This topic contains a solution. Click here to go to the answer

Author Question: Assign priorities to the groups in each set. (a) -CH2OH and -CH2CH2OH (b) -CH2OH and ... (Read 43 times)

cdr_15

  • Hero Member
  • *****
  • Posts: 546
Assign priorities to the groups in each set.
  (a) -CH2OH and -CH2CH2OH
  (b) -CH2OH and -C(CH3)3

Question 2

Each molecule has one chiral center. Draw stereorepresentatio ns for the enantiomers of each.
  Each part has a tetrahedral chiral center. The chiral centers are labeled with an asterisk.


 
 

Question 3

Following is the structural formula and a ball-and-stick model of cholic acid, a component of human bile whose function is to aid in the absorption and digestion of dietary fats.
 
Question 4

faqp7x6SDfGtcJnnrrtttvSndhtVip7sYzGeSBkIGU+aTRBGyAw5zzzhB0m3J4CoKLgqRPayCr9kksuCf/4xz9qVoeZRCJBgClmcMcAMcPY86pdYsK3AfLxxx+fghUgzUa0RUVZYPXQQw9NQYU9C23TwzR03HHHpVn/swkNbYpqFwCbOLdSADFJC+tl/NZnbSqtfCWQDcQBSJjMeoL9OffccyvuZF7v2Hq/M61WY08rHatsUXOsbVdsPm7nA3tKag9ZzGVeb2dfzN9X6QOU10jm89ghl4arwlJhn8EPhjeX2Dgs/eap4YQbjwjddHJHAAAgAElEQVRrfX+B0AnIcfzLV4fjDnwwfLrrj41/3gtPjUvCwpl7aOvb8S+Hq487MDz4WQXDe0+NC0nHVLCt2unzFzdJWN0yW2y88caTmZUwQrIe27XcBBAHakyAjUqb2dLBthF/Oul3acbmVvmG9EQj2ktPlmQMBMYDu5P3h5E9GPDBONgOI4otMZj6sEAmonYIHyy7r5vwAVdtyU+pqPDfcr/AnT+C/bnqqqvC/vvvn5o58+fSnwClVorNWpnaACztYbfxvAA/O+20U3p/gE4lAdawWEy4N954Y5oVu1I5ma2Zem1QDcC3Wmy5wTdLVu4ioo85ppYwcwF+5513XmqKxNRi/TCQzLh2avc8W4BoHybedkonzOPtvP8a1/4gPHDRw+GLq/QPw59/Prz4/mJhi3VCuOm3l4TnxtU4rAd/mm7ZfcIV9zyUOjlydHzo1pPCerP068Ea1LnUdMuGfa6457P6PXRrOGm9WUIH1bDODZQ/d5cGbLJrhc5ksckmm0wGflzzq1/9arjppptSXwnmkyiPPvpooW0GYvnsK1OMjUHtAdabGCD3wPxgI1MTCFaHGRAYtNUMfxqboZr0+cpEsBjvPZrB4ueefuXzom4E8OFHxcxZVGz1seKKK05WnJMznZhY8/erIAYiDxInO0ETH7A59MuRF2j405/+lLIaTgWQ2dyaozBnX2xdrY1Z7YAOBAE4fGtszeFe/HHct60G/zYbph5wwAFN1Lb+IQBaIz49ylYDda4G/LivG264IfW547wOMNEHQOR5xp5ZfNCN7UuAynY66ZcAqEo/mfD6jeFvr28Vfrnb9mH77f3tHA48eocw/yN/CGc+8tneVlUOL78uNTDVasDO4p4JE7HJDetglWqgKyJWyehxESUmw2oi6oa/iJXim2++mToDo8+b3UvOccxEzAqV9gCrVo9O+X6llVYKN998cxrtRG90YuJlIqN75oVKztnaqWjbdNe92qMMg8WUh6nC+pns64lJ1d5he++99xRFARGslok1K44Bru0x1mqhX+cG4IF3/V8/9ed7TBdwV4kdytdl6623Tvdpcw8AIlYTaAPssF42Wq103/nzNPuZnxRWRp+qJyL5tCE2r5rsuOOOqS+foAP+T5Gl84rtveaaa9Jz0J2939yb6DILIPu/tUNKAFRB6xPffzycu/+vw41vvx5eeGf8pyUmjglvjJg1zJm8HE7b++hw/asdQgNVqH/5VamB7tCAQZkzMZ8OZig+O2jxyy67LPUzsZmjHb7rCfOBCbyIH49JwATOfMWvBQBqxHySrYv6m2SEsLebes/Wq9H3/KMAThtoHnPMMWl71DIJtpsBcn/qd/nll6fMjCgwk6JNQ2uBIL/tu+++Yf755099fvJ6wsiceOKJwcRrcgZ8RF5hKQAVE3x3iOtiLoBz9wGI6luYKtesxEhVqweGhFmTX5QIM5v02myV/xv/me4UKRYsQvjfAXPVBGO60UYbpYzXvPPOW7HYCy+8kLKTwI+FBr0APBgx7OQbb7yRgiLPsQ28/WGCMF3azoLKONLTUvoAVdB4/9lXCjtf/GKYLNtB/1nCkpsdGwYnn9nXKxzagq8mhjHDHgmPvDQmTHS2fv3DtDPOET6/9LJh0dnL5mqBgstTNKEBAzzgQ0TdZCdcPiZMAnx2DHYmCL4Z1YR/j1VfEeHkalXMb8IEKhpq+PDhFf0+Kp3PJKr822+/Hd566610xR5DxCuVnxq/A4BqTXA9dc/aUYSaCC4Tn8nXhG+HeJF6WQEIOD0zWfKT0acqCT8akVnKipQy+QJEzFPNMoWVrlPtO0CrkZw+1c7j+1ab7GpdK/4GyHmuttpqqxSQ8N9heqNv/kGnn356atrDwsU8WvHY7CuGh5ky3sM999yThrwz0WK0AFOgx/WOPPLItA8AjvrCkksumbbVdtttl/pFWaD0lJQMUE9puvB1+oeZ5v986H/bHmG99XYL1zz/enjp0UHhsA2XCKv87KLwYko8zRhWHPhMGPfUQWGZbDbBubYIN44eGQZt0nMdqNptzbjiwPDMuKfCQZNXMGxx4+gwctAmof01rFbz8vtKGkDvSyBosMyCn2xZq1nRLQZDg2c1kU+liInA8QZSEyRHYA6VJk5RYDEaBSNUKSoHYON0K+8MxonZy2SrPMdq/kB8aLojwVy1+27X953AAGXvHQuALcEsmGiXXXbZwBxkgjQ5YlGAVGYlfk/1JkS5gkyk+oFIIyA5RsFlr1u+r6wBPmTC2wEYDI7n2983vvGNVPf8k6LzeaUzWGQAs4AT8ezddddd6TOKZcLgRVP366+/npbxTDOJesWYyQ+kLL+onpQSAPWktgteq/+MC4TlVlsqzDLD58Pam/8gbLvbkeHP5+wYxpx3eDjriSkzixY8bVms1EBTGjDAGZiOOOKIquAnnhgIkpjOyrGaoNEbSc7HfyVGMDG9WTHySRAl4zr5JIEAFodUvhhMJAZ4YbgGWw6mVqHrrLNOOmgb9AG7vDgH0McZWxSLCZWJjx6KJsPLn7OnPzMJAX9A4+DBg1PQSfcmKpE4zZoSW3UfdMofRF/ACKov0VbaXNs2wq5gfCr5QLWqvlPzeSRaxOB6PgAY/R9rw1fPM11LgE59iT8UsfDg5wfARh+t6OgcQVL2fLGMVAna3HjTU1ICoJ7SdBevM+HDD8K4/rOGOWaapotnKg8vNdCYBp588snUx4d5q4hwcgVAqgk/Is6wMhwXEaHyokui8H1hSrHqtHIEiqLIecNpGmtgcsVI2S6D/Oc//wm77bZb+hmIkkuGAze2ATMUBTMhgzQfD4yESUH+IdfFXGCPmPE6WUTLuTc+NNpNyLjVNyAk+oYzKx1hWNotgJD6MJfwh2HCagT4tLv+U9v1MTLYmKLiOc6WB4g8Z4cffngKSJnIo4kTqCJ+EymXLYMR8hw6vqekBEA9pelmrjN2aLjg8L3Dbj/ZJKz9g1vCumdeGvZaboZmzlQeU2qgaQ2w1Yu4qeaHkT8xp2VhyNFMlf8duOAAXYTuNkEbNOVeiQKwmCCtOplTsk6nGA+giBmFGU4SPf4/xErTdeNnbAiGh3nNOfmNMKWg/pnHhPNiJqyO/QlZ5rApY7XBWjRcJ4rVNtBjRc9fi2+MvdNE5piIhNADdswaTB58bEopNdCsBgBpjBHWhxgnPC+eH87c0USNiWXmJJ5bz3C2jOP00RIApSoq/4UZlgk/OeqP4Y8nnxiO3nWhcPNBe4ST7n+/VEypgR7VANNCUbZGxQAfg1kWmOQrLKMu/xxgIivob/4DkvnFxHcm7GjawPDY/JRghu68886U6eHXg+HgywCoWHUCQPxLRNUQgAcAyn7mZGszSP5BTEX8jFyvlsOn6BVgScK7nqTr05uo80+0Dcdg+WqswrUDB+g48QB4THiA3ZlnnpmuwkVN+b6UUgPNaMD4YKEBbBOfmcH0Oayp/pbtd/EasV/GMhYUwBIQ1FNSMkA9pekuXGeGeZcPm+03MPxoxjvD7/9wXyghUBeUWR7asAbkzOFzkzUT1ToJ1kZUmMm3mjDPMCehwAEKzM0ZZ5yRAhYAh8mGjw8HXmwMkxXnVowFp8zrrrsuNZWIFgKmvJr05VMxAMsNY/Up5BogIL7D3GQ/KyOCyHdAAX8fkTD1hBkP+AHAOknkArKyloSukmSdT/0uTNnWIxihUkoNNKsBUZ8RRHuGhMVnJd/vsr/F985hr7CeBEBTZVy1lWcnR3dYzUaHv9j4U7wmE0PWFWzimNfDyx+EMN8XF

Question 5

wjdbQSD2GtNXlPUtfxiqtYA50aOqRgXuVvqSdy406QKsFTLZ+J7q0abWGIrUOgclH0fGR/X8qzww+HQzLQm7Dk6U3rWTfb+gCU5coj3fH74/8QkgL4DgLKfYxmOnvyW+C8V8T/xfGCA+DKpcyeI3CuAI0dSbBgdxfDjyFQBnJzUReZky3BYVTZG63TC/ZR16D0awJgCMBhVJm7+PZzbmcNJtt/FuQVDFPulMp47YDz+3hN3P81vIjfaE1frxmvwUzBocsayUnVbaO0NNthgssG0G6tQ99QGexPCfffdlyaGQvWzi04esjkxjH7u1nDBn84I1z72anhv9Ijw5L8uDWecfHF4c41Dw5+P2iwsMmP1lXXdStQoYABFRxogUZoydQKS7Lu10rrXOGX501SiAT5ATEVrrbXWpEGt0q0xa2FahDULmfccYmtQ2wbD/OrOik+fw+AwxUhQmB8AfQbCRGxhhTgkb7PNNlM81zbbZPLSV03oTF38fpjNiO9M8NnPsYz68Z2R66hIgkbnY2669957u2Wn7kq6rfcdx2xZfZm26AwTpr2MMRyfORiLmAMwfZ8tA2TST9F9oerVpfy9b2nAQkSf8rx7hoEZZmnmaL5+GORsv9MnY7/07MmgLehAYENPzjW92gTGmRFbAXVy7oMyiTTrQAZand3fCrOdYtUqGsNKccSIEWkHsQID2Dhf+i0OyiH0D7Mu9Y2w50WvhiR5J/zrtOPDb0/5S7jq7sfC3efvFVabvfVNBoVLTW71zAyx++67p9S+AdRqkg6tdNUdqCyl72nANgwYEtsLiLISKpsViw6DGN8YkVcmW9FUcvZwyGVq4pxsQYJJiv1If+MLANBUyy8UrwMsASiyT6PU8yK3UNbBuYgPUCzjOOcH9ouKsjHxW9FjurMcBieuqCWOtIcas170wTA5+YtJEbNlvAfoiooxTZQdk5s9omJ7Fj2+LDf1aUBqCYsdcwmfQf1MH5QdPtvvMMPZfgm4S7RoIcR5uiel9bNpD9UeJQ5poswgSxR9tO2rgtBYA+XZZ5+dAgyTu8G4JwWl7/rqJ9LC6pijlwHJ4Ok7qf5NGCh4A0ocwHqqniYp4cCof4hctIjcD1aDBK3JR4N+TXDAkNU6MBS9/nuqruV12qsB6fBFQQFAzEk777xz6mMjygjtrV/oy5H2xjBgFJiumJ385jkUneTZBaawNgBSUSCB4VUPky7Wwt8dd9yRmtAkO4y5SJi29FfO1AZmEsPgs59jGQOvOuX3laqlcWWjKa5WuZ76zaqbAzrTlqzXdJP1vcB+RRNXvoxtCzBHWF8TGIBTTaQgwAi6f6DVlihSAzhHKX1bA0zO5lmA2nhgjrO4x8QS/Y7EfvnTn/40XfxYOFl497T0S3p6xu3CHXqo0fBSawM+0ndzuJTIzOqtmhgIoE4IE00n4VJskGrHdPV7g63cFoCOqBLOmAZvdTHYq+9nrE9IkbMO4Hs0oHp2p1ixmYjQjih/q3I0eTURmmiCEPJopSltOeSOXRNKXErf0gBKmwMwEynwIExd5FURYWo1iUb2h19R1uen3jk8Q5hJQIbjpYEWeGci0x85MXPcBn74C3ll0mUec4xVafzsN4AOM2UQBgAsSqIvUbW6MLk7B2dPTp+dIHwu7HIPCGHEARQglT8G36e487dFmT8stDLGKWy5sdWzDagySxhnpQRgxhAdhxFmfgT6nDM7Rlk4cUAHRnvjRrOd0H5TUx3MzeY7zyWzLFOxZ9xcrU/+/e9/T0G659EiqF1zSMcDIAOllQn/AIOs/AFCXdG1Bl/AxkBaREzikmxBpV7RbrVCdYucM1/GvkMa2ICArhfBAg1H4cNg9UTUPzIt8XemAuYDg7nN4eKKLf7e1VcrRPct6RiThGy3dFpEOFjyY5JjxWTC5ABIxXBkbSQtfSmlBopogOmX3w1Gp4gAPhYWosD47gAeTDAYKLl8MJL6tIlY3/S8A2mAPhOXY4AEv8fPBmDAwPMKVGGqPHci1KrR8cABCh8o8Hx3krgfvoXGDbrFigFrwE58zo0vTBKxjJ24mSmMq1g7YwR9yKRNDwChhZnVPcbn/9u7FrCqqrT9AgoIIuIV856OKGpeJu+Zd1MzGytHyWc0NVNBsxqzmmzsZjhjNtaTjmXmbxqlFahpav/kJUnKSxcvYf1eBskLIgqCCIfDWf/zLtx4QA6dI4fDOfB9zwNnn33WXpd377X2t74rJdoljZv1ElcykkJVFwHOD2oKKGig5oDEucn3Lp9J2rzSFpCZ4J39fnMUdbdUgREoLlIEkrsOTlDu2jg5ucOj5ISLFXec9jI/BIagf/bZZ1pEx0WCUiBjV+QocMXLs0/cPdKmh0wVVUvsozXzw2toc2CQETfB+M5PjpMLNRcZ7kLJVHDH7AwiM0nVBZksugzzRWIsivbUT5UFJW+8loJDesHQ9mPOnDnaRogvHS62fDmQ6xcSBEpDgC9LSivsJT5zlPZQykGmiZ+0NaDNHzdCfL6ZPJVznPOMkh2q49gOifPdOhAiv1PaQSkS01zQk4WLNl3uqZajNKO4gJwqbK5NnJvcubob0Q6SasDIyEiNLec3MWbAOYO4KycDRPU211caq8+ePVuvryxDZoc7coYHoHqLmxxufmhWQIaqa9euRlVFPqnuJIMpVLURoB0QpT/WJil8J1KAweeO2hBKHSua+eFdcj4DlJ+G79Ysw4cHLxdkM7/+LOSe3ITl736BJMN20pKJxNiFmBlxP+4dNQ6RC9bjcEZBLhhyiFzMqDriZCUTQNErxWZc9LhzNDjLW3nUKLpmoCYukMxvRP01GaJbIS6QtN2hDQ93m0zeyMXGljrAmgGi8XZJxIeHTAbF69yRkpsuacdV0rUlnaO9FMXZ3ClTPUApla04ISVdX/wcbYSIP207iB8ZVT7sffr00QwSxepchC2ZiYhdOBMR99+LUeMisWD9YVy/xdwTIO27NVj24UFcLrjtBc3knsSm5e/ii8IHpXjr8r2yIOCI2otj5iJquNXzRcsNBJkbMjKUDvFZ5AJLlQ2lF5R6UK3DDQWJ88gIhMh5S3E81wB6qdBgk14rnMdkoKi6njBhAmj8Tfs4ekaSmeAconif85GSaarvGECRubWsVdoVdY/IGFLyTFstY+PEsREXknVAOjJJXFu53jIMgS2ilJqSXY6ZLzFbayXPc20VqtoI0KyCKld77foqFC3aADmVrv2k/v6H6io8OlHlWlWcFjdMBQaPVlsuK6XM59WWqDaqenB3NXXhSrX2/UVqxl0hqnrLKeqzM3n6qokTJyovLy917NgxlZmZqWrXrq2aNWum8vPzrWot+6HZbFYLFixQNWvWVL1791bJycl2V7pnzx7VvHlz1bhxY7V582a7rps+fTrD++i/F1980a5r9u/fr1q1aqVCQ0PVxo0b7bqGhYhbRESECggIUJMmTVK5udZ3xO5qbBZMSkrS9ygoKEhlZWWpvXv36nGNGDFCmc9vUVFtqqvg7lPVwpVr1fuLZqi7QqqrllM+UwW3+Jr66e9/UNXDo1WidbfS4tSwwGA1Wj8oNpuWHyoBAnPmzFE9e/ZUnAf2/k2ePFmFhISotWvXKpPJdBMK+/btU23atFHh4eGqadOmys/PT82cOVP/DRkyRD+f/H7bbbepunXrqtjY2Jvq+Prrr1WfPn102V69eqkXXnhBLVu2TG3btk1duXJFRUZG6vVo7Nix6rXXXlOvvvqqGjlypK7v+eefV1xTKpIsFot6+umnVVhYmFq9erVin7jmkO677z593K1bN439Qw89VCKOtvp/9uxZPc64uLgiRbZu3arPnzp1qsh5+VK1EOB7oEaNGqr48+GuKBTMCmf2zg4GKH3nFBXq1UrN2XvlRstZ+9W8tt4qJGKzSstX6vLly4ov1i5duihO6C1btmhm4+rVqzeuceIR23v44Yc1I/SXv/xFldbOmTNn9AJZq1YttXjxYod60b9/f70AcUEaN26cQ9euWbNG1alTR3Xo0EEdOnTI5rXE6+WXX1aBgYGK7aWkpNgsW5Yf2E7fvn31y4GLfqdOnXSbmZm/qZ1TQpVXqzmq6C2ep9p6h6iIz

Question 6

WkqXwkDVBbsK8O1R48e1fNt3rx5djFAUVFR+vnnxqM04vPesWNHtWTJEs3gcA5w88D1pF69enpOcCNR2maKzzY3NayHGzGuCT///LMaPHiwIuNz7ty5m7pw4sQJNWDAAF3WHZigmJgYzQRxHRgzZoyaOnWqGjp0qMaga9euatWqVSovr2DDedNgSjnBDVmTJk00A8U6ySwS3/j4+FKukp+qAgLr1q3Tczo7O9sjhut8FdjvyrMycWBlHFK7zEZkNyv9f2AXTH2qOzI3rUB8BrS3EUXMzGpMcS7tSijyLm40/LvN2VmA3k2Mc0IRMd3naUxJewKK1g2iSJkiY+r/jRxDtNlxhOxRgdmqj55XdCOkWzrVTRRL0zPOmqirp+iftlI0GKWNgy11nPV1t3JMmywaSVLNQK8SqhXpVlxTHcPKuFR0mR2Jord4Kp7qnolNK+IlncetAF7JrqG3EN3nbamCiw+XdnW0W2HYhtKIzztzjNGwlyobzgHOGxpFU2XG70y3UZoKjs825xnVYvQko3qH6neq27hO0COyOFGVTvsH2slQHVeRxP4zthLXG46Bjgtctxigkp6zNHKmCzLtfRwleoHRJIFjpN0PVYBU1XNNEqraCFD9xTnnymCGZUHc8affrtYUriYdRPzuFPhcL5+VeAl5aAzkp+HYkXTUvbMz6hdp3Qd1O3ZHw2vbceS8CaNCfPUEpscSJxvp9wKl2dW13ylEHTaZINrxUPdPI2nmGuJCsmDBAu0Cyv7cClPB2BrWwca48JPBKm0hLt5dYkDjSxqS0S6BOZXGjRunjcrInJEhovE17QBcQbRXItFmgm6xzz33HPKTluFIel3c2bk+it7iuujYvSGubT+C86YCbzF1NQkH43cj5caDgkt54JMiVAUQoFF9VFSUNlYuzSCa9jV8adMO0B6ioS69LRmbpiz2bpybNI6mUTBf/GT0S/Mc5QaN9kC0NeJmgI4BFU1kMvnnTCLjRC8eIUHAQIBzlOEUuGHwFCryfnJep804vSEac/f7F1aZf/koTIoMUC6umrzgG+R3kwW2T40g+CEP2bkFUhfuYijFMF6yhZW54IASJ7qsM3ghF2j2gTtHLmy3SsV3unxguFs0Asc5Ui+lPFzc+VIg48MXAw2c6Q3jCEPlSJullaUkjEbrvGf5uVdh8vJFkF9xAaMPagT5AXnZ4C3mr+bTGxA9dz8Kn5T8yzhqUsIAlQZ2JfqNzDulvJTY8Dm2xTDQ25CbEyPQoT0QMLYPPR3LwgAZ7dBYmv0rjUkzytLTklIqRk9nSAwhQaAqIEChAdd/T2KMy4kBqo52sz/F3mfbwvf6nb+0YTiaPUIfy2CE1vbClWRKhIpS3qVkpCMYjWoXSBX4a0UwP0av2Da9PMhYOEP1Zq3+MtogU3QrDJBxPRkyLvKUwDijj0a9t/Jp3KtqwaGo7XUFyRTlFKE8XEpOB4Ibgbf4Cu9vu9n4dO+zaHvjQcFw/aAUuVC+VGIEKNFkTCx6UzK2DtUqdM82KC8vT6uljefLOP97nyzPep1BR44c0ZIge+tizBwGixQSBCojAnzfMAQNBRTctFAlzPRTFBx4ivqL96X4Fr3875V3CLoMuR2ZezfhcJZ1c9k4tmUXLjUegO4NDH2I9e8Vd+wsxqIkBqikc46OlFy3s/roaNsllfcO6YIht2di76bDKHqLj2HLrktoPKA73OwWlzQMOeciBPj8MoM8432R2aHKmdHQ6Y5OKQrj/ND+jok8+bu9RJshBkh0BjE4oCMMGMs60ldn9FHqEATKGwGacdDmk+EiOEdpO8v4UAxKStMRRgin0MBT0iS5ngGCH9pNehb3ZK7EE69/i3St7bIg88CbmL00Ff3mzkCngjRU5X0vXV5/ScxOSedc3jFnN+jXDpOevQeZK5/A69+mF8SDsmTiwJuzsTS1H+bO6IRKeoudjWSVqY9MEJMFM34PJSeMNUUVNO1oqCJjBFkaTZMpsodoa0eRPA2BnUFkpOgcYS+xLF8SQoJAZUGATgS08+RGhNIexpci88NgpFT5MpI443QxsCZV257ABFUAAwRUaz4BH2x8FrWW9kWLdj3Rv1c4mvdaBK/HY/HxjNaFarPK8uAY4yhuA8TzJZ0zynvuZzU0n/ABNj5bC0v7tkC7nv3RK7w5ei3ywuOxH2NGa0Pf5bkjlJ6XHwLMSTdmzBidkoH2O/ReIjEAKtMtGIENbfWAjgX0TGLQQlvpLGxda+s87X9oAG3tFWqrLJMdM6I0jaeFBIHKgACD3XKDwmCgjPLPOcnnnPk1GWSTzBDV1swWwGMmy2a6qeKR1N0Ni4rNBWZKxdFv9+H4lUDc3q0XOja8ofd3N6DK2h8+CIy8ajKZdPoI7lDpVsvotO4YUr+s4zWuN6Uexbf7juNK4O3o1qsjKvEtNoYsn05CgGpdMjuGepdziF6G9DRhpPiSQulT7UTvSO5GWY7pb5xBbJuLP9O/cB6XRvRsY/R1ugQLCQKVAQFKZJlmhY43DCFBYmgJekYygS6ZINqjMgI01WB0QOBvVF+7dX5Ij4hWJJ0UBASBKocAI8oWD0jKAIWMvBwcHKwYLf7LL7/UQUETEhJ0xOZGjRrpaMeMSOts+uWXX3QAwBUrVujgrMXrZ2DF+fPn6yjU5RV8tHib8l0QKG8EGNSzRYsWOugvn2tGbWcgX0ZTZ2Rwg/jb559/rgPvGmUYcNOdqWIlQJWBNbZnDMyPFrMOx8MjEPHHkELLc+ZHW/Wfahj+yAg0F62QPUhKmSqEQHEJkPXQGdCQ8Xa4I2WyTnqiMFbP9OnTdUJi67LOPGYwVgZ6o2SJ4TGYK4xqMdpEMAs63eQZDJFhKoQEgcqAAG3pKFVlyBYSkwRTzcVnneeZ8Ns4xzAsRhkG3KRDA+dMSdJaXbCC/wkD5IobkHMI8++4E59OPoQfbgoNUAPr/xuLEbVd0RFpQxDwHARKY4AqchQ07ty6datOWExDbcbdCgsL08wX3d9p0C0kCFQWBAz1l7U9DwPu7tu3Tw+RibbpEk81WPEyAwYM0IF5aT/kjlROcYDccfIgqwMAAA2CSURBVKjSJ0FAEBAEyo4AI0FTCsQ/IUGgsiPAgL2U8tDmh0TJD5kf2vuQaPPDc5TyFC/DUBT0HnNXqhAvMHcFQ/olCAgCgoAgIAgIAjcQYAgIMjs0ajbSwdz4teCIqjCGqihehtJQ5s9zVxIJkMvuTCn50VzWB2lIEBAEBAFBQBCwH4FBgwbhlVdeQUpKir6I7u9Ue1HyQ+IxJUT8o0cYiWVoB0dbOdrJuSsJA+SyO1NKfjSX9UEaEgQEAUFAEBAE7EeAOfg6dOiAPn364I477kD//v11MnB+MjYW81HymHY+tAMi8TvzU06ZMqUwjIX9LbqupDBALsO6lPxoLuuDNCQICAKCgCAgCDiGABNdMwUGA5GSGSIZgRCNOEDt2rXTsYAoEeK5lStXFhpKO9aa60qLDZDrsJaWBAFBQBAQBAQBj0Pg/vvv13ZA9957L+gBZhANpA0yDKPXrVuHYcOGaelQq1atjJ/d8lMkQG55W6RTgoAgIAgIAoKA+yDwzjvv6GjQTINBzy7a+MyZM0fnBmP8HzJAZJQYMfqtt97Cgw8+6D6dt9ETkQDZAEZOCwKCgCAgCAgCgsANBGgM/dVXX2lGh0zQ0qVLdQLj1q1bg8bSbdq0wY8//ogJEybcuMiNjyQQohvfHOmaIFCVEXDXQIhV+Z7I2AUBA4G0tDTMnj1bf2Wi4vDwcLc2eDb6bf0pEiBrNCrbsfkSju2OQ8yaddi85zDOZl5AYmIKLiTuwIadp2Gyc7z5mSew5+P3sflkrr7CfH43Vn90AJctdlbgQDHbdZtw4dB2xO0+Y3e/HWhWigoCgoAgIAg4gEDdunV1CpouXbro+D9G0mIHqqjwosIAVfgtKI8OWHA5YRFGd+6Hv+3MRsM/tEBAciyiOjbBgFc3IOZvEXjsnV9wzZ6mLVdx+sBGLJgxB2tP5OgrcpO+wrpP4nHWXg7Knnaul7FVt/n8XrwfeT8eW3sKeQ7UJ0U9CwGK1f/1r3/pjNO5ubk6k/STTz6JS5cuedZApLeCQ

Question 7

BVAgPM1ODjYY0cqDJDH3jrbHTcnf4RJI19BemQcPn5xPAb17IGBD8/Hx1v/id6BjdG7Ryjszr3qHYiWvQbij/WrFzYY2ONlfBH7BNr7F55y2oGtuquFdkf/zvXg6yOPrNPAdqOK8vLyMHPmTDRt2lQnFh0/fjyYhJHh9ZcsWQJ6kzz66KOw9jpxo+5LVwSBKolARkaGRzNA4gVW6R7bXBxb9So2mgdj07jWRRgdv7BJWDDlAvJ2Asp8FtsXTMaHCSbcOWsRnrunEfgwmM/uwIrVB3A17wJ+8+mNmU8+gNbWPIflKpK+icXarVcwcl4UOgXkIyX+A3z0fRauJSch8L65iLq7AXyscTWfwba3/we/BIYg4/9y0e/px9Gvvg/yU+LxwUffI+taMpIC78PcGX/EtW+t6wbyL8Tj/Q++R75/Do4dyoIl3LpiOa4MCJjNZpDhSUpKwuTJkzUTRHdbRpb19/dH+/btMW3aNNDOYMSIEdi+fTv8/Pwqw9BlDIKARyPg6QyQ9avNo2+EdN5AIAuJu04AjbuhdU3j3PVP72C069EcvshHxrEf4PPQYrw19iKWPL4UR6jdytiNJ4fNx7UHnsCceXMx8Odp6DYuBmfyrepRFlgyvsa/392pVWBZ372EqTF1EBE1C9P7JyN6yuv44UZoCH1h+pezMHF1Tdw3+REMzVmOJ1b+ClPWd3hpagzqRERh1vT+SI6egte/zypSN67uwwujFyD/gUhMj3wEdwWZUQ5mR1aDk8OKQIDMTXp6OoYMGaKlPYsXL9ZB1vbv368/yfSEhoZi7dq1SE1NRe/evYtkna6IPkubgkBVRoDqabq6cz5GR0cjJibGI+ekMECV8Sn2AqAsUMrW4LwQ0GowBoaFoGHHO1Ev6xQu5gLpu/+J1Rm90a+5L+DdAINnPQz/z1/HZmsOyCcIt7VojCAt4knHrkXrUH14PzT0AULujcF/D7+GOwOKtlt70HIkbBoL0+6N2JV0BWlJl5C6axHWVR+OfgUXIua/h/Faj4ZWdQPpe/6BFZnDMax5NcC7Jpq0rK2lVEVrl2+ejMDhw4exdetWxMXFoXr1G2pWjokut0zCyE9StWrV8MADD2g3W7riCgkCgoDrEcjPz9fzkLnA3njjDUyfPh0LFy7EM8884/rOlLFFYYDKCKD7XV4T4QPbAEl7cMgeNy0vL3ihgFMyZaUhy5QD83Uxi3+zDmjolYXLOTY4KUs2zp++gEsZOdclMz7w879Zq2pOS8DSJ+ZjT51BGBxeCz6w4Nr507hwKQM519vy8fO/ibm5dvYE0nLNsNho3v2wlx45isDbb7+Nc+fOaXUXr1VK4cyZM2jUqJEOqMZFloHVmFWaf2SCuOiuWrXK0aakvCAgCDgBgW3btuk5Sxu9kSNHYuzYsdi1a5eek6dOnXJCC66rQhgg12Htopb80HbySxgXtAPz/7ELadY6o5xT+M/nPyPr+otGd+g6c8GP2p1Hoe3FL7EjqcC9Ky81Cdea34N+jYsxNRQtKQXlHYz23QPxTfSbSEi3APmpSFizHolFVGDZ+OGNp7DWbwzGda4Jc3YeLBYv1GrfHYHfROPNhHRYkI/UhDVYzwuNugHUatsT9X5dg7iT7I+C2ZQPS771gFwEqTRTLghYLBasX79e2/YwiSITKJKysrI0k8MFNigoCN26ddNJFo0yDLJGxoi5iIQEAUHAtQjEx8dj9OjRRSS2derUwcCBA5GQkODazpSxNWGAygigO17u0+hBvLfjHdy9dzL6DJuG+YvewML5z+GZVzcgp6UJ+75OxsXEHdh76hx+2rkXv53/CTsPpMA3fDY+jG6JtVHz8dH/bsDbb/6CsaueRZNDX+Dr0xdwZOc3OJmWhIRte3A69Qh2xKeg/fOr8FTwctzVqAnC+sxCfOshCCuiAvNFaKcOMH00FgPH/R1fmgKQuuVNfOz1OFY+FYzldzVCk7A+mBXfGkOap1nVfRLoNh8rHs3G8717Y/SUZ/D+T9nIOboZXyUVxCNyR+ylT/YjQBdaSnzo9k47HzI0ht0P7YDI8HBnSWKofaPM8ePHERISUiQnkf2tSklBQBAoCwK0xztx4sRNVXBe8jdPIokE7Ul3y+G+5iMr+RgSz+YhpGVb3N7AH/ZwvKa04zh6yoTQDm3RyN+eKyzIvpwB7+AQlFzcgtyMDOTXDEGAjxk5uV7w9yvwE7NkX0aGdzBCSr4QgAU5qeeRUaMB6lazwNvf164xOAyVXOByBJhUkdFjL168qOP+UKpDm5/33ntPJ1NMSUnBY489pv+oEhs1apSW/LBMYmIiNm3aBGagFhIEBAHXIcD5ynlL9fWYMWNAm6BFixZpJwXa9Hl72/POcF1/S2upmG6jtKLym+ch4IOaTdujW1PHeu5btzW61HXkGm8EhISUcoE3/IKN36vB38qD2TsgBMYvJVfgDf/6t6EcQg6V3JycdRkCtWvX1gEO6VFiTfXq1QPtDLiwvvvuuzrKLO2CDKLUiGH4KQUSEgQEAdciwPm5efNmTJw4USdDzcnJQVhYmJ6znsT8EDWRALn22ZHWBAFBwAoBJk986aWXwGSKlPgwqmzXrl11iH0W429UhZHpoXqMZWhoSSPogwcPasNoq+rkUBAQBFyEAOfkr7/+qmNytWjRwkWtOrcZz5FVOXfcUpsgIAi4AQJkbpYvX64NnSnx+dOf/qTVXzSEJtEwmmVINIamUfSyZcv07pNeYUKCgCBQMQhw/lHy46nMD1ETCVDFPDvSqiAgCABgCgwuon/96191LJHffvsNDRo00LF+eEyJT8OGDTXzQ8Docrtx40YdgI3MkJAgIAgIAreKgNgA3Spycp0gIAiUGQEGP6S7OzNKm0wF4RcY64fEAIiGYTQNnrds2aKDJu7evVtLgsrcuFQgCAgCVRoBYYCq9O2XwQsCrkWAdgOffvqpVnudPXtWe3GRCaIhdEBAAO6++24dF4jutAyAOHXqVB10jeJ2X19f7NixAz169HBtp6U1QUAQqJQIiAqsUt5WGZQg4J4IzJs3D7Gxsdq4ma60e/bs0YzOn//8ZzD2D3MK8fPkyZM6ESpVZMwIz0zwkZGRhRGj3XN00itBQBDwJASEAfKkuyV9FQQ8GAHG7hkwYAAYK6R+/fqFI/nxxx8xePBgnD59WkuBKCViclRmmq5VqxboLu9p7rWFg5MDQUAQcFsExAvMbW+NdEwQqFwIfPLJJxg/fnwR5ocj7Ny5Mzp16gQjwSnVXYzxQ+8ShtgX5qdyPQcyGkHAXRAQBshd7oT0QxCo5AjQzseW5xbPM6CakCAgCAgCrkJAGCBXIS3tCAJVHIFBgwaBUiCz2VwECYbWp2dX3759i5yXL4KAICAIlCcCwgCVJ7pStyAgCBQiQPufZs2aISIiAozxQzpy5AiGDx+OadOmeVwixcKByYEgIAh4JALCAHnkbZNOCwKehwBte+gBxsSmHTp00HY+Q4cO1QkVo6OjPW9A0mNBQBDwaATEC8yjb590XhAQBAQBQUAQEARuBQGRAN0KanKNICAICAKCgCAgCHg0AsIAefTtk84LAoKAICAICAKCwK0g8P+/XDl5DTmIlAAAAABJRU5ErkJggg== />
 

(a) What is the conformation of ring A? of ring B? of ring C? of ring D?
   (b) Are the hydroxyl groups on rings A

Question 8

z+8UEv6nPaxGoMg6lVWWaUtauvVjBCrzUKJFlLNkjWQNZA1UE8D6gqh2C3FA7RY1Ng2afPf+973pgKjeiDI70499dTgblN/yGrzUni5h1ioBtxPf/rTRYZaPUu23rX1te05db6vPbG+d72yxXbZZZdYffXVi4QHAMcL8PFOgB8YoNY+Fk9PMYDtuPteywhZ/4eP8Le//W1R4fStR/4YV09aNzZeZtZ23Hc+RtZA1kA/08CZZ54ZSyyxRHhvxpWuMCOgI4vls5/9bLH2n1omCjOqSeT9rrvuir/+9a8F66TWibFJZev+IsDdNddcU7gYf//73xeusd/97nfxta99rb/cYr6PXqQBxRPFCe25557x7LPPFgAI4FlwwQWLau8Y3Zlnnrkomrrddtt9YB+uW/21XdIrGSGB0d///veLBRU333zziBgfN/xg19jp4L/G/3LMdLuefT5O1kC/0YAsMXVGsMfNgCCD6VprrVUEZLJSDc6WlqguzGhQ3n///ePtt9+OO++8s2CcDMZ9Xdw/tyEXhXs27oqvosMtt9wyZp999iKolYswS9ZAuzSJG93xAAAgAElEQVSgr3FZlwUTyy3N0EhMbvl7/6d9xAelZIjqfVr53CtNGrUCKOSGG24oBqjJz/8lTvn98/HiuyfGZU99JXZepFdediv6z7/JGsgaaIMGLJfBgNp+++2bOpoMFTVK1l133aIuUVqhvnqpDvFCtv3sZz8rqPtTTjml2F8gdl8Vk9FXvvKVwrKWqgwQibv4/Oc/H9ggJQauu+66+OUvfxm33XZbEb8x00wz9dXbzdfdizSgv8kS07YwstxgaW077RJLpF/OPffcH9jHeoKyPxtNeGjktnsdomBxoaIFNrLUIibGk3++OoYu+6GI2/8ZJ5/3YGx3+MgY2sjd5X2yBrIG+r0GuHW4wwRZWpG+UWFV3nTTTUUMkUG4mcKM2BJg6OGHH+6R1bEbvadG9zP5rLPOOkW9pYMOOqgobGfsHTVq1NRJSUFFmXbAj0mLfi+44IJiwmr0PHm/rIFaGrBchqzERRZZZCrIBoa0MS8FFRM4AswFUXvZJhlCSQwus3ZJr3ONnXHGGfH0008XabDFTb49Ji6/bbU44uQdY+GIeOjs0+Nfr7Xr9qfvcaTmagzZypq+zyGfvW9rAGvBnfOd73ynqRsBZJZaaqliYm92FftZZ521GKyBiL4oypKIgwLksD8kFbIzESUx+ViGROD5Cy+8EH31ftP95PfeoYE555yzSGrA6lhUVZC0tkbqtUP7YH4VQm13AlWvAkLjx48vKkzuuOOOscwyyxRKmXDHpfHoGl+K5VbZKb4te/W538ZJf/lv9OVQIf723XffvbBeVcvcYostimwV1DsRNZ8KSaEJk3zjG98otluht5ZMfOGOuGHMK7W+inj9kbj+1ucie/prqydv7f0awPxw3QhU1m8MnDKcsEEWUF1xxRUbvolx48YVx7GoIykXXUyf1ScSk5BiEar30W9Vte5r8TPiqY455piici+dNlLI7qqrrorjjjsufvzjH4dA1yxZA13VgJg7CQjmOPF2nbVD7dZLP//ud7/b1dNP8/teBYRYHgaVVDsgYlzc+Kt/xfh/nRIHHHRuPLXoYhHxWvzphN/FE304TlFBqJ/85CdFqq+S4RCwpQIUgLvnnnuKRqGIJClX1E7BZRpDtbz10C/joNP+HQstOkf1V1M+D1skFn3mrDjw7PvifWhVe9e8NWugN2kAEyGIV9VoxoA4IPEstuk/+gwg1MwErQCjlPmvfvWrxa2K9ZEmXy7CaD2jvffee5pt5X0cQz/Vd/uS7LfffkUxO6VJytJZITs65spIDFL5t/n/rIFmNTD//PMXRr/4O9mJ6gaSWu3wvvvuK2LX9HeV4aXPt1N6TYyQ4Cd1PMQHURCZ9NSf4uIZ9ojTT10/5gYK/rdGPHfdJnHZ6JPirDt3iONX6Xup9ILAr7322sIdJihcYag33nijqFHiYVsVm3tQam61ywxLVFNeuyUO3+GiWPqiK2LxmWvuERFDYsRGu8ZKX90kDl766jh5rTnr7Zi3Zw30Gg2ce+65hcuLC1msgLo+5awwsS76zcUXX1y8uMkMlp3JM888U2REGYSJxVqbiRFKvxGvgF3qSwK4WbBWvAXBQGPXuMTStmSMps9pH5llmOutttqqL91yvtZeqgFz/T//+c+CocS+zjHHHPGtb32rAOoSF6xMr3QF1pdRsscee0zT/9t1W72GETr44IOLCPF99tmnuLfJ40fHj7+9f/z5kdFx3UMTYnK8Ho/+8954swCCT8Qpux0alz/d9xw9anQISlxooYUKEORmxRvw2avkessttxRR9I0/4EnxzGWHxNnjV4mVh1PO5Hjt3vPj0H2PiGMP2zk2+NJ2cfS1z0VBoA2aN0at+Xacd/DvYuykxs+Q98wamB4aOO200+Lb3/52rL/++kUq92qrrVZM2tzmqZia2BXACLMDABlMGym9z8goF2VrNkaIPvxG+rl4h74kxhnBqMBNegE+/ifAT71Cdlg3IQxZsgbapQHgR1V4scGyyWSLI0UwQ1zXJ510UhHPpjBqu5mgdA+9ghFiiclG+OlPfxqzzTZbcW2D5vpU7HPlczEFFk253KU2OTT+vEnt+BiWoeBjdUB6swA63F0G7LIo6IaqZ2FCwsSgY8CS0ULuv//+4n3aP6/ErRfdHK/OtV0Mt9vEJ+O8Hb4Zx8xyZjz8ly1ihlWWif23GRqrP3p2rDXb4Jh7kXnjzdG/iVvG7RQjhk97pPwpa6C3aMBSGVxff/jDH4p+jcVIKe2pyGHaZtzwHWDCbSwl3GeB0LUEA2s/KbqqRT/22GPF/uk46bjlgoppW3kf6eX6LDapLwm22UQjIwwAaqaQnXiOMiPXl+47X2vv1gCArt9PD5nujJBgPQMeK2+HHXZoSgfAjwArcQPDhw+Pe++9t1gfqKmD9PDOKY6heh0fsQYAEveXwTWJOAQAqDYIAnxejMefejMGzTJLFBU+Bs8f6+59aOy37ciYMPrvcfdLEfHS2Bj3Hnk2aOhsMeSdZ+ORF95Op8jvWQO9SgPGhB/+8IcFGyRxQoE1Ul3kMG1TfC3tg8kQeKneTxLHw3YI9EW1q01irAGULMZa6ziNnAsTJG5JEHVfEtdbLgbJKGu0kJ2K/4mN60v3nK81a6AjDUx3Rsjia/z6AE0jJeu5lQQ2CtiTscFCUQ/jhBNOKAZKVmFvlhT/JG21LGKkMD+AEqowyc033zx19Wu1S1JAWfo+Bg2LOWeJmDxpclSKjYNj1mFvx+1H7RJP7n54LCm4qhTCUJk8MSbF0Jh9lvYGm029nvxP1kAXNXDppZcWLJC+joHprMhh9T7/93//F4ccckgRQI1mN8bILuOOVhtHPIy1yICgBJgwSNXHwQhJ4AAUUkHFtI8Abm7uBKS6eMs9+nNrPKnCTc/WXmu0kB3jzTh13nnn9ej15pNlDXS3BmaoMJemk2A+PvGJTxTUMjBULxjYgCjNTkAkwMT9tfbaa4flN1huvR38lNXLBcjKRS8///zzU0GOgVtKq3sRTI2yx3gJxJRVRr7whS8U6wEJGFMDZYq8Ebfus0ysccMB8ejo3WLEq5fHRh/dKC4fvl/cdtc345pVl40DH/9C/P65v8Qmc0f899drxML7Lh1/feyc+MwUL+R7x8lvWQO9QwOrrrpqEXejDzQj3F1cWFjUxx9/vOhjirICP14m/fIYY1zBJGOJLLbajAjgZKRYE6m74haauZ5m9zV+igWytpN3gdIAIuYsfXbM8jZZq5dcckkR3Nrs+fL+WQO9WQPTlRFiWWA4BDeWBygKS+AnMT8J/KhlAfwYwPqiyNYQqClOgVUqSFrWi/uig5133rnJ25o1Rm63fXz88rti7JsRI4YMjyU+IhXk5Nhqyxdi1NAhEe88EFdcMzY22WLeGHv3S/GxbXeOlTMIalLPefee0oC6PYAJo+Dqq68Oad7icHzG3Oj/3tO2tA8QxD3OcBBzhwHCetQTTMgvfvGLYmFVFamBmkbOxUABggRz9kUQRB9igwSmYqAtMwII0Vs5c8x+gJD7lDoPY

Question 9

ObU+XqtKW/vyxqYbjFCXFoKA3L3KOtOgB/F0rbddtsC6Gy88cYhzRVIMEhhStC6fRUEuUdxBeIZuAGt38NSVddD/SQUvOw5IvA7xRMVGyKKlML0f/l95o/vFads/r+47JZxMXnYp+P4e56Lh8c8Frdd8Yv41U1j49HH7oyfbDEiJr98e1z2+FfilANWjmHlA+T/swZ6kQaMDamMvkm4XNCwoyKH+o/6QoAKd/mrr77a6V1tuummxWSfJnwuNCKOpvpcxh3XYzu3PFalr8pnPvOZwsUlXkqVXo4BgIgejMGMMq+ddtqpYIGAIKCSXrNkDfQ3DUw319hRRx1VsCGKoaGxE/MDAHz2s58tCiwZpPoy6OmosaCZBW9iw6zwjAkCioj0VGXHie2pnpDYKBkuK6ywQkglnkYmPhvXnHF+PL/2d2KbkVNcadN8//oD8etTroo5tt4zNhgxZJqv8oesgd6kAbWCTNRiUritUoyQIF1ghyGR4nZsq7WPRUTt02gWCoDDMEv96yMf+UgBdFRUlsgB/Mhu5cpnmLm+/iDip3bdddciTZm+1DXjst96662L2wMIGW3qORmXs2QN9EcNTBcgxMKTsbHYYosVKazAj4ElxfzMN998/VHXPXJPgqYHzViD6Js8KSbFjFHrqx65sHySrIEGNQDYqM/DddyKYDfOOuusYgmJZtckEqsI6IwePbpwXzs/QCbFXBC2+KX+JphngFGBV8xPWmjV+AwcYuZzynx/e+r5fsoamC5AiLWB8VhjjTWKCqWYnwx+yo8l/581MHA1INNLEUUp9Gr1NBK3U94HuywrE5PUSCbqwNV0vvOsgawBGpguQMjCidbxEfOTJWsgayBroFoDI0eOLECMsUJgtEBoK8xXFzm0TeXZtI/9MM7LLrts4c6pPm7+nDWQNZA1UK2BGj6U6l3y56yBrIGsgZ7VgLpg4nUAmlQssbMih8pxiG9JxRN79orz2bIGsgb6qgYyEOqrTy5fd9ZAP9aAmlkpVRvAUXUd61Mucuj2bVPkUOapGjf/+c9/CiCUam/1YxXlW8sayBpokwamax2hNt1DPkzWQNZAP9SAoGlZW5tttllRSHTFFVcsqiBbXFWlZ0HRyk6oiWMJGkttyILKIKgfNoZ8S1kD3aiBDIS6Ubn50FkDWQNd04AsLSyPuj1nnnlmEVuonIQaN7KdgB71fNQPEleUJWsgayBroFkNZCDUrMby/lkDWQM9qgGgRwq3l6KrltLYa6+9CjD0q1/9Kqd29+jTyCfLGuh/GshAqP8903xHWQP9VgOWxVBkVfG/c845py0gaNL4e+KKy++Ilya9p7YZZoyhs38kll11jfjEgjNH3UDKyePj3iuuiNvHTY7Zl1ktFnvhX3G3/5dbPzb+1PBo5+A6+eX74srLb4sXJ84Ycyy/fmw8at5oadnk1x+Ki069NN798h6x1cgPVd3b5Bh/7xVxxe3jojLnyPjKRivHPC2dpMnmN/nluO/Ky+O2FyfGjHMsH+tvPCrm/cB537+2ybMvF+tv/KkY3pCCJ8bzN10Q51/3fAwdsXpsvsUasUBH9WRLz3TYkl+Mr66xQMfPsbT/+8/99XjoolPj0ne/HHtsNTI+VLcBNamntHutZ9iQDtMBar13fM2Tx98bV1xxe4ybPCyW/OJXY40FGlL+lBNV62jUTPFg6jfd0Fdq3V2n2yy62tNy5ZVXVj73uc/19Gnz+bIGsgb6iQb+8Y9/VGaeeebKxIkT23BHEysvXrdHZeGISgxdu3LO/Q9XLv/OIpWIuf+/vTMBi6rq//iXAZRNQRTBDVSQRZRU0FdcUFL7p1m9mWZpab6a5KvmimiRC65kiqaJuYWGpZWZ+waK5QK44QZGQKCyyzoDyDLz+z/nDjPMDDNsJurbuc/DM/eee875/c7nXOaeOduXhq27RUU6LUgp6+AoMgfI5qMISlKe/0ZinWkaekNKmb+8Rc0BajfjEknqkU35/YO0cqu8HOKIydQaIPMxJyhfSx7SrIM0yhyEDrMpsj5GtORVnyBp5i/0VnMQ2s2gSzrsKn2z+Yh+qyPgouv+5AIjGrp9N71lbkh9t/5Vq1t5YZPJBiCLsSe1MlLPQPUZqKx3cQRNbg2C+Rg6oQ2yegb1vtJVh3VhqNOYNp/L79PBlVvplvAPkEdhk20IsKCxJ+tbKE1Gmtc6vWq0G393W7XWhhePwAlwApzAkxJgSvJMU4wtsX/yQx8WnZzQimVk1Art2jnC+91X0Ra5OLNpD+4W67IggrGlJYyE26rnuuI/SXjD8pcVRGH1OxOw5Vo+ZADMPAPw454QHPjSG+Za3BEZW8JSXiAtd59eUF3s1iWOuocVeBj+K+JgiGZWvTB5WSD8hrVRj6LlysiyNUy0hGsP0lIvZp4I+HEPQg58CW9tkLVnVOdQXXVYfz4qJjV9lhUgavU7mLDlGvLZgwMjWLauOxWVnAFoMtK8Vo/9LK7q0b/1LNzjNjkBToATqE6AiRd36NABt2/fFuR6qsd4khAZSrLSwCRbbQYMhJ0RIBPfQujaPfjL1BSpF6JR2m8e1vgOhRZVP92GZWLcCl2LPX+ZwjT1AqJL+2Hemnlwv78NvssP4WGLwRjrHIsdP9wEev0XW4P/C9fyKwievxAhsabo2VOCUgCGOiyU/rUfn316Gk26tUdBXCpcfP3RPmg0FkeKoZ+7FvMCizDa6CdsOPIQFtk94DnXASl7l2H1OUKr4jhkv+SL9R/rKXOn4nv4+Ytl+PaONV6btRBTvWyUw0SyvChsWbAChx5YYMj4bojdthc3qAd81s2C2e4F2HihDN2nB




Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

Pamela.irrgang@yahoo.com

  • Sr. Member
  • ****
  • Posts: 323
Answer to Question 1

(a) The -CH2OH group has higher priority because the FIRST point of difference is the underlined O atom of -
CH2 OH that takes priority over the underlined C atom of -CH2CH2 OH.


(b) The FIRST point of difference is the underlined O atom of -CH2 OH that takes priority over any of the carbon
atoms bonded to the central carbon atom of -C(CH3)3.



Answer to Question 2




Answer to Question 3



Answer to Question 4



Answer to Question 5



Answer to Question 6



Answer to Question 7

 B

Answer to Question 8



Answer to Question 9



Answer to Question 10



Answer to Question 11



Answer to Question 12

 B

Answer to Question 13



Answer to Question 14



Answer to Question 15



Answer to Question 16



Answer to Question 17

 B

Answer to Question 18

The less stable molecule will have the larger (more negative) heat of combustion. Because these molecules are
constitutional isomers with virtually identical ring strain, any difference in energy between them must be the
result of differences in conformational stability. As listed in the answer to Problem 2.39, the cis isomer has two
chair conformations of equal energy, each one with one axial and one equatorial methyl group. The trans
isomer has chair conformations of different stability, the more stable of which is the diequatorial conformation
that has no diaxial interactions. By virtue of having diaxial interactions in both chair conformations, the cis
isomer is higher in energy and thus will have the larger (more negative) heat of combustion.






 

Did you know?

Approximately one in three babies in the United States is now delivered by cesarean section. The number of cesarean sections in the United States has risen 46% since 1996.

Did you know?

Tobacco depletes the body of vitamins A, C, and E, which can result in any of the following: dry hair, dry skin, dry eyes, poor growth, night blindness, abscesses, insomnia, fatigue, reproductive system problems, sinusitis, pneumonia, frequent respiratory problems, skin disorders, weight loss, rickets, osteomalacia, nervousness, muscle spasms, leg cramps, extremity numbness, bone malformations, decayed teeth, difficulty in walking, irritability, restlessness, profuse sweating, increased uric acid (gout), joint damage, damaged red blood cells, destruction of nerves, infertility, miscarriage, and many types of cancer.

Did you know?

Liver spots have nothing whatsoever to do with the liver. They are a type of freckles commonly seen in older adults who have been out in the sun without sufficient sunscreen.

Did you know?

Dogs have been used in studies to detect various cancers in human subjects. They have been trained to sniff breath samples from humans that were collected by having them breathe into special tubes. These people included 55 lung cancer patients, 31 breast cancer patients, and 83 cancer-free patients. The dogs detected 54 of the 55 lung cancer patients as having cancer, detected 28 of the 31 breast cancer patients, and gave only three false-positive results (detecting cancer in people who didn't have it).

Did you know?

Drug-induced pharmacodynamic effects manifested in older adults include drug-induced renal toxicity, which can be a major factor when these adults are experiencing other kidney problems.

For a complete list of videos, visit our video library