This topic contains a solution. Click here to go to the answer

Author Question: Which of the following is the best candidate for a crossed Claisen reaction with ethyl acetate? ... (Read 83 times)

jeatrice

  • Hero Member
  • *****
  • Posts: 543
Which of the following is the best candidate for a crossed Claisen reaction with ethyl acetate?
 

Question 2

Predict the aldol reaction product(s) of the following ketone.
 
  1. A
  2. B
  3. Both A and C
  4. Both B and D
  5. A, B, and C

Question 3

Which of the following would not be produced in the aldol reaction between 2-butanone and acetophenone?
 

Question 4

Which of the following reactions will yield the compound shown below?
 
 



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

KKcool

  • Sr. Member
  • ****
  • Posts: 340
Answer to Question 1

2

Answer to Question 2

4

Answer to Question 3

4

Answer to Question 4

3

Answer to Question 5

3

Answer to Question 6

4

Answer to Question 7

2

Answer to Question 8

2

Answer to Question 9

3

Answer to Question 10

4

Answer to Question 11

1

Answer to Question 12



Answer to Question 13



Answer to Question 14

iVBORw0KGgoAAAANSUhEUgAAAaUAAAC2CAYAAAB555IvAAAgAElEQVR4Ae2dB3hUxfrGv6VK7yCgoSX0IiKCCVVQSbwgcGkCXkAlUSyJ8QIW7h9RKYpcExW8CUqRIoIoICYKSjVBRAEVgpBQRJDee53/8w6cJdlski1nk93NO88TdvecOd/M/GaZd6d9Y1FKKWEgARIgARIgAS8gUMAL8sAskAAJkAAJkIAmQFHiF4EESIAESMBrCFCUvKYqmBESIAESIAGKEr8DJEACJEACXkOAouQ1VcGMkAAJkAAJUJT4HSABEiABEvAaAhQlr6kKZoQESIAESICixO8ACZAACZCA1xCgKHlNVTAjJEACJEACFCV+B0iABEiABLyGAEXJa6qCGSEBEiABEqAo8TtAAiRAAiTgNQQoSl5TFcwICZAACZAARYnfARIgARIgAa8hQFHymqpgRkiABEiABChK/A6QAAmQAAl4DYFCXpMTH8/Ili1bZMOGDboU9evXl/vuu8/HS8TskwAJeCsBf25vLHl98iwOvrVYLN5a9w7l688//5T27dvL9evXpXDhwnL69Gn5+uuv5d5773XoeUYiARLIHQL+0t60a9dOUBajvUlISJCWLVvmDsSbqXiKZZ4P3/m6IG3cuFHatGkjlStXlk2bNskff/yhxej++++X77//Ple/JEyMBEggewL+0N6EhIRIlSpVZPPmzbq9gRh17NhRVqxYkX3hfeRunouSj3DKMptLly7VPSMIUIUKFfQvl8WLF0u1atXkk08+0b9msnyYN0iABEjACQJob86cOaMFqHz58rq9WbJkiVStWlVmzpzphCXvjUpRcrNu0H0uXbq0lCxZ0mqpUKFCUrFiRSlSpIj1Gt+QAAmQgLsE8kN7Q1Fy81uCeaRjx47JX3/9ZbV0/Phx2bdvn55jsl7kGxIgARJwk0B+aG8oSm5+Sfr16ydBQUF6td3WrVu1GGF898qVK/Lcc8/5/CION/HwcRIgARMJoL0JDAyU1q1bS0pKim5vOnToIFevXpXnn3/exJTyzpRzopQWKyGWCEnMu/w6lPLPP/8sFy9edCiuu5Hq1KmjFzSUKVNGGjduLHXr1hX0lLAa5q677nLXPJ8ngXxKIE1iQyz6Rx0WJ+AvJDbNK1msW7cuV9sbLGjAlEGjRo10e3PixAlJTEyUZs2aeSUfZzPlxD6lRIkIipJkCXc2DY/Hv3z5smzfvl0WLFig/7AC7vHHH5f33ntPSpQo4fH0L1y4IJ999pkcPnxY9u7dKxCq5s2bezxdJkAC/kkAghQkUcnBEpOaJJGBImmxIRIUFSSWlARRcaF5WuxLly7Jtm3bZM6cObJ+/XpJTU2VsLAwef/996V48eIezxvam/nz52dob/zpB7BjPaXECLFYwiTe47idSwDd16ioKOnSpYs0bdpUli1bJqGhofLiiy/KtGnT5JtvvnHOoIuxO3XqpMXQWAYeGxvLVXcusuRjJCBpX8v8ZJHwhBuCBCKBkUmSGhMsEr8oz0Zq0N5ER0dLjx49BP/nsaDpX//6l/7xi/Zm+fLluVJ5aGfwAxx5+O677wTtjT+FnHtKEKSweAmOSZWkuhPFEpa3xUfXNS0tTf7v//5PfylKlSolDzzwgK6YWrVqWVfBNWzYUMeBWGHOx5MBk4/49YJw8uRJuXbtmieTo20S8G8CgZGSpCIzlTGwbmMR2SI70kRCAzPd9sgFo735z3/+o5dfV69eXd5++22544479IiIkeiYMWPk6aef1iMkAQEBxmWPvNq2N/jsTyFnUQqNE6XibpQ5DyaTMDcEDwkvvfSSHDp0SPd+8IUYMWKEFpuuXbvarQ8M382dO1dvbMUCBCzR9lQoWLCgFChwo9OJV+x0ZiABEjCXQOIijNWES10PCpLR3owcOVIPj2G0Be0NPuPHbXbtzbx586Rt27aCDfXYs+ipYNveeCqdvLLr2PBdHuRu9erVejMYJvNq166te0foFcGlz2+//aa70Vl9QYzsTp06Ve8Vio/3toFHI4d8JQEScIhAYoSExYsExwwXT8wo2bY3O3fuFLQ3mCN2pL2BcH377bf6B+n06dMdKhIj2SeQc0/J/nOmX8WwF3YqQ0DQZU5OTtaLFLCiZNKkSdK9e3en08RwXlJSkjz44IOC3c9Dhw4V/MpgIAES8CECN6cQJDxBkrDqwYRgtDdxcXGycuVKU9qbO++8U15//XUZMmSIHpnBfJMxgmJClvONCa/pKb3xxhu6e/zmm2/q7vJrr70mR48elR9++MElQTJqEOO7+OINGzZMd8eN63wlARLwAQLp5rTNXHWH9garZMeOHWtqewMhwtwShAntF4PzBLxGlLDMEn+YRMTy6tGjR8ttt91myuZTeOtGLwlfFqTBQAIk4P0EsAzcusjKpB6SUWps38AmVOxpNLO9Qc8I899FixbVm1m56Mkg7vir1wzfGd1cnEVkdihWrJjuLeGL0rNnT4FTQ1/3Fmw2I9ojAW8icGNfUrKEJyjxxLYkrFirVKmStGjRwvRiY3QGR9dgqwo8LXz++eemp+HPBr2mp2RA9qQnBvwigjdv4zA+I013XzE+ff78eW0G82L4YyABEnCRQFqsDIpK1ttQPCFIyBV+lHqyF4M9RNi8v3DhQvn1119dBGH/MX9vb0wQpZvuQCLyYL24/TrL8ioWS/Tu3Vuw+QzLNs0K//vf//QYMr7o7777rv4ysidmFl3ayW8E0r6eL8kikgwPDjddDN16DZEb3oa8v93p1auX4DA+CBTOWjMrGHPksBcTEyMTJ040y7RX2Mnzk2cNCnAmCDcdcJ8B4fBUwFgyHKZisyuWfZopHuim49cXdnrji1i2bFmXioGjjn/88Uf97N133y34Qzh48KDu6WEIEkOSCNhHgVU/WDrPQAIk4BiBgQMHyp49e/RCKseecC0W/NLhUD7MZaO9MSvs2rVLtwXwgQcXQ/Xq1XPZdFbtDYYg0V5iCNII2O8JjxYInjp5Foa9Ijz33HPYcarmz5/v8fwcPnxYVa5cWY0fP96UtI4cOaK6dOmibZYuXVqXo23btgrXnQ3r169XxYsX138lS5ZUhQoVUitXrtRmEhISlMViUfv27bOarVevnnrrrbesn/mGBEggZwIDBgxQISEhOUc0IcaiRYt0mxATE2OCNaWio6NV3bp1FdqaEiVKqIIFC6rExESXbKO9KVasWIb2Zs2aNdpWlSpVdL6RjvHXoUMHfQ/8jHguJZzNQ/lSlMBj7NixuoF/9913s8Hj2K1x48ZpW5s3b1aXL19WP/30k65kCO3169cdM6KUfq5q1aqqVatW6vjx4+rs2bOqffv2qmzZsvreunXrVIECBdTp06etNu+77z6KkpUG35CAYwRyU5TQBowZM8YUYfrll19U0aJFVVRUlG5r0BZ07NhRlSlTxrGCp4uFdur222/X7c2JEyd0e9OuXTtVvnx5lZSUpGrWrKnee++9dE8o3Z7hxzE6EN26dVMXLlzIcN+MD16z+s7oHubW6yuvvKK70+PGjZPg4GCXhvFwCiS6zphTwv4E+NvDtZYtW8rmzZv1MB6cOBqLILIrG57FscbweI7FGIZ3c+wSh3uTL774QjDkgLBq1SqrG5NTp05lZ5b3SIAE8pgApgjgq3P37t16XxTaG1cCViZjuB6eyNF+oa3BH47JQTtz4MABfb6SI7aN9gbnvsFZgeHdHE6tMRQ4e/ZsKVeunG4j0y8Ma9KkiV64AScESBPPY+uOmSHfihIgYp8CNri1atXKJab4QmCsGAIC4cBnIxhOYLE8NP2ptMZ921dsEsZ4LeahjC8I4mAZO/xoYZ7K8KvXrVs328f5mQRIwMsJ4Ky1GTNmCPZNuhLgERzL2NHe4NUIEAXMO0P4sCnYkQBPN9m1N0WKFNFnNsEDeXov5Fgghn1YWNAFYYQrJrNDvhUl7FWaMGGCdVGCK2ANJ6/4tYCeEV4NYcLBXxAUCIgjE5ywhcUXR44c0Y5nb7/9dp0lHLWOBQ7YV4FFFPjVBduVK1fW941JR1fyz2dIgARyhwDam/Hjx+v2AYugXAlVqlQROJeGg2r4AK1Ro4Y2gx/WONcJh4xib5Qjwba9gW0EtDfocaGtwSINODEID791hl7VqlX1PY8tckAmzBgDNMNGbi50QH6bNm2qx0XnzJnjdvY//PBDPae0atUqdejQIfXFF1/oz5iQdGZOKSUlRU9g1q5dW6Wlpam9e/eqhg0bqjvuuENt27ZNj/NioQPmm4yA+ScudDBo8JUEHCOQm3NKyFGTJk10ezN37lzHMphFrO3bt+uFCYMHD9Ztza5du1StWrVUuXLlsngi68tob4KCghTam507d+r2pkGDBiogIED9/vvvqkaNGgrz5WfOnLH+nTx5Ul25ckVVqlRJTZo0yan2LeucZLyT70Tp2rVrKiIiQlfsp59+mpGGi58gEk888YRekICFCKjMF154QZ07d85pizt27FDVq1fXX2AIECr/119/1Xa++eYbLXb79++32sWXnaJkxcE3JOAQgdwSJfwoDQ8P1+3NvHnzHMpbTpEmTJigmjVrphc9YdFDjx491IYNG3J6zO59tDfVqlXL0N5s2bJFx4U4od+CNs34a926tb6HBRIVKlRQECmzQ74bvsP6fngih3uRvn37OtLTzTEOJgQ/+ugjfQQ7vDnAOznGj10JmIvCHiV00xEw6VizZk39HmPRWARhDBviIk68TD++rCPyHxIgAa8ggIVUaG8wb21We4OznbDoCfuLMPeDfZeuBrQ3GPqz197gdFsspEp/iGCZMmV0Ul9++aWebjAWZLmavr3n8pUo7d+/X7DLGmOvn376qUsr7uxBNK65uqrGeN54xdks+LMNED/bL+A999xjG42fSYAEvIAAfgDPnDlTsGINB46aGXACLv7MCFm1N9ktyGjdujVG2UxvQ1GefCVKs2bN0gd24Th1HBzIQAIkQAKeIoBFSKmpqXopuDHa4am0/MmuCb7vfAMH9gBhCeNTTz2lh9d8I9fMJQmQgC8SwEgMTqzFcTkUJOdq0OtEyVhS7Vwxso+NvUQ4zAsHb02ePNkjXc7sc8C7JEAC3kQAQ0/GcTlm5wtDdv3799fnKU2ZMsVs835vz2uG786ePathHzp0SG9IxR4fs8KTTz4pP/30k94NbaYDVrPyRzskQAK5SwB7AuFsFH/Gnj+zcoARGYQxY8aYZTJf2Sn4Gs4d94KA3gxWeuAMEqwwO378uHZfUa1aNbdyh7NMXn75ZT3R2Lx5c/aS3KLJh0nAfwjAS/iIESP0hD3mmdE+uBOweR6r4uB+B27BsKDK338Ee6J8XnN0Bb4MqFS4v4D/JSx1hvsM/GFctkOHDtKsWTOnvjPwOYdfQf/9738z7Ep2yggjkwAJ+CUB+Jlcu3atPiUWHhewlQNHwqCnA/dghlcVRwsPH3FYsfbJJ5/IY4895uhjPhvPU6vvvEqUbGsHzkjh7ykxMVGvo4fLHrjWGD58uD5DyDa+7Wd0AnE+E7548B/HQAIkQAJZEcBiqOTkZD3MjzOEHnroIb2/6J///KfAAWl2AXuGEB/tE84hwvYNfw/5UpSMSsVQHvy/YSMaTnDEZwBBDwgrW+ztD4KQRUdHy+rVq00fMzbyxVcSIAH/IwD/b3CijPYGUwrwXfnAAw8ITq5u27ZtBofJRumxZwib2tHeuHq4p2HLV17ztSjZVtK8efMEG2HxpYFAde3aVR8bgW43dhhfvHhRD/eNGjVKHnnkEdvH+ZkESIAEHCaAja9wUor2Bh4QIECYp8ZREiVLlhSssHvmmWdk+fLl0rlzZ4ft+npEipKdGoQg4SyjlStX6mE+rNjDWUZYVo7zQiZNmqQ9ddt5lJdIgARIwCkCaG/QpsAtD/YgYU4KQ3uY/4Y37VdffdV6SoBThn00MkUph4rDFwVdbsw3Pfzww/L+++/7/cqXHJDwNgmQgIcIYEEWek+YIujTp4+88847HkrJe81SlBysm/RnGjn4CKORAAmQgEsE8nN747ei5KmCufQN40MkQAJ+TYDtjfdXr1cvCfd+fMwhCZAACZCAmQS8zvedmYWjLRIgARIgAd8iQFHyrfpibkmABEjArwlQlPy6elk4EiABEvAtAhQl36ov5pYESIAE/JoARcmvq5eFIwESIAHfIkBR8q36Ym5JgARIwK8JUJT8unpZOBIgARLwLQIUJd+qL+aWBEiABPyaAEXJr6uXhSMBEiAB3yJAUfKt+mJuSYAESMCvCVCU/Lp6WTgSIAES8C0CFCXfqi/mlgRIgAT8mgBFya+rl4UjARIgAd8iQFHyrfpibkmABEjArwlQlPy6elk4EiABEvAtAhQl36ov5pYESIAE/JpAIb8uHQvn0wRwSiiDuQSGDx8uycnJUqBAAfnkk0+kVq1apiZgsVhMtUdj+Y8ARSn/1bnPlJgNnLlVNWrUKFm2bJlMnz5dli5dKt26dZPvv/9eqlSpYm5CtEYCbhDgcehuwOOjniWAnhKFyRzGp0+flqCgIFm9erXUr19fG+3UqZPg75VXXjEnEVohARMIcE7JBIg0QQLeTgACX6RIEalQoYI1q+XKlZOrV69aP/MNCXgDAYqSN9QC80ACHiZQvHhxadKkifTu3VsOHz4sM2fO1EN3nTt39nDKNE8CzhHg8J1zvBg7Fwlw+M582L169ZKUlBQpWrSoTJw4UShK5jOmRfcIsKfkHj8+fZNAWmyInv/BHJDFEiKxaUTjbQSwyOHxxx+Xb7/9Vi9ywHwSAwl4GwGKkrfViA/mB4IUFNVYEpQS9G5UQmOJCqIweVtVLlmyRPBXqVIlmTFjhpw5c8bbssj8kIBQlPglcJNAokyMSpbgmOESalgKHS4xwckSNTHRuMJXLyBQokQJKVasmFy5ckVKlizJlY1eUCfMQmYC3KeUmQmvOEUgVOK4ydUpYoxMAiSQNQGKUtZseMdFAmmxgyQqOVhiZlr7Ti5a4mMkQAL5jQBFKb/VuCfLmxghlrB4nUJwTKpEBnoyMdomARLwRwKcU/LHWs2rMoXG3VjooFKlz/wgsYTEChfh5VVlMF0S8E0CFCXfrDcvz3WgRI4KF0meL19Tlby8rpg9EvAuAhy+86768J/cBDWUYImXlFQRcWEY7/z58/Lll1/K0aNHrUx69OghAQEB1s94M3/+fDlw4IC0bdtW7r777gz3+IEESMD3CLCn5Ht15l05TouVEItFImxXf6emSLKES3cX1zocO3ZMnnzySX3Mwo8//qhfjx8/LoMGDZIVK1ZoBiNGjJDo6GhZs2aNtGvXTpYvX+5dbLwwN9jcjGMrGEjAWwmwp+StNeMr+QqMlFHhURL2ZqwMD4282SlKk9g34wWLHVzUJF16nPUzb948636a3377TWbNmiWlSpXSjkThv23dunVSu3ZtiYuLk8cee0y70Clfvryv0MvVfGJjc8GCBaVw4cL6FZ8ZSMDbCPAnk7fViA/mJzROSULjKAnSLobgZihIUkYpSbIuv0uT2BCLWDJ1p7Iv7P79+6VRo0bSsGFDefTRRyUwMFBatGghXbt2Fdzr2LGj9ZC6iIgIKVu2rFy+fDl7oy7c3b17twwcOFCGDBkiBw8edMFCzo+cOHFChg4dKn379pVt27bl/IALMW6//XZZuHChdjF07do1Le4umOEjJOBRAhQlj+LNP8YhTNrF0E1XQ3EZukiBEpmkRGW8mCOcatWqyc8//yybNm2SuXPnCjxdw5Fo1apVtauctWvXyqFDh7Qd9KgwvIfG1qxw6dIliY+Pl1atWukhwlWrVsn9998vs2fPNi0dMMO8GAQWPul+//137SR18uTJcuHCBbOKog/3gyBBtI8cOSJ79+6VcePGmWafhkjANAKKgQS8kMDevXvVbbfdpsLDw1VERIR+/eOPP9Rdd92l31+5ckVfr1Wrlho8eLCOu3z5cjV9+nT17LPPqrS0NLdKNXXqVBUYGKgKFCignnjiCbVv3z51+fJlbdtisagGDRqoOXPmuJXGggULVNOmTRXsDRkyRF28eFFdu3ZNTZgwQRUqVEhVq1ZNxcbGupXGqlWrVPv27TFOp7p06aKOHj2q7c2bN08zCwkJUcuWLXMrDT5MAmYSwK9bBhLwOgJnzpxRH3zwgXrttdfU6NGj9d+ePXvU4sWL1ezZs635jYuL0/fQ+CKcO3dOQVDq16+vpk2bpiBezoRNmzap3r1760a8WbNmKiUlJdPjGzduVP369dON+qBBg9T27dszxcnuwq5du7SwFitWTPXs2VOtX78+U3SI6rBhw1ThwoXVww8/rH788cdMcbK7cOjQIfXyyy+rcuXKqQ4dOigItm04ePCgevHFF3VZ+/Tpo/7++2/bKPxMArlOgKKU68iZoKMErl+/7mjUTPHQ4L7++uuqU6dOaubMmboHkilSugunT59W48aN072W8uXLK/Ricgrr1q1TNWrU0I36lClTdE8nu2fQ00JPDj2jqlWrqhUrVmQXXd9LTU1VEEf0dEaNGqVOnjyZ4zNLlixRxYsXV6VLl1azZs3KMT56SuCEntlLL72kbLlv27ZNiyJ+KCAcOHBAQZghlPjbunVrjmkwAgk4SoCi5Cgpxst1AraNoysZSEhIUN26dVPt2rVTS5cuzWQCYoQeWUBAgG7Io6Ki1O7duzPFy+oCemIfffSRKlGihKpXr56aMWNGJnGCGM2dO1c1atRID8shPQzVORMWLVqk8wgxe/fdd9Xx48czPY7ytW7dWgsYBPnYsWOZ4mR3ITExUQ8n3nvvvVbBRNmqVKmih03R+zxx4oTuXSEfzZs3139PPfWU2rJli5o4cWImQcsuPd4jAXsEKEr2qPCaVxAwQ5SMgkyePFn3ODAkZojOL7/8ohtV9EJatGjh1i9+9BZ69eqlBQHzNGikETAP9sADD+jrGIbD8KCrAfNsmC9DfmvXrq2SkpK0qb/++kvPSeE6hGLt2rWuJqFFJzo6Wg/9rVy5UpUpU0bhFQFzdw8++KDq27eviomJyZDGgAED9FAje00ZsPCDCwQoSi5A4yO5Q8BMUUKOMckPwcCwFnoDaMQrVqyo0AsxK2C+Cz0K2DbSCAoK0sN2WMRgRkDvLzg42JoGFoRUr15d96DQ8zMrvPHGG6p///7W3s/58+dVq1attChBFNH7xN/mzZsVhi+xaOPIkSNmJU87+ZQAl4Sbto6RhrydQIUKFWTkyJHao0GhQoUEh9599dVX8sgjj5iW9QEDBsjWrVvlueeeE6QRHh4uW7ZskcGDB5vmSSE0NFSSkpJkzJgxOg3s20IaUVFRpu49whL89HumNm7cKKdOndKHBHbp0kXGjh2r/xo0aKD3i2GzMxgzkIA7BCwQY3cM8FkS8BQBfDXhFsfM8PHHH2shgl+9Zs2aaf96derUMTMJv7GF/UwQwOrVq0tYWJgW9IkTJ2pBhDhhoy8ChAi+CiHEGzZskCpVqvgNAxYk9wmwp5T7zJliHhKAyF29elXn4Pr16x7xAJGHxTM16UqVKsnq1aulXLlysnTpUhk/frz2OoFeEnqBc+bM0X9w9dS4cWNp06aNwDMFAwm4Q4C+79yhx2dJwM8JYIhzxowZGUrZr18/wZ9tgNcNBhJwlwB7Su4S5PMkQAIkQAKmEaAomYaShkiABEiABNwlQFFylyCfJwESIAESMI0ARck0lDREAiRAAiTgLgGKkrsE+TwJkAAJkIBpBChKpqGkIV8ggDOSzp49q7N6+vRp085F8oWyM48k4AsEuHnWF2opn+bRE5tncYrsyZMnpXnz5pKcnCwtW7bUx4PnU8QsNgl4HQH2lLyuSpghTxKAK5x9+/bpE2QnTZokO3fu9GRytE0CJOAkAYqSk8AY3bcJYCPokCFDZODAgVKvXj1p3769wKcbAwmQgHcQ4PCdd9QDc2GHgCeG7+rWrSujR48WOE5F6N+/vxQpUkSmT59uup89O0XiJRIggRwIsKeUAyDe9i8C8NmGHpIR8P7y5cvGR76SAAnkMQGKUh5XAJPPXQKtWrWS6Oho7dUaxzJMmTJFOnfuzF5S7lYDUyOBLAlw+C5LNLyR1wQ8carKtWvXpE+fPvr8oTNnzugziEaMGJHXRfWb9M0+asRvwLAgDhOgKDmMihH9icDevXt1cQICAvypWCwLCfg8AYqSz1chC0ACJEAC/kOAc0r+U5csCQmQAAn4PAGKks9XIQtAAiRAAv5DgKLkP3XJkpAACZCAzxOgKPl8FbIAJEACJOA/BChK/lOXLAkJkAAJ+DwBipLPVyELQAIkQAL+Q4Ci5D91yZKQAAmQgM8ToCj5fBWyACRAAiTgPwQoSv5TlywJCZAACfg8AYqSz1chC0ACJEAC/kOAouQ/dcmSkAAJkIDPE6Ao+XwVsgAkQAIk4D8EKEr+U5csCQmQAAn4PIFCeVkCT5yXk5flyeu0T548Kb1795ajR49K2bJl5fPPP5cKFSqYli2elWMaShoiARLIgkCe9ZQgSGjk+GcOg/Pnz0uvXr20GM2YMUOqVasmPXv2lLNnz5rGOIvvEC+TAAmQgGkE8kyUTCsBDWkCS5culT179siCBQvkrrvukrlz58rBgwdl0aJFphBir9YUjDRCAiSQAwGKUg6AfOX21atXpWLFirpXZOS5cuXKcuXKFeMjX0mABEjA6wm4LEqJERaxhMRKmtcXMX9ksH79+pKWliZTp07VBZ45c6Zs3bpVGjVqlD8AsJQkQAJ+QcC1hQ6JERIWLyLBfsHALwrRokUL+fLLL6V79+4SFxenh+6mTZsmrVq18ovysRAkQAL5g4ALopQoEVqR8gcgXyplqVKlZMmSJbJ//37BSrwePXr4UvaZVxIgARIQp4fv0mLflPjgGIkJJz1vIzBgwAC5fv26BAYGyocffuht2WN+SIAESCBHAs6JUlqsDIoSiZkZKXVzNM0IuU2gRIkScvnyZcHycO4pym36TLjaMNAAAA05SURBVI8ESMAMAk6IUprE3lAkiQw0I2naMJtAeiFK/97sdGiPBEiABDxFwOE5pbTYQRIlMZJKRfJUXdAuCZAACeR7Ao6JkjFslxop7CTl++8MAZAACZCAxwg4NHyX9vV8SZZkiQq65RJHL8BLjpIgi0UiEj2WPxomARIgARLIRwQcEqXAyCSBm5n0fwlYfRccI6lKSVxoPiLGopIACZAACXiMgEOi5LHUaZgESIAESIAE0hEwUZTSJDbEIhYHxvKwZHnw4MF6gyfyAs8Db731ls7WkSNHJCwsTO677z6Jjo5Ol1W+JQESIAES8HcCLotSaJwSlZR+4UOgRCYpUQ6M5cF5aEJCghQuXFjz3b59u2zatEkgSMHBwYL9Ns8//7zMmTNHnnrqKbl48aK/14Np5cNS8KJFi5pmj4ZIgARIIDcJOLb6zgM5uu222+Trr7/W5//8+eefUrNmTZk3b56UK1dOH7+AJENCQqRJkyYybNgwadq0qQdyIQKBxIbT4sWLe8R+eqMnTpzQ5Ut/zez3KAd4cp+S2WRpjwRIIDcIuNxTcjdzEIIxY8bI8OHDZeXKlbp3dOHCBS1Chu2AgACpVKmSXmBhXDPzdc2aNdK4cWMteAsXLjTTdAZbBw4ckA4dOkiDBg1k7NixGe6Z+QG+7yIiIqRfv376cD8ILgMJkAAJ+BKBPBMlDNElJSXJr7/+KkOHDpXDhw9LvXr19BHeOHIB4f3339cucy5duqR9upkFdufOnbr39cgjj0idOnUkKChIn9rav39/fdyDWekcO3ZMxo8fL/fcc4+cO3dO/vGPf8ioUaOkTZs2snz5crOS0b292bNnyw8//KCHQJ955hnZvXu3FtzFixeblg4NkQAJkIDHCag8CKdOnVIVK1ZUhw4d0qlHRUWpnj176vcjRoxQ5cuXV+3bt1dFihRRP/30k1q2bJm699571RdffOFWbq9fv66efvppVaBAAZ3GlClTtL3Lly+rDz74QFWtWlWJiBo0aJA6f/68W2m9/fbbqnLlyqpw4cJq2LBhVltfffWVat68uU6nQ4cOatu2bdZ7rrxZunSpatCggbbXo0cPdfLkSW1m3bp16uGHH1alSpVSgwcPVpcuXXLFvPUZsGMgAfMJJKhwEf39xf896194ghtJpaqYYNgKV/asJISLkuAYlepGCrn5aGpMsJVLcIydXCeEq1u4bvC89Tk3c2pOWhgay/Vw5coVlZiYqC5evKjT3rJlixYfIyOLFi1SH330kdq0aZNxSf3nP//RQgLB+PPPP63XHXlz7do19dlnn6mmTZuqcuXKqTfffFMdOXIk06Pnzp1Tjz76qP4CBAUFqWnTpilccyYkJSWpBx98UJUoUUINHTo0S9F57bXXVNGiRbVojBkzRv3999/OJKN27NihnnjiCVW6dGnVpUsX9cMPP9h9/tNPP1WVKlVSdevWVQsXLrQbx5GLFCVHKDGO0wRSY1SwBCt7ba3TtqwPGKIkSuy0zr4lSjdExq4Y6fLaipDtZysUn3mTJ6IEOq40cn/99ZcaPny4qlChgvr3v/+t8DmnsGvXLoUeBH6BdezY0a4Y2drYsGGDeuihh/QzrVu3VikpKbZRMn0+evSoGj16tH4GArBx48ZMcWwv7N69W6GXiLxBLNEjzClA0GfPnq2fAYdZs2bl9Ig6ffq0Gjt2rCpZsqQaOHBgpvLs27dPrVq1Sv32229WWzt37rQKJXqS+OEAcWcgAVMJJIRn2aNxPZ2bohQcbFfwfFGU7GjrTTy2ImT72XWKefWkT4mSAWnx4sWqVq1aqlixYurVV181Lmd4hRhFRkYqi8WiWrRooVauXJnhfk4f0BBPnjxZ3XHHHVoAMARmT5wgRuPGjdNDdWXKlFHomTgbMKQH8YM4YUjvu+++y2QC+YEYNWrUSMfD8OCJEycyxcvuwpo1a3SvCr2r6dOn66gQTwgi7Ka/3r17d907RSSI1p133ul0rzG7vPAeCYCAHprKusV1EdJNUQpPsGvfrihpcbw1fJixZ2I09DdejSFG22ynH2ZDnIw2silKVmnrXuStPGUajrS9r4ckb+Y1Bj3QW886nVdb2yLphghvlMXl8maDArd8UpSQcQx3vfTSS7qBDgkJ0cOBRlkXLFigChYsqO+98cYbTjfehh28Ym6pf//+2ha+aB9//LF12BFDZtWqVdPzRhiq++OPP9I/6vR7DCtiHg3pREdHq4MHD2obaWlpqnPnzvo6enAQF3fCzJkztTjt2bNHBQQEqJdfflmbgzgWL15crV27Vs9DTZgwQV8/e/asqlmzJkXJHeh81i4BCERw8K05E6cac7sWcfGWKCllCMqtyJlE6aYo3Gq4b4qP9YIhRreGGW80yFl/Vjcb9RyFycG0rVm5VYyb72zLZ0Jeb+Y9Q5o2+bQtv8PlzZT/zBd8VpSMomBuypjoRy+jTZs2WiQwz7JixQojmtuvWHBhDAMivbCwMC0STz75ZJbzRq4kCqEYOXKkto0FH127dtXv27Vr57YY2eYHolqnTp0Ml3v16qViY2O1UAUGBuphTCw6QY/R2fm1DIb5gQQyEbjZgNosOtBC5dYkU3pRutkbS5dGRlG6ETeTeOhG2BCdG/nMECdDw23nPsqqbdhfbHEDheNpZxCIDBxvpH3rvp28OJvXHPNtJw2Hypsh41l+yLMl4WYtK+zSpYuMGzdOihUrJqmpqXqJOfYEJSYmSseOHc1KRlq2bKk39U6ePFkvU9+xY4fe7Dt16lSpX7++aenUqFFDJkyYIEuWLNHHmv/888/6M8rTtm1b09KBoQIFCsiZM2fkypUrVruHDh2SggUL6g3FWCoPl0+dOnXSca2R+IYETCEQKnEYrcngGUYktHu4JEdNFLMOHwiMnCkxEiWDYtMy5zrta5mfLNK4rs2hPEENJViSJSX11iMZ4gTWlcbGrcRFEi/B0udhezbiZVFWBXEibSMpR1/dymtodwmXeAmzRNivA1fL62DmfV6UUM7jx49Lq1atZN++fRIfH69Fw8HyOxUNjTW8S+zZs0cLYN++fZ163pnIXbt2lfXr18vff/8tI0eO9IjHCWzmbdasmfacsWHDBomMjJS0tDS9n2rv3r36Otw9wQchN+I6U3uM6xYBLQjZNOZOGw+UyFFOCl160XEovYxH+8CjiiUoSpIdetYmktNp2zyf48ec8oofC6kSEwxhunVcUUa3pjnZyDETWUbwC1HC3Fj6YPs5/T2+v0WgbNmygs21FSpUkMcee0xWr16t/9Bbq1q1qnYBhdhnz56Vhg0bsrd0Cx3feZxAsDQMMjGR0DhJCI+XN+31luwlk7ZDtti7nuW1YIlJzXi8j3HUjwPuQDNadTrtjI/n/MmRvN70ZXrzyCIcVRQfFiK38DliI+ec2IvhF6KEghlCdP36dXvl5LUsCGDYE0ODKSkpsnnzZu3dAlFjY2MFniEQqlSpIsuWLRP4K2QgAdMIpMVKiL1DQlNTJFkai+2Imrvphg6PEYkaJG+mV5vAh6VPsMiWHTZDezoPDgqjHu7KONTnUF7NSNuhhNJFcjGvoXEJEm4MZ7poI10usn3rN6KUbSl5M0cCmF9iIIFcJRAYKaPwC9xm0iVxUbwExwwX088O1eklS3KGMTVjaC8o3QnaiRKBo7XDR0mkzTSRfT6hMjwm2KYnIZIYgaGv9L0L26fNSPuGzUyiapuU9bMDeU2MyJzvm/NIN3qvDtiwpuf8mzzzEu58VvkECZCAvxHAETgJuvG+VbLwBCVJVkXCOW1BEtU4waFjcW5Zsf9O/+KPD5P49LdD40QliFjCLNbrwTGpohxTJG0Jp3OnSogEBVkkymo7XBJUXPbi6nbaodIdwh4VJJb5MZKaVNeaelZvcsxrIHhEiCVDWTBcl2QV6RxtZJW4A9ctWJfnQDzToyBZs45X+Pjjj2XWrFmyatUqmTt3rmCFHJy9MphHwMz6Mi9XtEQCJOBvBDhm4281yvKQAAmQgA8ToCj5cOUx6yRAAiTgbwT8QpSuXbsmOHMJIf17f6sslocESIAE/J2AX4hS6dKlBXtrECpXrmx97++Vx/KRAAmQgL8R8IuFDqgU7E+CpwW8BgY6tI7T3+rSo+XhQgeP4qVxEiCBmwT8oqeEsuBI9Xbt2uk/uOVhIAESIAES8D0CfrFPCYKEJeDJycna753hQHT8+PG+VyPMMQmQAAnkYwJ+0VNavny5xMXFSUBAgPbY/c4778hXX32Vj6uVRScBEiAB3yTgF6KE+Q5j9R2qIf1736wW5poESIAE8icBvxClAQMGyLPPPquPk4BT0VGjRsnjjz+eP2uUpSYBEiABHyaQp3NK6OGYEcaOHavnknCoH1bf4cyjF154weo53Iw0aIMESIAESMDzBPJsSbgninbq1ClttkyZMp4wT5skQAIkQAIeJuBXouRhVjRPAiRAAiTgYQJ+MafkYUY0TwIkQAIkkEsEKEq5BJrJkAAJkAAJ5EyAopQzI8YgARIgARLIJQL/DxIu1v+PaIj7AAAAAElFTkSuQmCC />"

Answer to Question 15

2

Answer to Question 16

1

Answer to Question 17

1

Answer to Question 18

5

Answer to Question 19

3

Answer to Question 20

4

Answer to Question 21

5

Answer to Question 22

3




jeatrice

  • Member
  • Posts: 543
Reply 2 on: Aug 23, 2018
Great answer, keep it coming :)


ktidd

  • Member
  • Posts: 319
Reply 3 on: Yesterday
YES! Correct, THANKS for helping me on my review

 

Did you know?

Serum cholesterol testing in adults is recommended every 1 to 5 years. People with diabetes and a family history of high cholesterol should be tested even more frequently.

Did you know?

The National Institutes of Health have supported research into acupuncture. This has shown that acupuncture significantly reduced pain associated with osteoarthritis of the knee, when used as a complement to conventional therapies.

Did you know?

There are approximately 3 million unintended pregnancies in the United States each year.

Did you know?

Patients who have undergone chemotherapy for the treatment of cancer often complain of a lack of mental focus; memory loss; and a general diminution in abilities such as multitasking, attention span, and general mental agility.

Did you know?

The term bacteria was devised in the 19th century by German biologist Ferdinand Cohn. He based it on the Greek word "bakterion" meaning a small rod or staff. Cohn is considered to be the father of modern bacteriology.

For a complete list of videos, visit our video library