl8FbIAJEACJOA/BChK/lOXLAkJkAAJ+DwBipLPVyELQAIkQAL+Q4Ci5D91yZKQAAmQgM8ToCj5fBWyACRAAiTgPwQoSv5TlywJCZAACfg8AYqSz1chC0ACJEAC/kOAouQ/dcmSkAAJkIDPE6Ao+XwVsgAkQAIk4D8EKEr+U5csCQmQAAn4PIFCeVkCT5yXk5flyeu0T548Kb1795ajR49K2bJl5fPPP5cKFSqYli2elWMaShoiARLIgkCe9ZQgSGjk+GcOg/Pnz0uvXr20GM2YMUOqVasmPXv2lLNnz5rGOIvvEC+TAAmQgGkE8kyUTCsBDWkCS5culT179siCBQvkrrvukrlz58rBgwdl0aJFphBir9YUjDRCAiSQAwGKUg6AfOX21atXpWLFirpXZOS5cuXKcuXKFeMjX0mABEjA6wm4LEqJERaxhMRKmtcXMX9ksH79+pKWliZTp07VBZ45c6Zs3bpVGjVqlD8AsJQkQAJ+QcC1hQ6JERIWLyLBfsHALwrRokUL+fLLL6V79+4SFxenh+6mTZsmrVq18ovysRAkQAL5g4ALopQoEVqR8gcgXyplqVKlZMmSJbJ//37BSrwePXr4UvaZVxIgARIQp4fv0mLflPjgGIkJJz1vIzBgwAC5fv26BAYGyocffuht2WN+SIAESCBHAs6JUlqsDIoSiZkZKXVzNM0IuU2gRIkScvnyZcHycO4pym36TLjaMNAAAA05SURBVI8ESMAMAk6IUprE3lAkiQw0I2naMJtAeiFK/97sdGiPBEiABDxFwOE5pbTYQRIlMZJKRfJUXdAuCZAACeR7Ao6JkjFslxop7CTl++8MAZAACZCAxwg4NHyX9vV8SZZkiQq65RJHL8BLjpIgi0UiEj2WPxomARIgARLIRwQcEqXAyCSBm5n0fwlYfRccI6lKSVxoPiLGopIACZAACXiMgEOi5LHUaZgESIAESIAE0hEwUZTSJDbEIhYHxvKwZHnw4MF6gyfyAs8Db731ls7WkSNHJCwsTO677z6Jjo5Ol1W+JQESIAES8HcCLotSaJwSlZR+4UOgRCYpUQ6M5cF5aEJCghQuXFjz3b59u2zatEkgSMHBwYL9Ns8//7zMmTNHnnrqKbl48aK/14Np5cNS8KJFi5pmj4ZIgARIIDcJOLb6zgM5uu222+Trr7/W5//8+eefUrNmTZk3b56UK1dOH7+AJENCQqRJkyYybNgwadq0qQdyIQKBxIbT4sWLe8R+eqMnTpzQ5Ut/zez3KAd4cp+S2WRpjwRIIDcIuNxTcjdzEIIxY8bI8OHDZeXKlbp3dOHCBS1Chu2AgACpVKmSXmBhXDPzdc2aNdK4cWMteAsXLjTTdAZbBw4ckA4dOkiDBg1k7NixGe6Z+QG+7yIiIqRfv376cD8ILgMJkAAJ+BKBPBMlDNElJSXJr7/+KkOHDpXDhw9LvXr19BHeOHIB4f3339cucy5duqR9upkFdufOnbr39cgjj0idOnUkKChIn9rav39/fdyDWekcO3ZMxo8fL/fcc4+cO3dO/vGPf8ioUaOkTZs2snz5crOS0b292bNnyw8//KCHQJ955hnZvXu3FtzFixeblg4NkQAJkIDHCag8CKdOnVIVK1ZUhw4d0qlHRUWpnj176vcjRoxQ5cuXV+3bt1dFihRRP/30k1q2bJm699571RdffOFWbq9fv66efvppVaBAAZ3GlClTtL3Lly+rDz74QFWtWlWJiBo0aJA6f/68W2m9/fbbqnLlyqpw4cJq2LBhVltfffWVat68uU6nQ4cOatu2bdZ7rrxZunSpatCggbbXo0cPdfLkSW1m3bp16uGHH1alSpVSgwcPVpcuXXLFvPUZsGMgAfMJJKhwEf39xf896194ghtJpaqYYNgKV/asJISLkuAYlepGCrn5aGpMsJVLcIydXCeEq1u4bvC89Tk3c2pOWhgay/Vw5coVlZiYqC5evKjT3rJlixYfIyOLFi1SH330kdq0aZNxSf3nP//RQgLB+PPPP63XHXlz7do19dlnn6mmTZuqcuXKqTfffFMdOXIk06Pnzp1Tjz76qP4CBAUFqWnTpilccyYkJSWpBx98UJUoUUINHTo0S9F57bXXVNGiRbVojBkzRv3999/OJKN27NihnnjiCVW6dGnVpUsX9cMPP9h9/tNPP1WVKlVSdevWVQsXLrQbx5GLFCVHKDGO0wRSY1SwBCt7ba3TtqwPGKIkSuy0zr4lSjdExq4Y6fLaipDtZysUn3mTJ6IEOq40cn/99ZcaPny4qlChgvr3v/+t8DmnsGvXLoUeBH6BdezY0a4Y2drYsGGDeuihh/QzrVu3VikpKbZRMn0+evSoGj16tH4GArBx48ZMcWwv7N69W6GXiLxBLNEjzClA0GfPnq2fAYdZs2bl9Ig6ffq0Gjt2rCpZsqQaOHBgpvLs27dPrVq1Sv32229WWzt37rQKJXqS+OEAcWcgAVMJJIRn2aNxPZ2bohQcbFfwfFGU7GjrTTy2ImT72XWKefWkT4mSAWnx4sWqVq1aqlixYurVV181Lmd4hRhFRkYqi8WiWrRooVauXJnhfk4f0BBPnjxZ3XHHHVoAMARmT5wgRuPGjdNDdWXKlFHomTgbMKQH8YM4YUjvu+++y2QC+YEYNWrUSMfD8OCJEycyxcvuwpo1a3SvCr2r6dOn66gQTwgi7Ka/3r17d907RSSI1p133ul0rzG7vPAeCYCAHprKusV1EdJNUQpPsGvfrihpcbw1fJixZ2I09DdejSFG22ynH2ZDnIw2silKVmnrXuStPGUajrS9r4ckb+Y1Bj3QW886nVdb2yLphghvlMXl8maDArd8UpSQcQx3vfTSS7qBDgkJ0cOBRlkXLFigChYsqO+98cYbTjfehh28Ym6pf//+2ha+aB9//LF12BFDZtWqVdPzRhiq++OPP9I/6vR7DCtiHg3pREdHq4MHD2obaWlpqnPnzvo6enAQF3fCzJkztTjt2bNHBQQEqJdfflmbgzgWL15crV27Vs9DTZgwQV8/e/asqlmzJkXJHeh81i4BCERw8K05E6cac7sWcfGWKCllCMqtyJlE6aYo3Gq4b4qP9YIhRreGGW80yFl/Vjcb9RyFycG0rVm5VYyb72zLZ0Jeb+Y9Q5o2+bQtv8PlzZT/zBd8VpSMomBuypjoRy+jTZs2WiQwz7JixQojmtuvWHBhDAMivbCwMC0STz75ZJbzRq4kCqEYOXKkto0FH127dtXv27Vr57YY2eYHolqnTp0Ml3v16qViY2O1UAUGBuphTCw6QY/R2fm1DIb5gQQyEbjZgNosOtBC5dYkU3pRutkbS5dGRlG6ETeTeOhG2BCdG/nMECdDw23nPsqqbdhfbHEDheNpZxCIDBxvpH3rvp28OJvXHPNtJw2Hypsh41l+yLMl4WYtK+zSpYuMGzdOihUrJqmpqXqJOfYEJSYmSseOHc1KRlq2bKk39U6ePFkvU9+xY4fe7Dt16lSpX7++aenUqFFDJkyYIEuWLNHHmv/888/6M8rTtm1b09KBoQIFCsiZM2fkypUrVruHDh2SggUL6g3FWCoPl0+dOnXSca2R+IYETCEQKnEYrcngGUYktHu4JEdNFLMOHwiMnCkxEiWDYtMy5zrta5mfLNK4rs2hPEENJViSJSX11iMZ4gTWlcbGrcRFEi/B0udhezbiZVFWBXEibSMpR1/dymtodwmXeAmzRNivA1fL62DmfV6UUM7jx49Lq1atZN++fRIfH69Fw8HyOxUNjTW8S+zZs0cLYN++fZ163pnIXbt2lfXr18vff/8tI0eO9IjHCWzmbdasmfacsWHDBomMjJS0tDS9n2rv3r36Otw9wQchN+I6U3uM6xYBLQjZNOZOGw+UyFFOCl160XEovYxH+8CjiiUoSpIdetYmktNp2zyf48ec8oofC6kSEwxhunVcUUa3pjnZyDETWUbwC1HC3Fj6YPs5/T2+v0WgbNmygs21FSpUkMcee0xWr16t/9Bbq1q1qnYBhdhnz56Vhg0bsrd0Cx3feZxAsDQMMjGR0DhJCI+XN+31luwlk7ZDtti7nuW1YIlJzXi8j3HUjwPuQDNadTrtjI/n/MmRvN70ZXrzyCIcVRQfFiK38DliI+ec2IvhF6KEghlCdP36dXvl5LUsCGDYE0ODKSkpsnnzZu3dAlFjY2MFniEQqlSpIsuWLRP4K2QgAdMIpMVKiL1DQlNTJFkai+2Imrvphg6PEYkaJG+mV5vAh6VPsMiWHTZDezoPDgqjHu7KONTnUF7NSNuhhNJFcjGvoXEJEm4MZ7poI10usn3rN6KUbSl5M0cCmF9iIIFcJRAYKaPwC9xm0iVxUbwExwwX088O1eklS3KGMTVjaC8o3QnaiRKBo7XDR0mkzTSRfT6hMjwm2KYnIZIYgaGv9L0L26fNSPuGzUyiapuU9bMDeU2MyJzvm/NIN3qvDtiwpuf8mzzzEu58VvkECZCAvxHAETgJuvG+VbLwBCVJVkXCOW1BEtU4waFjcW5Zsf9O/+KPD5P49LdD40QliFjCLNbrwTGpohxTJG0Jp3OnSogEBVkkymo7XBJUXPbi6nbaodIdwh4VJJb5MZKaVNeaelZvcsxrIHhEiCVDWTBcl2QV6RxtZJW4A9ctWJfnQDzToyBZs45X+Pjjj2XWrFmyatUqmTt3rmCFHJy9MphHwMz6Mi9XtEQCJOBvBDhm4281yvKQAAmQgA8ToCj5cOUx6yRAAiTgbwT8QpSuXbsmOHMJIf17f6sslocESIAE/J2AX4hS6dKlBXtrECpXrmx97++Vx/KRAAmQgL8R8IuFDqgU7E+CpwW8BgY6tI7T3+rSo+XhQgeP4qVxEiCBmwT8oqeEsuBI9Xbt2uk/uOVhIAESIAES8D0CfrFPCYKEJeDJycna753hQHT8+PG+VyPMMQmQAAnkYwJ+0VNavny5xMXFSUBAgPbY/c4778hXX32Vj6uVRScBEiAB3yTgF6KE+Q5j9R2qIf1736wW5poESIAE8icBvxClAQMGyLPPPquPk4BT0VGjRsnjjz+eP2uUpSYBEiABHyaQp3NK6OGYEcaOHavnknCoH1bf4cyjF154weo53Iw0aIMESIAESMDzBPJsSbgninbq1ClttkyZMp4wT5skQAIkQAIeJuBXouRhVjRPAiRAAiTgYQJ+MafkYUY0TwIkQAIkkEsEKEq5BJrJkAAJkAAJ5EyAopQzI8YgARIgARLIJQL/DxIu1v+PaIj7AAAAAElFTkSuQmCC />"

Answer to Question 15

2

Answer to Question 16

1

Answer to Question 17

1

Answer to Question 18

5

Answer to Question 19

3

Answer to Question 20

4

Answer to Question 21

5

Answer to Question 22

3




jeatrice

  • Member
  • Posts: 543
Reply 2 on: Aug 23, 2018
:D TYSM


upturnedfurball

  • Member
  • Posts: 334
Reply 3 on: Yesterday
Great answer, keep it coming :)

 

Did you know?

When blood is exposed to air, it clots. Heparin allows the blood to come in direct contact with air without clotting.

Did you know?

It is difficult to obtain enough calcium without consuming milk or other dairy foods.

Did you know?

In 2012, nearly 24 milliion Americans, aged 12 and older, had abused an illicit drug, according to the National Institute on Drug Abuse (NIDA).

Did you know?

Over time, chronic hepatitis B virus and hepatitis C virus infections can progress to advanced liver disease, liver failure, and hepatocellular carcinoma. Unlike other forms, more than 80% of hepatitis C infections become chronic and lead to liver disease. When combined with hepatitis B, hepatitis C now accounts for 75% percent of all cases of liver disease around the world. Liver failure caused by hepatitis C is now leading cause of liver transplants in the United States.

Did you know?

More than 4.4billion prescriptions were dispensed within the United States in 2016.

For a complete list of videos, visit our video library