This topic contains a solution. Click here to go to the answer

Author Question: Which of the following is the best candidate for a crossed Claisen reaction with ethyl acetate? ... (Read 90 times)

jeatrice

  • Hero Member
  • *****
  • Posts: 543
Which of the following is the best candidate for a crossed Claisen reaction with ethyl acetate?
 

Question 2

Predict the aldol reaction product(s) of the following ketone.
 
  1. A
  2. B
  3. Both A and C
  4. Both B and D
  5. A, B, and C

Question 3

Which of the following would not be produced in the aldol reaction between 2-butanone and acetophenone?
 

Question 4

Which of the following reactions will yield the compound shown below?
 
 



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

KKcool

  • Sr. Member
  • ****
  • Posts: 340
Answer to Question 1

2

Answer to Question 2

4

Answer to Question 3

4

Answer to Question 4

3

Answer to Question 5

3

Answer to Question 6

4

Answer to Question 7

2

Answer to Question 8

2

Answer to Question 9

3

Answer to Question 10

4

Answer to Question 11

1

Answer to Question 12



Answer to Question 13



Answer to Question 14

iVBORw0KGgoAAAANSUhEUgAAAaUAAAC2CAYAAAB555IvAAAgAElEQVR4Ae2dB3hUxfrGv6VK7yCgoSX0IiKCCVVQSbwgcGkCXkAlUSyJ8QIW7h9RKYpcExW8CUqRIoIoICYKSjVBRAEVgpBQRJDee53/8w6cJdlski1nk93NO88TdvecOd/M/GaZd6d9Y1FKKWEgARIgARIgAS8gUMAL8sAskAAJkAAJkIAmQFHiF4EESIAESMBrCFCUvKYqmBESIAESIAGKEr8DJEACJEACXkOAouQ1VcGMkAAJkAAJUJT4HSABEiABEvAaAhQlr6kKZoQESIAESICixO8ACZAACZCA1xCgKHlNVTAjJEACJEACFCV+B0iABEiABLyGAEXJa6qCGSEBEiABEqAo8TtAAiRAAiTgNQQoSl5TFcwICZAACZAARYnfARIgARIgAa8hQFHymqpgRkiABEiABChK/A6QAAmQAAl4DYFCXpMTH8/Ili1bZMOGDboU9evXl/vuu8/HS8TskwAJeCsBf25vLHl98iwOvrVYLN5a9w7l688//5T27dvL9evXpXDhwnL69Gn5+uuv5d5773XoeUYiARLIHQL+0t60a9dOUBajvUlISJCWLVvmDsSbqXiKZZ4P3/m6IG3cuFHatGkjlStXlk2bNskff/yhxej++++X77//Ple/JEyMBEggewL+0N6EhIRIlSpVZPPmzbq9gRh17NhRVqxYkX3hfeRunouSj3DKMptLly7VPSMIUIUKFfQvl8WLF0u1atXkk08+0b9msnyYN0iABEjACQJob86cOaMFqHz58rq9WbJkiVStWlVmzpzphCXvjUpRcrNu0H0uXbq0lCxZ0mqpUKFCUrFiRSlSpIj1Gt+QAAmQgLsE8kN7Q1Fy81uCeaRjx47JX3/9ZbV0/Phx2bdvn55jsl7kGxIgARJwk0B+aG8oSm5+Sfr16ydBQUF6td3WrVu1GGF898qVK/Lcc8/5/CION/HwcRIgARMJoL0JDAyU1q1bS0pKim5vOnToIFevXpXnn3/exJTyzpRzopQWKyGWCEnMu/w6lPLPP/8sFy9edCiuu5Hq1KmjFzSUKVNGGjduLHXr1hX0lLAa5q677nLXPJ8ngXxKIE1iQyz6Rx0WJ+AvJDbNK1msW7cuV9sbLGjAlEGjRo10e3PixAlJTEyUZs2aeSUfZzPlxD6lRIkIipJkCXc2DY/Hv3z5smzfvl0WLFig/7AC7vHHH5f33ntPSpQo4fH0L1y4IJ999pkcPnxY9u7dKxCq5s2bezxdJkAC/kkAghQkUcnBEpOaJJGBImmxIRIUFSSWlARRcaF5WuxLly7Jtm3bZM6cObJ+/XpJTU2VsLAwef/996V48eIezxvam/nz52dob/zpB7BjPaXECLFYwiTe47idSwDd16ioKOnSpYs0bdpUli1bJqGhofLiiy/KtGnT5JtvvnHOoIuxO3XqpMXQWAYeGxvLVXcusuRjJCBpX8v8ZJHwhBuCBCKBkUmSGhMsEr8oz0Zq0N5ER0dLjx49BP/nsaDpX//6l/7xi/Zm+fLluVJ5aGfwAxx5+O677wTtjT+FnHtKEKSweAmOSZWkuhPFEpa3xUfXNS0tTf7v//5PfylKlSolDzzwgK6YWrVqWVfBNWzYUMeBWGHOx5MBk4/49YJw8uRJuXbtmieTo20S8G8CgZGSpCIzlTGwbmMR2SI70kRCAzPd9sgFo735z3/+o5dfV69eXd5++22544479IiIkeiYMWPk6aef1iMkAQEBxmWPvNq2N/jsTyFnUQqNE6XibpQ5DyaTMDcEDwkvvfSSHDp0SPd+8IUYMWKEFpuuXbvarQ8M382dO1dvbMUCBCzR9lQoWLCgFChwo9OJV+x0ZiABEjCXQOIijNWES10PCpLR3owcOVIPj2G0Be0NPuPHbXbtzbx586Rt27aCDfXYs+ipYNveeCqdvLLr2PBdHuRu9erVejMYJvNq166te0foFcGlz2+//aa70Vl9QYzsTp06Ve8Vio/3toFHI4d8JQEScIhAYoSExYsExwwXT8wo2bY3O3fuFLQ3mCN2pL2BcH377bf6B+n06dMdKhIj2SeQc0/J/nOmX8WwF3YqQ0DQZU5OTtaLFLCiZNKkSdK9e3en08RwXlJSkjz44IOC3c9Dhw4V/MpgIAES8CECN6cQJDxBkrDqwYRgtDdxcXGycuVKU9qbO++8U15//XUZMmSIHpnBfJMxgmJClvONCa/pKb3xxhu6e/zmm2/q7vJrr70mR48elR9++MElQTJqEOO7+OINGzZMd8eN63wlARLwAQLp5rTNXHWH9garZMeOHWtqewMhwtwShAntF4PzBLxGlLDMEn+YRMTy6tGjR8ttt91myuZTeOtGLwlfFqTBQAIk4P0EsAzcusjKpB6SUWps38AmVOxpNLO9Qc8I899FixbVm1m56Mkg7vir1wzfGd1cnEVkdihWrJjuLeGL0rNnT4FTQ1/3Fmw2I9ojAW8icGNfUrKEJyjxxLYkrFirVKmStGjRwvRiY3QGR9dgqwo8LXz++eemp+HPBr2mp2RA9qQnBvwigjdv4zA+I013XzE+ff78eW0G82L4YyABEnCRQFqsDIpK1ttQPCFIyBV+lHqyF4M9RNi8v3DhQvn1119dBGH/MX9vb0wQpZvuQCLyYL24/TrL8ioWS/Tu3Vuw+QzLNs0K//vf//QYMr7o7777rv4ysidmFl3ayW8E0r6eL8kikgwPDjddDN16DZEb3oa8v93p1auX4DA+CBTOWjMrGHPksBcTEyMTJ040y7RX2Mnzk2cNCnAmCDcdcJ8B4fBUwFgyHKZisyuWfZopHuim49cXdnrji1i2bFmXioGjjn/88Uf97N133y34Qzh48KDu6WEIEkOSCNhHgVU/WDrPQAIk4BiBgQMHyp49e/RCKseecC0W/NLhUD7MZaO9MSvs2rVLtwXwgQcXQ/Xq1XPZdFbtDYYg0V5iCNII2O8JjxYInjp5Foa9Ijz33HPYcarmz5/v8fwcPnxYVa5cWY0fP96UtI4cOaK6dOmibZYuXVqXo23btgrXnQ3r169XxYsX138lS5ZUhQoVUitXrtRmEhISlMViUfv27bOarVevnnrrrbesn/mGBEggZwIDBgxQISEhOUc0IcaiRYt0mxATE2OCNaWio6NV3bp1FdqaEiVKqIIFC6rExESXbKO9KVasWIb2Zs2aNdpWlSpVdL6RjvHXoUMHfQ/8jHguJZzNQ/lSlMBj7NixuoF/9913s8Hj2K1x48ZpW5s3b1aXL19WP/30k65kCO3169cdM6KUfq5q1aqqVatW6vjx4+rs2bOqffv2qmzZsvreunXrVIECBdTp06etNu+77z6KkpUG35CAYwRyU5TQBowZM8YUYfrll19U0aJFVVRUlG5r0BZ07NhRlSlTxrGCp4uFdur222/X7c2JEyd0e9OuXTtVvnx5lZSUpGrWrKnee++9dE8o3Z7hxzE6EN26dVMXLlzIcN+MD16z+s7oHubW6yuvvKK70+PGjZPg4GCXhvFwCiS6zphTwv4E+NvDtZYtW8rmzZv1MB6cOBqLILIrG57FscbweI7FGIZ3c+wSh3uTL774QjDkgLBq1SqrG5NTp05lZ5b3SIAE8pgApgjgq3P37t16XxTaG1cCViZjuB6eyNF+oa3BH47JQTtz4MABfb6SI7aN9gbnvsFZgeHdHE6tMRQ4e/ZsKVeunG4j0y8Ma9KkiV64AScESBPPY+uOmSHfihIgYp8CNri1atXKJab4QmCsGAIC4cBnIxhOYLE8NP2ptMZ921dsEsZ4LeahjC8I4mAZO/xoYZ7K8KvXrVs328f5mQRIwMsJ4Ky1GTNmCPZNuhLgERzL2NHe4NUIEAXMO0P4sCnYkQBPN9m1N0WKFNFnNsEDeXov5Fgghn1YWNAFYYQrJrNDvhUl7FWaMGGCdVGCK2ANJ6/4tYCeEV4NYcLBXxAUCIgjE5ywhcUXR44c0Y5nb7/9dp0lHLWOBQ7YV4FFFPjVBduVK1fW941JR1fyz2dIgARyhwDam/Hjx+v2AYugXAlVqlQROJeGg2r4AK1Ro4Y2gx/WONcJh4xib5Qjwba9gW0EtDfocaGtwSINODEID791hl7VqlX1PY8tckAmzBgDNMNGbi50QH6bNm2qx0XnzJnjdvY//PBDPae0atUqdejQIfXFF1/oz5iQdGZOKSUlRU9g1q5dW6Wlpam9e/eqhg0bqjvuuENt27ZNj/NioQPmm4yA+ScudDBo8JUEHCOQm3NKyFGTJk10ezN37lzHMphFrO3bt+uFCYMHD9Ztza5du1StWrVUuXLlsngi68tob4KCghTam507d+r2pkGDBiogIED9/vvvqkaNGgrz5WfOnLH+nTx5Ul25ckVVqlRJTZo0yan2LeucZLyT70Tp2rVrKiIiQlfsp59+mpGGi58gEk888YRekICFCKjMF154QZ07d85pizt27FDVq1fXX2AIECr/119/1Xa++eYbLXb79++32sWXnaJkxcE3JOAQgdwSJfwoDQ8P1+3NvHnzHMpbTpEmTJigmjVrphc9YdFDjx491IYNG3J6zO59tDfVqlXL0N5s2bJFx4U4od+CNs34a926tb6HBRIVKlRQECmzQ74bvsP6fngih3uRvn37OtLTzTEOJgQ/+ugjfQQ7vDnAOznGj10JmIvCHiV00xEw6VizZk39HmPRWARhDBviIk68TD++rCPyHxIgAa8ggIVUaG8wb21We4OznbDoCfuLMPeDfZeuBrQ3GPqz197gdFsspEp/iGCZMmV0Ul9++aWebjAWZLmavr3n8pUo7d+/X7DLGmOvn376qUsr7uxBNK65uqrGeN54xdks+LMNED/bL+A999xjG42fSYAEvIAAfgDPnDlTsGINB46aGXACLv7MCFm1N9ktyGjdujVG2UxvQ1GefCVKs2bN0gd24Th1HBzIQAIkQAKeIoBFSKmpqXopuDHa4am0/MmuCb7vfAMH9gBhCeNTTz2lh9d8I9fMJQmQgC8SwEgMTqzFcTkUJOdq0OtEyVhS7Vwxso+NvUQ4zAsHb02ePNkjXc7sc8C7JEAC3kQAQ0/GcTlm5wtDdv3799fnKU2ZMsVs835vz2uG786ePathHzp0SG9IxR4fs8KTTz4pP/30k94NbaYDVrPyRzskQAK5SwB7AuFsFH/Gnj+zcoARGYQxY8aYZTJf2Sn4Gs4d94KA3gxWeuAMEqwwO378uHZfUa1aNbdyh7NMXn75ZT3R2Lx5c/aS3KLJh0nAfwjAS/iIESP0hD3mmdE+uBOweR6r4uB+B27BsKDK338Ee6J8XnN0Bb4MqFS4v4D/JSx1hvsM/GFctkOHDtKsWTOnvjPwOYdfQf/9738z7Ep2yggjkwAJ+CUB+Jlcu3atPiUWHhewlQNHwqCnA/dghlcVRwsPH3FYsfbJJ5/IY4895uhjPhvPU6vvvEqUbGsHzkjh7ykxMVGvo4fLHrjWGD58uD5DyDa+7Wd0AnE+E7548B/HQAIkQAJZEcBiqOTkZD3MjzOEHnroIb2/6J///KfAAWl2AXuGEB/tE84hwvYNfw/5UpSMSsVQHvy/YSMaTnDEZwBBDwgrW+ztD4KQRUdHy+rVq00fMzbyxVcSIAH/IwD/b3CijPYGUwrwXfnAAw8ITq5u27ZtBofJRumxZwib2tHeuHq4p2HLV17ztSjZVtK8efMEG2HxpYFAde3aVR8bgW43dhhfvHhRD/eNGjVKHnnkEdvH+ZkESIAEHCaAja9wUor2Bh4QIECYp8ZREiVLlhSssHvmmWdk+fLl0rlzZ4ft+npEipKdGoQg4SyjlStX6mE+rNjDWUZYVo7zQiZNmqQ9ddt5lJdIgARIwCkCaG/QpsAtD/YgYU4KQ3uY/4Y37VdffdV6SoBThn00MkUph4rDFwVdbsw3Pfzww/L+++/7/cqXHJDwNgmQgIcIYEEWek+YIujTp4+88847HkrJe81SlBysm/RnGjn4CKORAAmQgEsE8nN747ei5KmCufQN40MkQAJ+TYDtjfdXr1cvCfd+fMwhCZAACZCAmQS8zvedmYWjLRIgARIgAd8iQFHyrfpibkmABEjArwlQlPy6elk4EiABEvAtAhQl36ov5pYESIAE/JoARcmvq5eFIwESIAHfIkBR8q36Ym5JgARIwK8JUJT8unpZOBIgARLwLQIUJd+qL+aWBEiABPyaAEXJr6uXhSMBEiAB3yJAUfKt+mJuSYAESMCvCVCU/Lp6WTgSIAES8C0CFCXfqi/mlgRIgAT8mgBFya+rl4UjARIgAd8iQFHyrfpibkmABEjArwlQlPy6elk4EiABEvAtAhQl36ov5pYESIAE/JpAIb8uHQvn0wRwSiiDuQSGDx8uycnJUqBAAfnkk0+kVq1apiZgsVhMtUdj+Y8ARSn/1bnPlJgNnLlVNWrUKFm2bJlMnz5dli5dKt26dZPvv/9eqlSpYm5CtEYCbhDgcehuwOOjniWAnhKFyRzGp0+flqCgIFm9erXUr19fG+3UqZPg75VXXjEnEVohARMIcE7JBIg0QQLeTgACX6RIEalQoYI1q+XKlZOrV69aP/MNCXgDAYqSN9QC80ACHiZQvHhxadKkifTu3VsOHz4sM2fO1EN3nTt39nDKNE8CzhHg8J1zvBg7Fwlw+M582L169ZKUlBQpWrSoTJw4UShK5jOmRfcIsKfkHj8+fZNAWmyInv/BHJDFEiKxaUTjbQSwyOHxxx+Xb7/9Vi9ywHwSAwl4GwGKkrfViA/mB4IUFNVYEpQS9G5UQmOJCqIweVtVLlmyRPBXqVIlmTFjhpw5c8bbssj8kIBQlPglcJNAokyMSpbgmOESalgKHS4xwckSNTHRuMJXLyBQokQJKVasmFy5ckVKlizJlY1eUCfMQmYC3KeUmQmvOEUgVOK4ydUpYoxMAiSQNQGKUtZseMdFAmmxgyQqOVhiZlr7Ti5a4mMkQAL5jQBFKb/VuCfLmxghlrB4nUJwTKpEBnoyMdomARLwRwKcU/LHWs2rMoXG3VjooFKlz/wgsYTEChfh5VVlMF0S8E0CFCXfrDcvz3WgRI4KF0meL19Tlby8rpg9EvAuAhy+86768J/cBDWUYImXlFQRcWEY7/z58/Lll1/K0aNHrUx69OghAQEB1s94M3/+fDlw4IC0bdtW7r777gz3+IEESMD3CLCn5Ht15l05TouVEItFImxXf6emSLKES3cX1zocO3ZMnnzySX3Mwo8//qhfjx8/LoMGDZIVK1ZoBiNGjJDo6GhZs2aNtGvXTpYvX+5dbLwwN9jcjGMrGEjAWwmwp+StNeMr+QqMlFHhURL2ZqwMD4282SlKk9g34wWLHVzUJF16nPUzb948636a3377TWbNmiWlSpXSjkThv23dunVSu3ZtiYuLk8cee0y70Clfvryv0MvVfGJjc8GCBaVw4cL6FZ8ZSMDbCPAnk7fViA/mJzROSULjKAnSLobgZihIUkYpSbIuv0uT2BCLWDJ1p7Iv7P79+6VRo0bSsGFDefTRRyUwMFBatGghXbt2Fdzr2LGj9ZC6iIgIKVu2rFy+fDl7oy7c3b17twwcOFCGDBkiBw8edMFCzo+cOHFChg4dKn379pVt27bl/IALMW6//XZZuHChdjF07do1Le4umOEjJOBRAhQlj+LNP8YhTNrF0E1XQ3EZukiBEpmkRGW8mCOcatWqyc8//yybNm2SuXPnCjxdw5Fo1apVtauctWvXyqFDh7Qd9KgwvIfG1qxw6dIliY+Pl1atWukhwlWrVsn9998vs2fPNi0dMMO8GAQWPul+//137SR18uTJcuHCBbOKog/3gyBBtI8cOSJ79+6VcePGmWafhkjANAKKgQS8kMDevXvVbbfdpsLDw1VERIR+/eOPP9Rdd92l31+5ckVfr1Wrlho8eLCOu3z5cjV9+nT17LPPqrS0NLdKNXXqVBUYGKgKFCignnjiCbVv3z51+fJlbdtisagGDRqoOXPmuJXGggULVNOmTRXsDRkyRF28eFFdu3ZNTZgwQRUqVEhVq1ZNxcbGupXGqlWrVPv27TFOp7p06aKOHj2q7c2bN08zCwkJUcuWLXMrDT5MAmYSwK9bBhLwOgJnzpxRH3zwgXrttdfU6NGj9d+ePXvU4sWL1ezZs635jYuL0/fQ+CKcO3dOQVDq16+vpk2bpiBezoRNmzap3r1760a8WbNmKiUlJdPjGzduVP369dON+qBBg9T27dszxcnuwq5du7SwFitWTPXs2VOtX78+U3SI6rBhw1ThwoXVww8/rH788cdMcbK7cOjQIfXyyy+rcuXKqQ4dOigItm04ePCgevHFF3VZ+/Tpo/7++2/bKPxMArlOgKKU68iZoKMErl+/7mjUTPHQ4L7++uuqU6dOaubMmboHkilSugunT59W48aN072W8uXLK/Ricgrr1q1TNWrU0I36lClTdE8nu2fQ00JPDj2jqlWrqhUrVmQXXd9LTU1VEEf0dEaNGqVOnjyZ4zNLlixRxYsXV6VLl1azZs3KMT56SuCEntlLL72kbLlv27ZNiyJ+KCAcOHBAQZghlPjbunVrjmkwAgk4SoCi5Cgpxst1AraNoysZSEhIUN26dVPt2rVTS5cuzWQCYoQeWUBAgG7Io6Ki1O7duzPFy+oCemIfffSRKlGihKpXr56aMWNGJnGCGM2dO1c1atRID8shPQzVORMWLVqk8wgxe/fdd9Xx48czPY7ytW7dWgsYBPnYsWOZ4mR3ITExUQ8n3nvvvVbBRNmqVKmih03R+zxx4oTuXSEfzZs3139PPfWU2rJli5o4cWImQcsuPd4jAXsEKEr2qPCaVxAwQ5SMgkyePFn3ODAkZojOL7/8ohtV9EJatGjh1i9+9BZ69eqlBQHzNGikETAP9sADD+jrGIbD8KCrAfNsmC9DfmvXrq2SkpK0qb/++kvPSeE6hGLt2rWuJqFFJzo6Wg/9rVy5UpUpU0bhFQFzdw8++KDq27eviomJyZDGgAED9FAje00ZsPCDCwQoSi5A4yO5Q8BMUUKOMckPwcCwFnoDaMQrVqyo0AsxK2C+Cz0K2DbSCAoK0sN2WMRgRkDvLzg42JoGFoRUr15d96DQ8zMrvPHGG6p///7W3s/58+dVq1attChBFNH7xN/mzZsVhi+xaOPIkSNmJU87+ZQAl4Sbto6RhrydQIUKFWTkyJHao0GhQoUEh9599dVX8sgjj5iW9QEDBsjWrVvlueeeE6QRHh4uW7ZskcGDB5vmSSE0NFSSkpJkzJgxOg3s20IaUVFRpu49whL89HumNm7cKKdOndKHBHbp0kXGjh2r/xo0aKD3i2GzMxgzkIA7BCwQY3cM8FkS8BQBfDXhFsfM8PHHH2shgl+9Zs2aaf96derUMTMJv7GF/UwQwOrVq0tYWJgW9IkTJ2pBhDhhoy8ChAi+CiHEGzZskCpVqvgNAxYk9wmwp5T7zJliHhKAyF29elXn4Pr16x7xAJGHxTM16UqVKsnq1aulXLlysnTpUhk/frz2OoFeEnqBc+bM0X9w9dS4cWNp06aNwDMFAwm4Q4C+79yhx2dJwM8JYIhzxowZGUrZr18/wZ9tgNcNBhJwlwB7Su4S5PMkQAIkQAKmEaAomYaShkiABEiABNwlQFFylyCfJwESIAESMI0ARck0lDREAiRAAiTgLgGKkrsE+TwJkAAJkIBpBChKpqGkIV8ggDOSzp49q7N6+vRp085F8oWyM48k4AsEuHnWF2opn+bRE5tncYrsyZMnpXnz5pKcnCwtW7bUx4PnU8QsNgl4HQH2lLyuSpghTxKAK5x9+/bpE2QnTZokO3fu9GRytE0CJOAkAYqSk8AY3bcJYCPokCFDZODAgVKvXj1p3769wKcbAwmQgHcQ4PCdd9QDc2GHgCeG7+rWrSujR48WOE5F6N+/vxQpUkSmT59uup89O0XiJRIggRwIsKeUAyDe9i8C8NmGHpIR8P7y5cvGR76SAAnkMQGKUh5XAJPPXQKtWrWS6Oho7dUaxzJMmTJFOnfuzF5S7lYDUyOBLAlw+C5LNLyR1wQ8carKtWvXpE+fPvr8oTNnzugziEaMGJHXRfWb9M0+asRvwLAgDhOgKDmMihH9icDevXt1cQICAvypWCwLCfg8AYqSz1chC0ACJEAC/kOAc0r+U5csCQmQAAn4PAGKks9XIQtAAiRAAv5DgKLkP3XJkpAACZCAzxOgKPl8FbIAJEACJOA/BChK/lOXLAkJkAAJ+DwBipLPVyELQAIkQAL+Q4Ci5D91yZKQAAmQgM8ToCj5fBWyACRAAiTgPwQoSv5TlywJCZAACfg8AYqSz1chC0ACJEAC/kOAouQ/dcmSkAAJkIDPE6Ao+XwVsgAkQAIk4D8EKEr+U5csCQmQAAn4PIFCeVkCT5yXk5flyeu0T548Kb1795ajR49K2bJl5fPPP5cKFSqYli2elWMaShoiARLIgkCe9ZQgSGjk+GcOg/Pnz0uvXr20GM2YMUOqVasmPXv2lLNnz5rGOIvvEC+TAAmQgGkE8kyUTCsBDWkCS5culT179siCBQvkrrvukrlz58rBgwdl0aJFphBir9YUjDRCAiSQAwGKUg6AfOX21atXpWLFirpXZOS5cuXKcuXKFeMjX0mABEjA6wm4LEqJERaxhMRKmtcXMX9ksH79+pKWliZTp07VBZ45c6Zs3bpVGjVqlD8AsJQkQAJ+QcC1hQ6JERIWLyLBfsHALwrRokUL+fLLL6V79+4SFxenh+6mTZsmrVq18ovysRAkQAL5g4ALopQoEVqR8gcgXyplqVKlZMmSJbJ//37BSrwePXr4UvaZVxIgARIQp4fv0mLflPjgGIkJJz1vIzBgwAC5fv26BAYGyocffuht2WN+SIAESCBHAs6JUlqsDIoSiZkZKXVzNM0IuU2gRIkScvnyZcHycO4pym36TLjaMNAAAA05SURBVI8ESMAMAk6IUprE3lAkiQw0I2naMJtAeiFK/97sdGiPBEiABDxFwOE5pbTYQRIlMZJKRfJUXdAuCZAACeR7Ao6JkjFslxop7CTl++8MAZAACZCAxwg4NHyX9vV8SZZkiQq65RJHL8BLjpIgi0UiEj2WPxomARIgARLIRwQcEqXAyCSBm5n0fwlYfRccI6lKSVxoPiLGopIACZAACXiMgEOi5LHUaZgESIAESIAE0hEwUZTSJDbEIhYHxvKwZHnw4MF6gyfyAs8Db731ls7WkSNHJCwsTO677z6Jjo5Ol1W+JQESIAES8HcCLotSaJwSlZR+4UOgRCYpUQ6M5cF5aEJCghQuXFjz3b59u2zatEkgSMHBwYL9Ns8//7zMmTNHnnrqKbl48aK/14Np5cNS8KJFi5pmj4ZIgARIIDcJOLb6zgM5uu222+Trr7/W5//8+eefUrNmTZk3b56UK1dOH7+AJENCQqRJkyYybNgwadq0qQdyIQKBxIbT4sWLe8R+eqMnTpzQ5Ut/zez3KAd4cp+S2WRpjwRIIDcIuNxTcjdzEIIxY8bI8OHDZeXKlbp3dOHCBS1Chu2AgACpVKmSXmBhXDPzdc2aNdK4cWMteAsXLjTTdAZbBw4ckA4dOkiDBg1k7NixGe6Z+QG+7yIiIqRfv376cD8ILgMJkAAJ+BKBPBMlDNElJSXJr7/+KkOHDpXDhw9LvXr19BHeOHIB4f3339cucy5duqR9upkFdufOnbr39cgjj0idOnUkKChIn9rav39/fdyDWekcO3ZMxo8fL/fcc4+cO3dO/vGPf8ioUaOkTZs2snz5crOS0b292bNnyw8//KCHQJ955hnZvXu3FtzFixeblg4NkQAJkIDHCag8CKdOnVIVK1ZUhw4d0qlHRUWpnj176vcjRoxQ5cuXV+3bt1dFihRRP/30k1q2bJm699571RdffOFWbq9fv66efvppVaBAAZ3GlClTtL3Lly+rDz74QFWtWlWJiBo0aJA6f/68W2m9/fbbqnLlyqpw4cJq2LBhVltfffWVat68uU6nQ4cOatu2bdZ7rrxZunSpatCggbbXo0cPdfLkSW1m3bp16uGHH1alSpVSgwcPVpcuXXLFvPUZsGMgAfMJJKhwEf39xf896194ghtJpaqYYNgKV/asJISLkuAYlepGCrn5aGpMsJVLcIydXCeEq1u4bvC89Tk3c2pOWhgay/Vw5coVlZiYqC5evKjT3rJlixYfIyOLFi1SH330kdq0aZNxSf3nP//RQgLB+PPPP63XHXlz7do19dlnn6mmTZuqcuXKqTfffFMdOXIk06Pnzp1Tjz76qP4CBAUFqWnTpilccyYkJSWpBx98UJUoUUINHTo0S9F57bXXVNGiRbVojBkzRv3999/OJKN27NihnnjiCVW6dGnVpUsX9cMPP9h9/tNPP1WVKlVSdevWVQsXLrQbx5GLFCVHKDGO0wRSY1SwBCt7ba3TtqwPGKIkSuy0zr4lSjdExq4Y6fLaipDtZysUn3mTJ6IEOq40cn/99ZcaPny4qlChgvr3v/+t8DmnsGvXLoUeBH6BdezY0a4Y2drYsGGDeuihh/QzrVu3VikpKbZRMn0+evSoGj16tH4GArBx48ZMcWwv7N69W6GXiLxBLNEjzClA0GfPnq2fAYdZs2bl9Ig6ffq0Gjt2rCpZsqQaOHBgpvLs27dPrVq1Sv32229WWzt37rQKJXqS+OEAcWcgAVMJJIRn2aNxPZ2bohQcbFfwfFGU7GjrTTy2ImT72XWKefWkT4mSAWnx4sWqVq1aqlixYurVV181Lmd4hRhFRkYqi8WiWrRooVauXJnhfk4f0BBPnjxZ3XHHHVoAMARmT5wgRuPGjdNDdWXKlFHomTgbMKQH8YM4YUjvu+++y2QC+YEYNWrUSMfD8OCJEycyxcvuwpo1a3SvCr2r6dOn66gQTwgi7Ka/3r17d907RSSI1p133ul0rzG7vPAeCYCAHprKusV1EdJNUQpPsGvfrihpcbw1fJixZ2I09DdejSFG22ynH2ZDnIw2silKVmnrXuStPGUajrS9r4ckb+Y1Bj3QW886nVdb2yLphghvlMXl8maDArd8UpSQcQx3vfTSS7qBDgkJ0cOBRlkXLFigChYsqO+98cYbTjfehh28Ym6pf//+2ha+aB9//LF12BFDZtWqVdPzRhiq++OPP9I/6vR7DCtiHg3pREdHq4MHD2obaWlpqnPnzvo6enAQF3fCzJkztTjt2bNHBQQEqJdfflmbgzgWL15crV27Vs9DTZgwQV8/e/asqlmzJkXJHeh81i4BCERw8K05E6cac7sWcfGWKCllCMqtyJlE6aYo3Gq4b4qP9YIhRreGGW80yFl/Vjcb9RyFycG0rVm5VYyb72zLZ0Jeb+Y9Q5o2+bQtv8PlzZT/zBd8VpSMomBuypjoRy+jTZs2WiQwz7JixQojmtuvWHBhDAMivbCwMC0STz75ZJbzRq4kCqEYOXKkto0FH127dtXv27Vr57YY2eYHolqnTp0Ml3v16qViY2O1UAUGBuphTCw6QY/R2fm1DIb5gQQyEbjZgNosOtBC5dYkU3pRutkbS5dGRlG6ETeTeOhG2BCdG/nMECdDw23nPsqqbdhfbHEDheNpZxCIDBxvpH3rvp28OJvXHPNtJw2Hypsh41l+yLMl4WYtK+zSpYuMGzdOihUrJqmpqXqJOfYEJSYmSseOHc1KRlq2bKk39U6ePFkvU9+xY4fe7Dt16lSpX7++aenUqFFDJkyYIEuWLNHHmv/888/6M8rTtm1b09KBoQIFCsiZM2fkypUrVruHDh2SggUL6g3FWCoPl0+dOnXSca2R+IYETCEQKnEYrcngGUYktHu4JEdNFLMOHwiMnCkxEiWDYtMy5zrta5mfLNK4rs2hPEENJViSJSX11iMZ4gTWlcbGrcRFEi/B0udhezbiZVFWBXEibSMpR1/dymtodwmXeAmzRNivA1fL62DmfV6UUM7jx49Lq1atZN++fRIfH69Fw8HyOxUNjTW8S+zZs0cLYN++fZ163pnIXbt2lfXr18vff/8tI0eO9IjHCWzmbdasmfacsWHDBomMjJS0tDS9n2rv3r36Otw9wQchN+I6U3uM6xYBLQjZNOZOGw+UyFFOCl160XEovYxH+8CjiiUoSpIdetYmktNp2zyf48ec8oofC6kSEwxhunVcUUa3pjnZyDETWUbwC1HC3Fj6YPs5/T2+v0WgbNmygs21FSpUkMcee0xWr16t/9Bbq1q1qnYBhdhnz56Vhg0bsrd0Cx3feZxAsDQMMjGR0DhJCI+XN+31luwlk7ZDtti7nuW1YIlJzXi8j3HUjwPuQDNadTrtjI/n/MmRvN70ZXrzyCIcVRQfFiK38DliI+ec2IvhF6KEghlCdP36dXvl5LUsCGDYE0ODKSkpsnnzZu3dAlFjY2MFniEQqlSpIsuWLRP4K2QgAdMIpMVKiL1DQlNTJFkai+2Imrvphg6PEYkaJG+mV5vAh6VPsMiWHTZDezoPDgqjHu7KONTnUF7NSNuhhNJFcjGvoXEJEm4MZ7poI10usn3rN6KUbSl5M0cCmF9iIIFcJRAYKaPwC9xm0iVxUbwExwwX088O1eklS3KGMTVjaC8o3QnaiRKBo7XDR0mkzTSRfT6hMjwm2KYnIZIYgaGv9L0L26fNSPuGzUyiapuU9bMDeU2MyJzvm/NIN3qvDtiwpuf8mzzzEu58VvkECZCAvxHAETgJuvG+VbLwBCVJVkXCOW1BEtU4waFjcW5Zsf9O/+KPD5P49LdD40QliFjCLNbrwTGpohxTJG0Jp3OnSogEBVkkymo7XBJUXPbi6nbaodIdwh4VJJb5MZKaVNeaelZvcsxrIHhEiCVDWTBcl2QV6RxtZJW4A9ctWJfnQDzToyBZs45X+Pjjj2XWrFmyatUqmTt3rmCFHJy9MphHwMz6Mi9XtEQCJOBvBDhm4281yvKQAAmQgA8ToCj5cOUx6yRAAiTgbwT8QpSuXbsmOHMJIf17f6sslocESIAE/J2AX4hS6dKlBXtrECpXrmx97++Vx/KRAAmQgL8R8IuFDqgU7E+CpwW8BgY6tI7T3+rSo+XhQgeP4qVxEiCBmwT8oqeEsuBI9Xbt2uk/uOVhIAESIAES8D0CfrFPCYKEJeDJycna753hQHT8+PG+VyPMMQmQAAnkYwJ+0VNavny5xMXFSUBAgPbY/c4778hXX32Vj6uVRScBEiAB3yTgF6KE+Q5j9R2qIf1736wW5poESIAE8icBvxClAQMGyLPPPquPk4BT0VGjRsnjjz+eP2uUpSYBEiABHyaQp3NK6OGYEcaOHavnknCoH1bf4cyjF154weo53Iw0aIMESIAESMDzBPJsSbgninbq1ClttkyZMp4wT5skQAIkQAIeJuBXouRhVjRPAiRAAiTgYQJ+MafkYUY0TwIkQAIkkEsEKEq5BJrJkAAJkAAJ5EyAopQzI8YgARIgARLIJQL/DxIu1v+PaIj7AAAAAElFTkSuQmCC />"

Answer to Question 15

2

Answer to Question 16

1

Answer to Question 17

1

Answer to Question 18

5

Answer to Question 19

3

Answer to Question 20

4

Answer to Question 21

5

Answer to Question 22

3




jeatrice

  • Member
  • Posts: 543
Reply 2 on: Aug 23, 2018
Great answer, keep it coming :)


yeungji

  • Member
  • Posts: 319
Reply 3 on: Yesterday
Thanks for the timely response, appreciate it

 

Did you know?

People with alcoholism are at a much greater risk of malnutrition than are other people and usually exhibit low levels of most vitamins (especially folic acid). This is because alcohol often takes the place of 50% of their daily intake of calories, with little nutritional value contained in it.

Did you know?

The lipid bilayer is made of phospholipids. They are arranged in a double layer because one of their ends is attracted to water while the other is repelled by water.

Did you know?

Thyroid conditions may make getting pregnant impossible.

Did you know?

Amphetamine poisoning can cause intravascular coagulation, circulatory collapse, rhabdomyolysis, ischemic colitis, acute psychosis, hyperthermia, respiratory distress syndrome, and pericarditis.

Did you know?

Many people have small pouches in their colons that bulge outward through weak spots. Each pouch is called a diverticulum. About 10% of Americans older than age 40 years have diverticulosis, which, when the pouches become infected or inflamed, is called diverticulitis. The main cause of diverticular disease is a low-fiber diet.

For a complete list of videos, visit our video library