This topic contains a solution. Click here to go to the answer

Author Question: Which of the following is the best candidate for a crossed Claisen reaction with ethyl acetate? ... (Read 103 times)

jeatrice

  • Hero Member
  • *****
  • Posts: 543
Which of the following is the best candidate for a crossed Claisen reaction with ethyl acetate?
 

Question 2

Predict the aldol reaction product(s) of the following ketone.
 
  1. A
  2. B
  3. Both A and C
  4. Both B and D
  5. A, B, and C

Question 3

Which of the following would not be produced in the aldol reaction between 2-butanone and acetophenone?
 

Question 4

Which of the following reactions will yield the compound shown below?
 
 



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

KKcool

  • Sr. Member
  • ****
  • Posts: 340
Answer to Question 1

2

Answer to Question 2

4

Answer to Question 3

4

Answer to Question 4

3

Answer to Question 5

3

Answer to Question 6

4

Answer to Question 7

2

Answer to Question 8

2

Answer to Question 9

3

Answer to Question 10

4

Answer to Question 11

1

Answer to Question 12



Answer to Question 13



Answer to Question 14

iVBORw0KGgoAAAANSUhEUgAAAaUAAAC2CAYAAAB555IvAAAgAElEQVR4Ae2dB3hUxfrGv6VK7yCgoSX0IiKCCVVQSbwgcGkCXkAlUSyJ8QIW7h9RKYpcExW8CUqRIoIoICYKSjVBRAEVgpBQRJDee53/8w6cJdlski1nk93NO88TdvecOd/M/GaZd6d9Y1FKKWEgARIgARIgAS8gUMAL8sAskAAJkAAJkIAmQFHiF4EESIAESMBrCFCUvKYqmBESIAESIAGKEr8DJEACJEACXkOAouQ1VcGMkAAJkAAJUJT4HSABEiABEvAaAhQlr6kKZoQESIAESICixO8ACZAACZCA1xCgKHlNVTAjJEACJEACFCV+B0iABEiABLyGAEXJa6qCGSEBEiABEqAo8TtAAiRAAiTgNQQoSl5TFcwICZAACZAARYnfARIgARIgAa8hQFHymqpgRkiABEiABChK/A6QAAmQAAl4DYFCXpMTH8/Ili1bZMOGDboU9evXl/vuu8/HS8TskwAJeCsBf25vLHl98iwOvrVYLN5a9w7l688//5T27dvL9evXpXDhwnL69Gn5+uuv5d5773XoeUYiARLIHQL+0t60a9dOUBajvUlISJCWLVvmDsSbqXiKZZ4P3/m6IG3cuFHatGkjlStXlk2bNskff/yhxej++++X77//Ple/JEyMBEggewL+0N6EhIRIlSpVZPPmzbq9gRh17NhRVqxYkX3hfeRunouSj3DKMptLly7VPSMIUIUKFfQvl8WLF0u1atXkk08+0b9msnyYN0iABEjACQJob86cOaMFqHz58rq9WbJkiVStWlVmzpzphCXvjUpRcrNu0H0uXbq0lCxZ0mqpUKFCUrFiRSlSpIj1Gt+QAAmQgLsE8kN7Q1Fy81uCeaRjx47JX3/9ZbV0/Phx2bdvn55jsl7kGxIgARJwk0B+aG8oSm5+Sfr16ydBQUF6td3WrVu1GGF898qVK/Lcc8/5/CION/HwcRIgARMJoL0JDAyU1q1bS0pKim5vOnToIFevXpXnn3/exJTyzpRzopQWKyGWCEnMu/w6lPLPP/8sFy9edCiuu5Hq1KmjFzSUKVNGGjduLHXr1hX0lLAa5q677nLXPJ8ngXxKIE1iQyz6Rx0WJ+AvJDbNK1msW7cuV9sbLGjAlEGjRo10e3PixAlJTEyUZs2aeSUfZzPlxD6lRIkIipJkCXc2DY/Hv3z5smzfvl0WLFig/7AC7vHHH5f33ntPSpQo4fH0L1y4IJ999pkcPnxY9u7dKxCq5s2bezxdJkAC/kkAghQkUcnBEpOaJJGBImmxIRIUFSSWlARRcaF5WuxLly7Jtm3bZM6cObJ+/XpJTU2VsLAwef/996V48eIezxvam/nz52dob/zpB7BjPaXECLFYwiTe47idSwDd16ioKOnSpYs0bdpUli1bJqGhofLiiy/KtGnT5JtvvnHOoIuxO3XqpMXQWAYeGxvLVXcusuRjJCBpX8v8ZJHwhBuCBCKBkUmSGhMsEr8oz0Zq0N5ER0dLjx49BP/nsaDpX//6l/7xi/Zm+fLluVJ5aGfwAxx5+O677wTtjT+FnHtKEKSweAmOSZWkuhPFEpa3xUfXNS0tTf7v//5PfylKlSolDzzwgK6YWrVqWVfBNWzYUMeBWGHOx5MBk4/49YJw8uRJuXbtmieTo20S8G8CgZGSpCIzlTGwbmMR2SI70kRCAzPd9sgFo735z3/+o5dfV69eXd5++22544479IiIkeiYMWPk6aef1iMkAQEBxmWPvNq2N/jsTyFnUQqNE6XibpQ5DyaTMDcEDwkvvfSSHDp0SPd+8IUYMWKEFpuuXbvarQ8M382dO1dvbMUCBCzR9lQoWLCgFChwo9OJV+x0ZiABEjCXQOIijNWES10PCpLR3owcOVIPj2G0Be0NPuPHbXbtzbx586Rt27aCDfXYs+ipYNveeCqdvLLr2PBdHuRu9erVejMYJvNq166te0foFcGlz2+//aa70Vl9QYzsTp06Ve8Vio/3toFHI4d8JQEScIhAYoSExYsExwwXT8wo2bY3O3fuFLQ3mCN2pL2BcH377bf6B+n06dMdKhIj2SeQc0/J/nOmX8WwF3YqQ0DQZU5OTtaLFLCiZNKkSdK9e3en08RwXlJSkjz44IOC3c9Dhw4V/MpgIAES8CECN6cQJDxBkrDqwYRgtDdxcXGycuVKU9qbO++8U15//XUZMmSIHpnBfJMxgmJClvONCa/pKb3xxhu6e/zmm2/q7vJrr70mR48elR9++MElQTJqEOO7+OINGzZMd8eN63wlARLwAQLp5rTNXHWH9garZMeOHWtqewMhwtwShAntF4PzBLxGlLDMEn+YRMTy6tGjR8ttt91myuZTeOtGLwlfFqTBQAIk4P0EsAzcusjKpB6SUWps38AmVOxpNLO9Qc8I899FixbVm1m56Mkg7vir1wzfGd1cnEVkdihWrJjuLeGL0rNnT4FTQ1/3Fmw2I9ojAW8icGNfUrKEJyjxxLYkrFirVKmStGjRwvRiY3QGR9dgqwo8LXz++eemp+HPBr2mp2RA9qQnBvwigjdv4zA+I013XzE+ff78eW0G82L4YyABEnCRQFqsDIpK1ttQPCFIyBV+lHqyF4M9RNi8v3DhQvn1119dBGH/MX9vb0wQpZvuQCLyYL24/TrL8ioWS/Tu3Vuw+QzLNs0K//vf//QYMr7o7777rv4ysidmFl3ayW8E0r6eL8kikgwPDjddDN16DZEb3oa8v93p1auX4DA+CBTOWjMrGHPksBcTEyMTJ040y7RX2Mnzk2cNCnAmCDcdcJ8B4fBUwFgyHKZisyuWfZopHuim49cXdnrji1i2bFmXioGjjn/88Uf97N133y34Qzh48KDu6WEIEkOSCNhHgVU/WDrPQAIk4BiBgQMHyp49e/RCKseecC0W/NLhUD7MZaO9MSvs2rVLtwXwgQcXQ/Xq1XPZdFbtDYYg0V5iCNII2O8JjxYInjp5Foa9Ijz33HPYcarmz5/v8fwcPnxYVa5cWY0fP96UtI4cOaK6dOmibZYuXVqXo23btgrXnQ3r169XxYsX138lS5ZUhQoVUitXrtRmEhISlMViUfv27bOarVevnnrrrbesn/mGBEggZwIDBgxQISEhOUc0IcaiRYt0mxATE2OCNaWio6NV3bp1FdqaEiVKqIIFC6rExESXbKO9KVasWIb2Zs2aNdpWlSpVdL6RjvHXoUMHfQ/8jHguJZzNQ/lSlMBj7NixuoF/9913s8Hj2K1x48ZpW5s3b1aXL19WP/30k65kCO3169cdM6KUfq5q1aqqVatW6vjx4+rs2bOqffv2qmzZsvreunXrVIECBdTp06etNu+77z6KkpUG35CAYwRyU5TQBowZM8YUYfrll19U0aJFVVRUlG5r0BZ07NhRlSlTxrGCp4uFdur222/X7c2JEyd0e9OuXTtVvnx5lZSUpGrWrKnee++9dE8o3Z7hxzE6EN26dVMXLlzIcN+MD16z+s7oHubW6yuvvKK70+PGjZPg4GCXhvFwCiS6zphTwv4E+NvDtZYtW8rmzZv1MB6cOBqLILIrG57FscbweI7FGIZ3c+wSh3uTL774QjDkgLBq1SqrG5NTp05lZ5b3SIAE8pgApgjgq3P37t16XxTaG1cCViZjuB6eyNF+oa3BH47JQTtz4MABfb6SI7aN9gbnvsFZgeHdHE6tMRQ4e/ZsKVeunG4j0y8Ma9KkiV64AScESBPPY+uOmSHfihIgYp8CNri1atXKJab4QmCsGAIC4cBnIxhOYLE8NP2ptMZ921dsEsZ4LeahjC8I4mAZO/xoYZ7K8KvXrVs328f5mQRIwMsJ4Ky1GTNmCPZNuhLgERzL2NHe4NUIEAXMO0P4sCnYkQBPN9m1N0WKFNFnNsEDeXov5Fgghn1YWNAFYYQrJrNDvhUl7FWaMGGCdVGCK2ANJ6/4tYCeEV4NYcLBXxAUCIgjE5ywhcUXR44c0Y5nb7/9dp0lHLWOBQ7YV4FFFPjVBduVK1fW941JR1fyz2dIgARyhwDam/Hjx+v2AYugXAlVqlQROJeGg2r4AK1Ro4Y2gx/WONcJh4xib5Qjwba9gW0EtDfocaGtwSINODEID791hl7VqlX1PY8tckAmzBgDNMNGbi50QH6bNm2qx0XnzJnjdvY//PBDPae0atUqdejQIfXFF1/oz5iQdGZOKSUlRU9g1q5dW6Wlpam9e/eqhg0bqjvuuENt27ZNj/NioQPmm4yA+ScudDBo8JUEHCOQm3NKyFGTJk10ezN37lzHMphFrO3bt+uFCYMHD9Ztza5du1StWrVUuXLlsngi68tob4KCghTam507d+r2pkGDBiogIED9/vvvqkaNGgrz5WfOnLH+nTx5Ul25ckVVqlRJTZo0yan2LeucZLyT70Tp2rVrKiIiQlfsp59+mpGGi58gEk888YRekICFCKjMF154QZ07d85pizt27FDVq1fXX2AIECr/119/1Xa++eYbLXb79++32sWXnaJkxcE3JOAQgdwSJfwoDQ8P1+3NvHnzHMpbTpEmTJigmjVrphc9YdFDjx491IYNG3J6zO59tDfVqlXL0N5s2bJFx4U4od+CNs34a926tb6HBRIVKlRQECmzQ74bvsP6fngih3uRvn37OtLTzTEOJgQ/+ugjfQQ7vDnAOznGj10JmIvCHiV00xEw6VizZk39HmPRWARhDBviIk68TD++rCPyHxIgAa8ggIVUaG8wb21We4OznbDoCfuLMPeDfZeuBrQ3GPqz197gdFsspEp/iGCZMmV0Ul9++aWebjAWZLmavr3n8pUo7d+/X7DLGmOvn376qUsr7uxBNK65uqrGeN54xdks+LMNED/bL+A999xjG42fSYAEvIAAfgDPnDlTsGINB46aGXACLv7MCFm1N9ktyGjdujVG2UxvQ1GefCVKs2bN0gd24Th1HBzIQAIkQAKeIoBFSKmpqXopuDHa4am0/MmuCb7vfAMH9gBhCeNTTz2lh9d8I9fMJQmQgC8SwEgMTqzFcTkUJOdq0OtEyVhS7Vwxso+NvUQ4zAsHb02ePNkjXc7sc8C7JEAC3kQAQ0/GcTlm5wtDdv3799fnKU2ZMsVs835vz2uG786ePathHzp0SG9IxR4fs8KTTz4pP/30k94NbaYDVrPyRzskQAK5SwB7AuFsFH/Gnj+zcoARGYQxY8aYZTJf2Sn4Gs4d94KA3gxWeuAMEqwwO378uHZfUa1aNbdyh7NMXn75ZT3R2Lx5c/aS3KLJh0nAfwjAS/iIESP0hD3mmdE+uBOweR6r4uB+B27BsKDK338Ee6J8XnN0Bb4MqFS4v4D/JSx1hvsM/GFctkOHDtKsWTOnvjPwOYdfQf/9738z7Ep2yggjkwAJ+CUB+Jlcu3atPiUWHhewlQNHwqCnA/dghlcVRwsPH3FYsfbJJ5/IY4895uhjPhvPU6vvvEqUbGsHzkjh7ykxMVGvo4fLHrjWGD58uD5DyDa+7Wd0AnE+E7548B/HQAIkQAJZEcBiqOTkZD3MjzOEHnroIb2/6J///KfAAWl2AXuGEB/tE84hwvYNfw/5UpSMSsVQHvy/YSMaTnDEZwBBDwgrW+ztD4KQRUdHy+rVq00fMzbyxVcSIAH/IwD/b3CijPYGUwrwXfnAAw8ITq5u27ZtBofJRumxZwib2tHeuHq4p2HLV17ztSjZVtK8efMEG2HxpYFAde3aVR8bgW43dhhfvHhRD/eNGjVKHnnkEdvH+ZkESIAEHCaAja9wUor2Bh4QIECYp8ZREiVLlhSssHvmmWdk+fLl0rlzZ4ft+npEipKdGoQg4SyjlStX6mE+rNjDWUZYVo7zQiZNmqQ9ddt5lJdIgARIwCkCaG/QpsAtD/YgYU4KQ3uY/4Y37VdffdV6SoBThn00MkUph4rDFwVdbsw3Pfzww/L+++/7/cqXHJDwNgmQgIcIYEEWek+YIujTp4+88847HkrJe81SlBysm/RnGjn4CKORAAmQgEsE8nN747ei5KmCufQN40MkQAJ+TYDtjfdXr1cvCfd+fMwhCZAACZCAmQS8zvedmYWjLRIgARIgAd8iQFHyrfpibkmABEjArwlQlPy6elk4EiABEvAtAhQl36ov5pYESIAE/JoARcmvq5eFIwESIAHfIkBR8q36Ym5JgARIwK8JUJT8unpZOBIgARLwLQIUJd+qL+aWBEiABPyaAEXJr6uXhSMBEiAB3yJAUfKt+mJuSYAESMCvCVCU/Lp6WTgSIAES8C0CFCXfqi/mlgRIgAT8mgBFya+rl4UjARIgAd8iQFHyrfpibkmABEjArwlQlPy6elk4EiABEvAtAhQl36ov5pYESIAE/JpAIb8uHQvn0wRwSiiDuQSGDx8uycnJUqBAAfnkk0+kVq1apiZgsVhMtUdj+Y8ARSn/1bnPlJgNnLlVNWrUKFm2bJlMnz5dli5dKt26dZPvv/9eqlSpYm5CtEYCbhDgcehuwOOjniWAnhKFyRzGp0+flqCgIFm9erXUr19fG+3UqZPg75VXXjEnEVohARMIcE7JBIg0QQLeTgACX6RIEalQoYI1q+XKlZOrV69aP/MNCXgDAYqSN9QC80ACHiZQvHhxadKkifTu3VsOHz4sM2fO1EN3nTt39nDKNE8CzhHg8J1zvBg7Fwlw+M582L169ZKUlBQpWrSoTJw4UShK5jOmRfcIsKfkHj8+fZNAWmyInv/BHJDFEiKxaUTjbQSwyOHxxx+Xb7/9Vi9ywHwSAwl4GwGKkrfViA/mB4IUFNVYEpQS9G5UQmOJCqIweVtVLlmyRPBXqVIlmTFjhpw5c8bbssj8kIBQlPglcJNAokyMSpbgmOESalgKHS4xwckSNTHRuMJXLyBQokQJKVasmFy5ckVKlizJlY1eUCfMQmYC3KeUmQmvOEUgVOK4ydUpYoxMAiSQNQGKUtZseMdFAmmxgyQqOVhiZlr7Ti5a4mMkQAL5jQBFKb/VuCfLmxghlrB4nUJwTKpEBnoyMdomARLwRwKcU/LHWs2rMoXG3VjooFKlz/wgsYTEChfh5VVlMF0S8E0CFCXfrDcvz3WgRI4KF0meL19Tlby8rpg9EvAuAhy+86768J/cBDWUYImXlFQRcWEY7/z58/Lll1/K0aNHrUx69OghAQEB1s94M3/+fDlw4IC0bdtW7r777gz3+IEESMD3CLCn5Ht15l05TouVEItFImxXf6emSLKES3cX1zocO3ZMnnzySX3Mwo8//qhfjx8/LoMGDZIVK1ZoBiNGjJDo6GhZs2aNtGvXTpYvX+5dbLwwN9jcjGMrGEjAWwmwp+StNeMr+QqMlFHhURL2ZqwMD4282SlKk9g34wWLHVzUJF16nPUzb948636a3377TWbNmiWlSpXSjkThv23dunVSu3ZtiYuLk8cee0y70Clfvryv0MvVfGJjc8GCBaVw4cL6FZ8ZSMDbCPAnk7fViA/mJzROSULjKAnSLobgZihIUkYpSbIuv0uT2BCLWDJ1p7Iv7P79+6VRo0bSsGFDefTRRyUwMFBatGghXbt2Fdzr2LGj9ZC6iIgIKVu2rFy+fDl7oy7c3b17twwcOFCGDBkiBw8edMFCzo+cOHFChg4dKn379pVt27bl/IALMW6//XZZuHChdjF07do1Le4umOEjJOBRAhQlj+LNP8YhTNrF0E1XQ3EZukiBEpmkRGW8mCOcatWqyc8//yybNm2SuXPnCjxdw5Fo1apVtauctWvXyqFDh7Qd9KgwvIfG1qxw6dIliY+Pl1atWukhwlWrVsn9998vs2fPNi0dMMO8GAQWPul+//137SR18uTJcuHCBbOKog/3gyBBtI8cOSJ79+6VcePGmWafhkjANAKKgQS8kMDevXvVbbfdpsLDw1VERIR+/eOPP9Rdd92l31+5ckVfr1Wrlho8eLCOu3z5cjV9+nT17LPPqrS0NLdKNXXqVBUYGKgKFCignnjiCbVv3z51+fJlbdtisagGDRqoOXPmuJXGggULVNOmTRXsDRkyRF28eFFdu3ZNTZgwQRUqVEhVq1ZNxcbGupXGqlWrVPv27TFOp7p06aKOHj2q7c2bN08zCwkJUcuWLXMrDT5MAmYSwK9bBhLwOgJnzpxRH3zwgXrttdfU6NGj9d+ePXvU4sWL1ezZs635jYuL0/fQ+CKcO3dOQVDq16+vpk2bpiBezoRNmzap3r1760a8WbNmKiUlJdPjGzduVP369dON+qBBg9T27dszxcnuwq5du7SwFitWTPXs2VOtX78+U3SI6rBhw1ThwoXVww8/rH788cdMcbK7cOjQIfXyyy+rcuXKqQ4dOigItm04ePCgevHFF3VZ+/Tpo/7++2/bKPxMArlOgKKU68iZoKMErl+/7mjUTPHQ4L7++uuqU6dOaubMmboHkilSugunT59W48aN072W8uXLK/Ricgrr1q1TNWrU0I36lClTdE8nu2fQ00JPDj2jqlWrqhUrVmQXXd9LTU1VEEf0dEaNGqVOnjyZ4zNLlixRxYsXV6VLl1azZs3KMT56SuCEntlLL72kbLlv27ZNiyJ+KCAcOHBAQZghlPjbunVrjmkwAgk4SoCi5Cgpxst1AraNoysZSEhIUN26dVPt2rVTS5cuzWQCYoQeWUBAgG7Io6Ki1O7duzPFy+oCemIfffSRKlGihKpXr56aMWNGJnGCGM2dO1c1atRID8shPQzVORMWLVqk8wgxe/fdd9Xx48czPY7ytW7dWgsYBPnYsWOZ4mR3ITExUQ8n3nvvvVbBRNmqVKmih03R+zxx4oTuXSEfzZs3139PPfWU2rJli5o4cWImQcsuPd4jAXsEKEr2qPCaVxAwQ5SMgkyePFn3ODAkZojOL7/8ohtV9EJatGjh1i9+9BZ69eqlBQHzNGikETAP9sADD+jrGIbD8KCrAfNsmC9DfmvXrq2SkpK0qb/++kvPSeE6hGLt2rWuJqFFJzo6Wg/9rVy5UpUpU0bhFQFzdw8++KDq27eviomJyZDGgAED9FAje00ZsPCDCwQoSi5A4yO5Q8BMUUKOMckPwcCwFnoDaMQrVqyo0AsxK2C+Cz0K2DbSCAoK0sN2WMRgRkDvLzg42JoGFoRUr15d96DQ8zMrvPHGG6p///7W3s/58+dVq1attChBFNH7xN/mzZsVhi+xaOPIkSNmJU87+ZQAl4Sbto6RhrydQIUKFWTkyJHao0GhQoUEh9599dVX8sgjj5iW9QEDBsjWrVvlueeeE6QRHh4uW7ZskcGDB5vmSSE0NFSSkpJkzJgxOg3s20IaUVFRpu49whL89HumNm7cKKdOndKHBHbp0kXGjh2r/xo0aKD3i2GzMxgzkIA7BCwQY3cM8FkS8BQBfDXhFsfM8PHHH2shgl+9Zs2aaf96derUMTMJv7GF/UwQwOrVq0tYWJgW9IkTJ2pBhDhhoy8ChAi+CiHEGzZskCpVqvgNAxYk9wmwp5T7zJliHhKAyF29elXn4Pr16x7xAJGHxTM16UqVKsnq1aulXLlysnTpUhk/frz2OoFeEnqBc+bM0X9w9dS4cWNp06aNwDMFAwm4Q4C+79yhx2dJwM8JYIhzxowZGUrZr18/wZ9tgNcNBhJwlwB7Su4S5PMkQAIkQAKmEaAomYaShkiABEiABNwlQFFylyCfJwESIAESMI0ARck0lDREAiRAAiTgLgGKkrsE+TwJkAAJkIBpBChKpqGkIV8ggDOSzp49q7N6+vRp085F8oWyM48k4AsEuHnWF2opn+bRE5tncYrsyZMnpXnz5pKcnCwtW7bUx4PnU8QsNgl4HQH2lLyuSpghTxKAK5x9+/bpE2QnTZokO3fu9GRytE0CJOAkAYqSk8AY3bcJYCPokCFDZODAgVKvXj1p3769wKcbAwmQgHcQ4PCdd9QDc2GHgCeG7+rWrSujR48WOE5F6N+/vxQpUkSmT59uup89O0XiJRIggRwIsKeUAyDe9i8C8NmGHpIR8P7y5cvGR76SAAnkMQGKUh5XAJPPXQKtWrWS6Oho7dUaxzJMmTJFOnfuzF5S7lYDUyOBLAlw+C5LNLyR1wQ8carKtWvXpE+fPvr8oTNnzugziEaMGJHXRfWb9M0+asRvwLAgDhOgKDmMihH9icDevXt1cQICAvypWCwLCfg8AYqSz1chC0ACJEAC/kOAc0r+U5csCQmQAAn4PAGKks9XIQtAAiRAAv5DgKLkP3XJkpAACZCAzxOgKPl8FbIAJEACJOA/BChK/lOXLAkJkAAJ+DwBipLPVyELQAIkQAL+Q4Ci5D91yZKQAAmQgM8ToCj5fBWyACRAAiTgPwQoSv5TlywJCZAACfg8AYqSz1chC0ACJEAC/kOAouQ/dcmSkAAJkIDPE6Ao+XwVsgAkQAIk4D8EKEr+U5csCQmQAAn4PIFCeVkCT5yXk5flyeu0T548Kb1795ajR49K2bJl5fPPP5cKFSqYli2elWMaShoiARLIgkCe9ZQgSGjk+GcOg/Pnz0uvXr20GM2YMUOqVasmPXv2lLNnz5rGOIvvEC+TAAmQgGkE8kyUTCsBDWkCS5culT179siCBQvkrrvukrlz58rBgwdl0aJFphBir9YUjDRCAiSQAwGKUg6AfOX21atXpWLFirpXZOS5cuXKcuXKFeMjX0mABEjA6wm4LEqJERaxhMRKmtcXMX9ksH79+pKWliZTp07VBZ45c6Zs3bpVGjVqlD8AsJQkQAJ+QcC1hQ6JERIWLyLBfsHALwrRokUL+fLLL6V79+4SFxenh+6mTZsmrVq18ovysRAkQAL5g4ALopQoEVqR8gcgXyplqVKlZMmSJbJ//37BSrwePXr4UvaZVxIgARIQp4fv0mLflPjgGIkJJz1vIzBgwAC5fv26BAYGyocffuht2WN+SIAESCBHAs6JUlqsDIoSiZkZKXVzNM0IuU2gRIkScvnyZcHycO4pym36TLjaMNAAAA05SURBVI8ESMAMAk6IUprE3lAkiQw0I2naMJtAeiFK/97sdGiPBEiABDxFwOE5pbTYQRIlMZJKRfJUXdAuCZAACeR7Ao6JkjFslxop7CTl++8MAZAACZCAxwg4NHyX9vV8SZZkiQq65RJHL8BLjpIgi0UiEj2WPxomARIgARLIRwQcEqXAyCSBm5n0fwlYfRccI6lKSVxoPiLGopIACZAACXiMgEOi5LHUaZgESIAESIAE0hEwUZTSJDbEIhYHxvKwZHnw4MF6gyfyAs8Db731ls7WkSNHJCwsTO677z6Jjo5Ol1W+JQESIAES8HcCLotSaJwSlZR+4UOgRCYpUQ6M5cF5aEJCghQuXFjz3b59u2zatEkgSMHBwYL9Ns8//7zMmTNHnnrqKbl48aK/14Np5cNS8KJFi5pmj4ZIgARIIDcJOLb6zgM5uu222+Trr7/W5//8+eefUrNmTZk3b56UK1dOH7+AJENCQqRJkyYybNgwadq0qQdyIQKBxIbT4sWLe8R+eqMnTpzQ5Ut/zez3KAd4cp+S2WRpjwRIIDcIuNxTcjdzEIIxY8bI8OHDZeXKlbp3dOHCBS1Chu2AgACpVKmSXmBhXDPzdc2aNdK4cWMteAsXLjTTdAZbBw4ckA4dOkiDBg1k7NixGe6Z+QG+7yIiIqRfv376cD8ILgMJkAAJ+BKBPBMlDNElJSXJr7/+KkOHDpXDhw9LvXr19BHeOHIB4f3339cucy5duqR9upkFdufOnbr39cgjj0idOnUkKChIn9rav39/fdyDWekcO3ZMxo8fL/fcc4+cO3dO/vGPf8ioUaOkTZs2snz5crOS0b292bNnyw8//KCHQJ955hnZvXu3FtzFixeblg4NkQAJkIDHCag8CKdOnVIVK1ZUhw4d0qlHRUWpnj176vcjRoxQ5cuXV+3bt1dFihRRP/30k1q2bJm699571RdffOFWbq9fv66efvppVaBAAZ3GlClTtL3Lly+rDz74QFWtWlWJiBo0aJA6f/68W2m9/fbbqnLlyqpw4cJq2LBhVltfffWVat68uU6nQ4cOatu2bdZ7rrxZunSpatCggbbXo0cPdfLkSW1m3bp16uGHH1alSpVSgwcPVpcuXXLFvPUZsGMgAfMJJKhwEf39xf896194ghtJpaqYYNgKV/asJISLkuAYlepGCrn5aGpMsJVLcIydXCeEq1u4bvC89Tk3c2pOWhgay/Vw5coVlZiYqC5evKjT3rJlixYfIyOLFi1SH330kdq0aZNxSf3nP//RQgLB+PPPP63XHXlz7do19dlnn6mmTZuqcuXKqTfffFMdOXIk06Pnzp1Tjz76qP4CBAUFqWnTpilccyYkJSWpBx98UJUoUUINHTo0S9F57bXXVNGiRbVojBkzRv3999/OJKN27NihnnjiCVW6dGnVpUsX9cMPP9h9/tNPP1WVKlVSdevWVQsXLrQbx5GLFCVHKDGO0wRSY1SwBCt7ba3TtqwPGKIkSuy0zr4lSjdExq4Y6fLaipDtZysUn3mTJ6IEOq40cn/99ZcaPny4qlChgvr3v/+t8DmnsGvXLoUeBH6BdezY0a4Y2drYsGGDeuihh/QzrVu3VikpKbZRMn0+evSoGj16tH4GArBx48ZMcWwv7N69W6GXiLxBLNEjzClA0GfPnq2fAYdZs2bl9Ig6ffq0Gjt2rCpZsqQaOHBgpvLs27dPrVq1Sv32229WWzt37rQKJXqS+OEAcWcgAVMJJIRn2aNxPZ2bohQcbFfwfFGU7GjrTTy2ImT72XWKefWkT4mSAWnx4sWqVq1aqlixYurVV181Lmd4hRhFRkYqi8WiWrRooVauXJnhfk4f0BBPnjxZ3XHHHVoAMARmT5wgRuPGjdNDdWXKlFHomTgbMKQH8YM4YUjvu+++y2QC+YEYNWrUSMfD8OCJEycyxcvuwpo1a3SvCr2r6dOn66gQTwgi7Ka/3r17d907RSSI1p133ul0rzG7vPAeCYCAHprKusV1EdJNUQpPsGvfrihpcbw1fJixZ2I09DdejSFG22ynH2ZDnIw2silKVmnrXuStPGUajrS9r4ckb+Y1Bj3QW886nVdb2yLphghvlMXl8maDArd8UpSQcQx3vfTSS7qBDgkJ0cOBRlkXLFigChYsqO+98cYbTjfehh28Ym6pf//+2ha+aB9//LF12BFDZtWqVdPzRhiq++OPP9I/6vR7DCtiHg3pREdHq4MHD2obaWlpqnPnzvo6enAQF3fCzJkztTjt2bNHBQQEqJdfflmbgzgWL15crV27Vs9DTZgwQV8/e/asqlmzJkXJHeh81i4BCERw8K05E6cac7sWcfGWKCllCMqtyJlE6aYo3Gq4b4qP9YIhRreGGW80yFl/Vjcb9RyFycG0rVm5VYyb72zLZ0Jeb+Y9Q5o2+bQtv8PlzZT/zBd8VpSMomBuypjoRy+jTZs2WiQwz7JixQojmtuvWHBhDAMivbCwMC0STz75ZJbzRq4kCqEYOXKkto0FH127dtXv27Vr57YY2eYHolqnTp0Ml3v16qViY2O1UAUGBuphTCw6QY/R2fm1DIb5gQQyEbjZgNosOtBC5dYkU3pRutkbS5dGRlG6ETeTeOhG2BCdG/nMECdDw23nPsqqbdhfbHEDheNpZxCIDBxvpH3rvp28OJvXHPNtJw2Hypsh41l+yLMl4WYtK+zSpYuMGzdOihUrJqmpqXqJOfYEJSYmSseOHc1KRlq2bKk39U6ePFkvU9+xY4fe7Dt16lSpX7++aenUqFFDJkyYIEuWLNHHmv/888/6M8rTtm1b09KBoQIFCsiZM2fkypUrVruHDh2SggUL6g3FWCoPl0+dOnXSca2R+IYETCEQKnEYrcngGUYktHu4JEdNFLMOHwiMnCkxEiWDYtMy5zrta5mfLNK4rs2hPEENJViSJSX11iMZ4gTWlcbGrcRFEi/B0udhezbiZVFWBXEibSMpR1/dymtodwmXeAmzRNivA1fL62DmfV6UUM7jx49Lq1atZN++fRIfH69Fw8HyOxUNjTW8S+zZs0cLYN++fZ163pnIXbt2lfXr18vff/8tI0eO9IjHCWzmbdasmfacsWHDBomMjJS0tDS9n2rv3r36Otw9wQchN+I6U3uM6xYBLQjZNOZOGw+UyFFOCl160XEovYxH+8CjiiUoSpIdetYmktNp2zyf48ec8oofC6kSEwxhunVcUUa3pjnZyDETWUbwC1HC3Fj6YPs5/T2+v0WgbNmygs21FSpUkMcee0xWr16t/9Bbq1q1qnYBhdhnz56Vhg0bsrd0Cx3feZxAsDQMMjGR0DhJCI+XN+31luwlk7ZDtti7nuW1YIlJzXi8j3HUjwPuQDNadTrtjI/n/MmRvN70ZXrzyCIcVRQfFiK38DliI+ec2IvhF6KEghlCdP36dXvl5LUsCGDYE0ODKSkpsnnzZu3dAlFjY2MFniEQqlSpIsuWLRP4K2QgAdMIpMVKiL1DQlNTJFkai+2Imrvphg6PEYkaJG+mV5vAh6VPsMiWHTZDezoPDgqjHu7KONTnUF7NSNuhhNJFcjGvoXEJEm4MZ7poI10usn3rN6KUbSl5M0cCmF9iIIFcJRAYKaPwC9xm0iVxUbwExwwX088O1eklS3KGMTVjaC8o3QnaiRKBo7XDR0mkzTSRfT6hMjwm2KYnIZIYgaGv9L0L26fNSPuGzUyiapuU9bMDeU2MyJzvm/NIN3qvDtiwpuf8mzzzEu58VvkECZCAvxHAETgJuvG+VbLwBCVJVkXCOW1BEtU4waFjcW5Zsf9O/+KPD5P49LdD40QliFjCLNbrwTGpohxTJG0Jp3OnSogEBVkkymo7XBJUXPbi6nbaodIdwh4VJJb5MZKaVNeaelZvcsxrIHhEiCVDWTBcl2QV6RxtZJW4A9ctWJfnQDzToyBZs45X+Pjjj2XWrFmyatUqmTt3rmCFHJy9MphHwMz6Mi9XtEQCJOBvBDhm4281yvKQAAmQgA8ToCj5cOUx6yRAAiTgbwT8QpSuXbsmOHMJIf17f6sslocESIAE/J2AX4hS6dKlBXtrECpXrmx97++Vx/KRAAmQgL8R8IuFDqgU7E+CpwW8BgY6tI7T3+rSo+XhQgeP4qVxEiCBmwT8oqeEsuBI9Xbt2uk/uOVhIAESIAES8D0CfrFPCYKEJeDJycna753hQHT8+PG+VyPMMQmQAAnkYwJ+0VNavny5xMXFSUBAgPbY/c4778hXX32Vj6uVRScBEiAB3yTgF6KE+Q5j9R2qIf1736wW5poESIAE8icBvxClAQMGyLPPPquPk4BT0VGjRsnjjz+eP2uUpSYBEiABHyaQp3NK6OGYEcaOHavnknCoH1bf4cyjF154weo53Iw0aIMESIAESMDzBPJsSbgninbq1ClttkyZMp4wT5skQAIkQAIeJuBXouRhVjRPAiRAAiTgYQJ+MafkYUY0TwIkQAIkkEsEKEq5BJrJkAAJkAAJ5EyAopQzI8YgARIgARLIJQL/DxIu1v+PaIj7AAAAAElFTkSuQmCC />"

Answer to Question 15

2

Answer to Question 16

1

Answer to Question 17

1

Answer to Question 18

5

Answer to Question 19

3

Answer to Question 20

4

Answer to Question 21

5

Answer to Question 22

3




jeatrice

  • Member
  • Posts: 543
Reply 2 on: Aug 23, 2018
Excellent


ryhom

  • Member
  • Posts: 366
Reply 3 on: Yesterday
Thanks for the timely response, appreciate it

 

Did you know?

The use of salicylates dates back 2,500 years to Hippocrates's recommendation of willow bark (from which a salicylate is derived) as an aid to the pains of childbirth. However, overdosage of salicylates can harm body fluids, electrolytes, the CNS, the GI tract, the ears, the lungs, the blood, the liver, and the kidneys and cause coma or death.

Did you know?

Bacteria have been found alive in a lake buried one half mile under ice in Antarctica.

Did you know?

Approximately 500,000 babies are born each year in the United States to teenage mothers.

Did you know?

ACTH levels are normally highest in the early morning (between 6 and 8 A.M.) and lowest in the evening (between 6 and 11 P.M.). Therefore, a doctor who suspects abnormal levels looks for low ACTH in the morning and high ACTH in the evening.

Did you know?

Medication errors are three times higher among children and infants than with adults.

For a complete list of videos, visit our video library