This topic contains a solution. Click here to go to the answer

Author Question: Assign priorities to the groups in each set. (a) -CH2OH and -CH2CH2OH (b) -CH2OH and ... (Read 26 times)

cdr_15

  • Hero Member
  • *****
  • Posts: 546
Assign priorities to the groups in each set.
  (a) -CH2OH and -CH2CH2OH
  (b) -CH2OH and -C(CH3)3

Question 2

Each molecule has one chiral center. Draw stereorepresentatio ns for the enantiomers of each.
  Each part has a tetrahedral chiral center. The chiral centers are labeled with an asterisk.


 
 

Question 3

Following is the structural formula and a ball-and-stick model of cholic acid, a component of human bile whose function is to aid in the absorption and digestion of dietary fats.
 
Question 4

faqp7x6SDfGtcJnnrrtttvSndhtVip7sYzGeSBkIGU+aTRBGyAw5zzzhB0m3J4CoKLgqRPayCr9kksuCf/4xz9qVoeZRCJBgClmcMcAMcPY86pdYsK3AfLxxx+fghUgzUa0RUVZYPXQQw9NQYU9C23TwzR03HHHpVn/swkNbYpqFwCbOLdSADFJC+tl/NZnbSqtfCWQDcQBSJjMeoL9OffccyvuZF7v2Hq/M61WY08rHatsUXOsbVdsPm7nA3tKag9ZzGVeb2dfzN9X6QOU10jm89ghl4arwlJhn8EPhjeX2Dgs/eap4YQbjwjddHJHAAAgAElEQVRrfX+B0AnIcfzLV4fjDnwwfLrrj41/3gtPjUvCwpl7aOvb8S+Hq487MDz4WQXDe0+NC0nHVLCt2unzFzdJWN0yW2y88caTmZUwQrIe27XcBBAHakyAjUqb2dLBthF/Oul3acbmVvmG9EQj2ktPlmQMBMYDu5P3h5E9GPDBONgOI4otMZj6sEAmonYIHyy7r5vwAVdtyU+pqPDfcr/AnT+C/bnqqqvC/vvvn5o58+fSnwClVorNWpnaACztYbfxvAA/O+20U3p/gE4lAdawWEy4N954Y5oVu1I5ma2Zem1QDcC3Wmy5wTdLVu4ioo85ppYwcwF+5513XmqKxNRi/TCQzLh2avc8W4BoHybedkonzOPtvP8a1/4gPHDRw+GLq/QPw59/Prz4/mJhi3VCuOm3l4TnxtU4rAd/mm7ZfcIV9zyUOjlydHzo1pPCerP068Ea1LnUdMuGfa6457P6PXRrOGm9WUIH1bDODZQ/d5cGbLJrhc5ksckmm0wGflzzq1/9arjppptSXwnmkyiPPvpooW0GYvnsK1OMjUHtAdabGCD3wPxgI1MTCFaHGRAYtNUMfxqboZr0+cpEsBjvPZrB4ueefuXzom4E8OFHxcxZVGz1seKKK05WnJMznZhY8/erIAYiDxInO0ETH7A59MuRF2j405/+lLIaTgWQ2dyaozBnX2xdrY1Z7YAOBAE4fGtszeFe/HHct60G/zYbph5wwAFN1Lb+IQBaIz49ylYDda4G/LivG264IfW547wOMNEHQOR5xp5ZfNCN7UuAynY66ZcAqEo/mfD6jeFvr28Vfrnb9mH77f3tHA48eocw/yN/CGc+8tneVlUOL78uNTDVasDO4p4JE7HJDetglWqgKyJWyehxESUmw2oi6oa/iJXim2++mToDo8+b3UvOccxEzAqV9gCrVo9O+X6llVYKN998cxrtRG90YuJlIqN75oVKztnaqWjbdNe92qMMg8WUh6nC+pns64lJ1d5he++99xRFARGslok1K44Bru0x1mqhX+cG4IF3/V8/9ed7TBdwV4kdytdl6623Tvdpcw8AIlYTaAPssF42Wq103/nzNPuZnxRWRp+qJyL5tCE2r5rsuOOOqS+foAP+T5Gl84rtveaaa9Jz0J2939yb6DILIPu/tUNKAFRB6xPffzycu/+vw41vvx5eeGf8pyUmjglvjJg1zJm8HE7b++hw/asdQgNVqH/5VamB7tCAQZkzMZ8OZig+O2jxyy67LPUzsZmjHb7rCfOBCbyIH49JwATOfMWvBQBqxHySrYv6m2SEsLebes/Wq9H3/KMAThtoHnPMMWl71DIJtpsBcn/qd/nll6fMjCgwk6JNQ2uBIL/tu+++Yf755099fvJ6wsiceOKJwcRrcgZ8RF5hKQAVE3x3iOtiLoBz9wGI6luYKtesxEhVqweGhFmTX5QIM5v02myV/xv/me4UKRYsQvjfAXPVBGO60UYbpYzXvPPOW7HYCy+8kLKTwI+FBr0APBgx7OQbb7yRgiLPsQ28/WGCMF3azoLKONLTUvoAVdB4/9lXCjtf/GKYLNtB/1nCkpsdGwYnn9nXKxzagq8mhjHDHgmPvDQmTHS2fv3DtDPOET6/9LJh0dnL5mqBgstTNKEBAzzgQ0TdZCdcPiZMAnx2DHYmCL4Z1YR/j1VfEeHkalXMb8IEKhpq+PDhFf0+Kp3PJKr822+/Hd566610xR5DxCuVnxq/A4BqTXA9dc/aUYSaCC4Tn8nXhG+HeJF6WQEIOD0zWfKT0acqCT8akVnKipQy+QJEzFPNMoWVrlPtO0CrkZw+1c7j+1ab7GpdK/4GyHmuttpqqxSQ8N9heqNv/kGnn356atrDwsU8WvHY7CuGh5ky3sM999yThrwz0WK0AFOgx/WOPPLItA8AjvrCkksumbbVdtttl/pFWaD0lJQMUE9puvB1+oeZ5v986H/bHmG99XYL1zz/enjp0UHhsA2XCKv87KLwYko8zRhWHPhMGPfUQWGZbDbBubYIN44eGQZt0nMdqNptzbjiwPDMuKfCQZNXMGxx4+gwctAmof01rFbz8vtKGkDvSyBosMyCn2xZq1nRLQZDg2c1kU+liInA8QZSEyRHYA6VJk5RYDEaBSNUKSoHYON0K+8MxonZy2SrPMdq/kB8aLojwVy1+27X953AAGXvHQuALcEsmGiXXXbZwBxkgjQ5YlGAVGYlfk/1JkS5gkyk+oFIIyA5RsFlr1u+r6wBPmTC2wEYDI7n2983vvGNVPf8k6LzeaUzWGQAs4AT8ezddddd6TOKZcLgRVP366+/npbxTDOJesWYyQ+kLL+onpQSAPWktgteq/+MC4TlVlsqzDLD58Pam/8gbLvbkeHP5+wYxpx3eDjriSkzixY8bVms1EBTGjDAGZiOOOKIquAnnhgIkpjOyrGaoNEbSc7HfyVGMDG9WTHySRAl4zr5JIEAFodUvhhMJAZ4YbgGWw6mVqHrrLNOOmgb9AG7vDgH0McZWxSLCZWJjx6KJsPLn7OnPzMJAX9A4+DBg1PQSfcmKpE4zZoSW3UfdMofRF/ACKov0VbaXNs2wq5gfCr5QLWqvlPzeSRaxOB6PgAY/R9rw1fPM11LgE59iT8UsfDg5wfARh+t6OgcQVL2fLGMVAna3HjTU1ICoJ7SdBevM+HDD8K4/rOGOWaapotnKg8vNdCYBp588snUx4d5q4hwcgVAqgk/Is6wMhwXEaHyokui8H1hSrHqtHIEiqLIecNpGmtgcsVI2S6D/Oc//wm77bZb+hmIkkuGAze2ATMUBTMhgzQfD4yESUH+IdfFXGCPmPE6WUTLuTc+NNpNyLjVNyAk+oYzKx1hWNotgJD6MJfwh2HCagT4tLv+U9v1MTLYmKLiOc6WB4g8Z4cffngKSJnIo4kTqCJ+EymXLYMR8hw6vqekBEA9pelmrjN2aLjg8L3Dbj/ZJKz9g1vCumdeGvZaboZmzlQeU2qgaQ2w1Yu4qeaHkT8xp2VhyNFMlf8duOAAXYTuNkEbNOVeiQKwmCCtOplTsk6nGA+giBmFGU4SPf4/xErTdeNnbAiGh3nNOfmNMKWg/pnHhPNiJqyO/QlZ5rApY7XBWjRcJ4rVNtBjRc9fi2+MvdNE5piIhNADdswaTB58bEopNdCsBgBpjBHWhxgnPC+eH87c0USNiWXmJJ5bz3C2jOP00RIApSoq/4UZlgk/OeqP4Y8nnxiO3nWhcPNBe4ST7n+/VEypgR7VANNCUbZGxQAfg1kWmOQrLKMu/xxgIivob/4DkvnFxHcm7GjawPDY/JRghu68886U6eHXg+HgywCoWHUCQPxLRNUQgAcAyn7mZGszSP5BTEX8jFyvlsOn6BVgScK7nqTr05uo80+0Dcdg+WqswrUDB+g48QB4THiA3ZlnnpmuwkVN+b6UUgPNaMD4YKEBbBOfmcH0Oayp/pbtd/EasV/GMhYUwBIQ1FNSMkA9pekuXGeGeZcPm+03MPxoxjvD7/9wXyghUBeUWR7asAbkzOFzkzUT1ToJ1kZUmMm3mjDPMCehwAEKzM0ZZ5yRAhYAh8mGjw8HXmwMkxXnVowFp8zrrrsuNZWIFgKmvJr05VMxAMsNY/Up5BogIL7D3GQ/KyOCyHdAAX8fkTD1hBkP+AHAOknkArKyloSukmSdT/0uTNnWIxihUkoNNKsBUZ8RRHuGhMVnJd/vsr/F985hr7CeBEBTZVy1lWcnR3dYzUaHv9j4U7wmE0PWFWzimNfDyx+EMN8XF

Question 5

wjdbQSD2GtNXlPUtfxiqtYA50aOqRgXuVvqSdy406QKsFTLZ+J7q0abWGIrUOgclH0fGR/X8qzww+HQzLQm7Dk6U3rWTfb+gCU5coj3fH74/8QkgL4DgLKfYxmOnvyW+C8V8T/xfGCA+DKpcyeI3CuAI0dSbBgdxfDjyFQBnJzUReZky3BYVTZG63TC/ZR16D0awJgCMBhVJm7+PZzbmcNJtt/FuQVDFPulMp47YDz+3hN3P81vIjfaE1frxmvwUzBocsayUnVbaO0NNthgssG0G6tQ99QGexPCfffdlyaGQvWzi04esjkxjH7u1nDBn84I1z72anhv9Ijw5L8uDWecfHF4c41Dw5+P2iwsMmP1lXXdStQoYABFRxogUZoydQKS7Lu10rrXOGX501SiAT5ATEVrrbXWpEGt0q0xa2FahDULmfccYmtQ2wbD/OrOik+fw+AwxUhQmB8AfQbCRGxhhTgkb7PNNlM81zbbZPLSV03oTF38fpjNiO9M8NnPsYz68Z2R66hIgkbnY2669957u2Wn7kq6rfcdx2xZfZm26AwTpr2MMRyfORiLmAMwfZ8tA2TST9F9oerVpfy9b2nAQkSf8rx7hoEZZmnmaL5+GORsv9MnY7/07MmgLehAYENPzjW92gTGmRFbAXVy7oMyiTTrQAZand3fCrOdYtUqGsNKccSIEWkHsQID2Dhf+i0OyiH0D7Mu9Y2w50WvhiR5J/zrtOPDb0/5S7jq7sfC3efvFVabvfVNBoVLTW71zAyx++67p9S+AdRqkg6tdNUdqCyl72nANgwYEtsLiLISKpsViw6DGN8YkVcmW9FUcvZwyGVq4pxsQYJJiv1If+MLANBUyy8UrwMsASiyT6PU8yK3UNbBuYgPUCzjOOcH9ouKsjHxW9FjurMcBieuqCWOtIcas170wTA5+YtJEbNlvAfoiooxTZQdk5s9omJ7Fj2+LDf1aUBqCYsdcwmfQf1MH5QdPtvvMMPZfgm4S7RoIcR5uiel9bNpD9UeJQ5poswgSxR9tO2rgtBYA+XZZ5+dAgyTu8G4JwWl7/rqJ9LC6pijlwHJ4Ok7qf5NGCh4A0ocwHqqniYp4cCof4hctIjcD1aDBK3JR4N+TXDAkNU6MBS9/nuqruV12qsB6fBFQQFAzEk777xz6mMjygjtrV/oy5H2xjBgFJiumJ385jkUneTZBaawNgBSUSCB4VUPky7Wwt8dd9yRmtAkO4y5SJi29FfO1AZmEsPgs59jGQOvOuX3laqlcWWjKa5WuZ76zaqbAzrTlqzXdJP1vcB+RRNXvoxtCzBHWF8TGIBTTaQgwAi6f6DVlihSAzhHKX1bA0zO5lmA2nhgjrO4x8QS/Y7EfvnTn/40XfxYOFl497T0S3p6xu3CHXqo0fBSawM+0ndzuJTIzOqtmhgIoE4IE00n4VJskGrHdPV7g63cFoCOqBLOmAZvdTHYq+9nrE9IkbMO4Hs0oHp2p1ixmYjQjih/q3I0eTURmmiCEPJopSltOeSOXRNKXErf0gBKmwMwEynwIExd5FURYWo1iUb2h19R1uen3jk8Q5hJQIbjpYEWeGci0x85MXPcBn74C3ll0mUec4xVafzsN4AOM2UQBgAsSqIvUbW6MLk7B2dPTp+dIHwu7HIPCGHEARQglT8G36e487dFmT8stDLGKWy5sdWzDagySxhnpQRgxhAdhxFmfgT6nDM7Rlk4cUAHRnvjRrOd0H5TUx3MzeY7zyWzLFOxZ9xcrU/+/e9/T0G659EiqF1zSMcDIAOllQn/AIOs/AFCXdG1Bl/AxkBaREzikmxBpV7RbrVCdYucM1/GvkMa2ICArhfBAg1H4cNg9UTUPzIt8XemAuYDg7nN4eKKLf7e1VcrRPct6RiThGy3dFpEOFjyY5JjxWTC5ABIxXBkbSQtfSmlBopogOmX3w1Gp4gAPhYWosD47gAeTDAYKLl8MJL6tIlY3/S8A2mAPhOXY4AEv8fPBmDAwPMKVGGqPHci1KrR8cABCh8o8Hx3krgfvoXGDbrFigFrwE58zo0vTBKxjJ24mSmMq1g7YwR9yKRNDwChhZnVPcbn/9u7FrCqqrT9AgoIIuIV856OKGpeJu+Zd1MzGytHyWc0NVNBsxqzmmzsZjhjNtaTjmXmbxqlFahpav/kJUnKSxcvYf1eBskLIgqCCIfDWf/zLtx4QA6dI4fDOfB9zwNnn33WXpd377X2t74rJdoljZv1ElcykkJVFwHOD2oKKGig5oDEucn3Lp9J2rzSFpCZ4J39fnMUdbdUgREoLlIEkrsOTlDu2jg5ucOj5ISLFXec9jI/BIagf/bZZ1pEx0WCUiBjV+QocMXLs0/cPdKmh0wVVUvsozXzw2toc2CQETfB+M5PjpMLNRcZ7kLJVHDH7AwiM0nVBZksugzzRWIsivbUT5UFJW+8loJDesHQ9mPOnDnaRogvHS62fDmQ6xcSBEpDgC9LSivsJT5zlPZQykGmiZ+0NaDNHzdCfL6ZPJVznPOMkh2q49gOifPdOhAiv1PaQSkS01zQk4WLNl3uqZajNKO4gJwqbK5NnJvcubob0Q6SasDIyEiNLec3MWbAOYO4KycDRPU211caq8+ePVuvryxDZoc7coYHoHqLmxxufmhWQIaqa9euRlVFPqnuJIMpVLURoB0QpT/WJil8J1KAweeO2hBKHSua+eFdcj4DlJ+G79Ysw4cHLxdkM7/+LOSe3ITl736BJMN20pKJxNiFmBlxP+4dNQ6RC9bjcEZBLhhyiFzMqDriZCUTQNErxWZc9LhzNDjLW3nUKLpmoCYukMxvRP01GaJbIS6QtN2hDQ93m0zeyMXGljrAmgGi8XZJxIeHTAbF69yRkpsuacdV0rUlnaO9FMXZ3ClTPUApla04ISVdX/wcbYSIP207iB8ZVT7sffr00QwSxepchC2ZiYhdOBMR99+LUeMisWD9YVy/xdwTIO27NVj24UFcLrjtBc3knsSm5e/ii8IHpXjr8r2yIOCI2otj5iJquNXzRcsNBJkbMjKUDvFZ5AJLlQ2lF5R6UK3DDQWJ88gIhMh5S3E81wB6qdBgk14rnMdkoKi6njBhAmj8Tfs4ekaSmeAconif85GSaarvGECRubWsVdoVdY/IGFLyTFstY+PEsREXknVAOjJJXFu53jIMgS2ilJqSXY6ZLzFbayXPc20VqtoI0KyCKld77foqFC3aADmVrv2k/v6H6io8OlHlWlWcFjdMBQaPVlsuK6XM59WWqDaqenB3NXXhSrX2/UVqxl0hqnrLKeqzM3n6qokTJyovLy917NgxlZmZqWrXrq2aNWum8vPzrWot+6HZbFYLFixQNWvWVL1791bJycl2V7pnzx7VvHlz1bhxY7V582a7rps+fTrD++i/F1980a5r9u/fr1q1aqVCQ0PVxo0b7bqGhYhbRESECggIUJMmTVK5udZ3xO5qbBZMSkrS9ygoKEhlZWWpvXv36nGNGDFCmc9vUVFtqqvg7lPVwpVr1fuLZqi7QqqrllM+UwW3+Jr66e9/UNXDo1WidbfS4tSwwGA1Wj8oNpuWHyoBAnPmzFE9e/ZUnAf2/k2ePFmFhISotWvXKpPJdBMK+/btU23atFHh4eGqadOmys/PT82cOVP/DRkyRD+f/H7bbbepunXrqtjY2Jvq+Prrr1WfPn102V69eqkXXnhBLVu2TG3btk1duXJFRUZG6vVo7Nix6rXXXlOvvvqqGjlypK7v+eefV1xTKpIsFot6+umnVVhYmFq9erVin7jmkO677z593K1bN439Qw89VCKOtvp/9uxZPc64uLgiRbZu3arPnzp1qsh5+VK1EOB7oEaNGqr48+GuKBTMCmf2zg4GKH3nFBXq1UrN2XvlRstZ+9W8tt4qJGKzSstX6vLly4ov1i5duihO6C1btmhm4+rVqzeuceIR23v44Yc1I/SXv/xFldbOmTNn9AJZq1YttXjxYod60b9/f70AcUEaN26cQ9euWbNG1alTR3Xo0EEdOnTI5rXE6+WXX1aBgYGK7aWkpNgsW5Yf2E7fvn31y4GLfqdOnXSbmZm/qZ1TQpVXqzmq6C2ep9p6h6iIz

Question 6

WkqXwkDVBbsK8O1R48e1fNt3rx5djFAUVFR+vnnxqM04vPesWNHtWTJEs3gcA5w88D1pF69enpOcCNR2maKzzY3NayHGzGuCT///LMaPHiwIuNz7ty5m7pw4sQJNWDAAF3WHZigmJgYzQRxHRgzZoyaOnWqGjp0qMaga9euatWqVSovr2DDedNgSjnBDVmTJk00A8U6ySwS3/j4+FKukp+qAgLr1q3Tczo7O9sjhut8FdjvyrMycWBlHFK7zEZkNyv9f2AXTH2qOzI3rUB8BrS3EUXMzGpMcS7tSijyLm40/LvN2VmA3k2Mc0IRMd3naUxJewKK1g2iSJkiY+r/jRxDtNlxhOxRgdmqj55XdCOkWzrVTRRL0zPOmqirp+iftlI0GKWNgy11nPV1t3JMmywaSVLNQK8SqhXpVlxTHcPKuFR0mR2Jord4Kp7qnolNK+IlncetAF7JrqG3EN3nbamCiw+XdnW0W2HYhtKIzztzjNGwlyobzgHOGxpFU2XG70y3UZoKjs825xnVYvQko3qH6neq27hO0COyOFGVTvsH2slQHVeRxP4zthLXG46Bjgtctxigkp6zNHKmCzLtfRwleoHRJIFjpN0PVYBU1XNNEqraCFD9xTnnymCGZUHc8affrtYUriYdRPzuFPhcL5+VeAl5aAzkp+HYkXTUvbMz6hdp3Qd1O3ZHw2vbceS8CaNCfPUEpscSJxvp9wKl2dW13ylEHTaZINrxUPdPI2nmGuJCsmDBAu0Cyv7cClPB2BrWwca48JPBKm0hLt5dYkDjSxqS0S6BOZXGjRunjcrInJEhovE17QBcQbRXItFmgm6xzz33HPKTluFIel3c2bk+it7iuujYvSGubT+C86YCbzF1NQkH43cj5caDgkt54JMiVAUQoFF9VFSUNlYuzSCa9jV8adMO0B6ioS69LRmbpiz2bpybNI6mUTBf/GT0S/Mc5QaN9kC0NeJmgI4BFU1kMvnnTCLjRC8eIUHAQIBzlOEUuGHwFCryfnJep804vSEac/f7F1aZf/koTIoMUC6umrzgG+R3kwW2T40g+CEP2bkFUhfuYijFMF6yhZW54IASJ7qsM3ghF2j2gTtHLmy3SsV3unxguFs0Asc5Ui+lPFzc+VIg48MXAw2c6Q3jCEPlSJullaUkjEbrvGf5uVdh8vJFkF9xAaMPagT5AXnZ4C3mr+bTGxA9dz8Kn5T8yzhqUsIAlQZ2JfqNzDulvJTY8Dm2xTDQ25CbEyPQoT0QMLYPPR3LwgAZ7dBYmv0rjUkzytLTklIqRk9nSAwhQaAqIEChAdd/T2KMy4kBqo52sz/F3mfbwvf6nb+0YTiaPUIfy2CE1vbClWRKhIpS3qVkpCMYjWoXSBX4a0UwP0av2Da9PMhYOEP1Zq3+MtogU3QrDJBxPRkyLvKUwDijj0a9t/Jp3KtqwaGo7XUFyRTlFKE8XEpOB4Ibgbf4Cu9vu9n4dO+zaHvjQcFw/aAUuVC+VGIEKNFkTCx6UzK2DtUqdM82KC8vT6uljefLOP97nyzPep1BR44c0ZIge+tizBwGixQSBCojAnzfMAQNBRTctFAlzPRTFBx4ivqL96X4Fr3875V3CLoMuR2ZezfhcJZ1c9k4tmUXLjUegO4NDH2I9e8Vd+wsxqIkBqikc46OlFy3s/roaNsllfcO6YIht2di76bDKHqLj2HLrktoPKA73OwWlzQMOeciBPj8MoM8432R2aHKmdHQ6Y5OKQrj/ND+jok8+bu9RJshBkh0BjE4oCMMGMs60ldn9FHqEATKGwGacdDmk+EiOEdpO8v4UAxKStMRRgin0MBT0iS5ngGCH9pNehb3ZK7EE69/i3St7bIg88CbmL00Ff3mzkCngjRU5X0vXV5/ScxOSedc3jFnN+jXDpOevQeZK5/A69+mF8SDsmTiwJuzsTS1H+bO6IRKeoudjWSVqY9MEJMFM34PJSeMNUUVNO1oqCJjBFkaTZMpsodoa0eRPA2BnUFkpOgcYS+xLF8SQoJAZUGATgS08+RGhNIexpci88NgpFT5MpI443QxsCZV257ABFUAAwRUaz4BH2x8FrWW9kWLdj3Rv1c4mvdaBK/HY/HxjNaFarPK8uAY4yhuA8TzJZ0zynvuZzU0n/ABNj5bC0v7tkC7nv3RK7w5ei3ywuOxH2NGa0Pf5bkjlJ6XHwLMSTdmzBidkoH2O/ReIjEAKtMtGIENbfWAjgX0TGLQQlvpLGxda+s87X9oAG3tFWqrLJMdM6I0jaeFBIHKgACD3XKDwmCgjPLPOcnnnPk1GWSTzBDV1swWwGMmy2a6qeKR1N0Ni4rNBWZKxdFv9+H4lUDc3q0XOja8ofd3N6DK2h8+CIy8ajKZdPoI7lDpVsvotO4YUr+s4zWuN6Uexbf7juNK4O3o1qsjKvEtNoYsn05CgGpdMjuGepdziF6G9DRhpPiSQulT7UTvSO5GWY7pb5xBbJuLP9O/cB6XRvRsY/R1ugQLCQKVAQFKZJlmhY43DCFBYmgJekYygS6ZINqjMgI01WB0QOBvVF+7dX5Ij4hWJJ0UBASBKocAI8oWD0jKAIWMvBwcHKwYLf7LL7/UQUETEhJ0xOZGjRrpaMeMSOts+uWXX3QAwBUrVujgrMXrZ2DF+fPn6yjU5RV8tHib8l0QKG8EGNSzRYsWOugvn2tGbWcgX0ZTZ2Rwg/jb559/rgPvGmUYcNOdqWIlQJWBNbZnDMyPFrMOx8MjEPHHkELLc+ZHW/Wfahj+yAg0F62QPUhKmSqEQHEJkPXQGdCQ8Xa4I2WyTnqiMFbP9OnTdUJi67LOPGYwVgZ6o2SJ4TGYK4xqMdpEMAs63eQZDJFhKoQEgcqAAG3pKFVlyBYSkwRTzcVnneeZ8Ns4xzAsRhkG3KRDA+dMSdJaXbCC/wkD5IobkHMI8++4E59OPoQfbgoNUAPr/xuLEbVd0RFpQxDwHARKY4AqchQ07ty6datOWExDbcbdCgsL08wX3d9p0C0kCFQWBAz1l7U9DwPu7tu3Tw+RibbpEk81WPEyAwYM0IF5aT/kjlROcYDccfIgqwMAAA2CSURBVKjSJ0FAEBAEyo4AI0FTCsQ/IUGgsiPAgL2U8tDmh0TJD5kf2vuQaPPDc5TyFC/DUBT0HnNXqhAvMHcFQ/olCAgCgoAgIAgIAjcQYAgIMjs0ajbSwdz4teCIqjCGqihehtJQ5s9zVxIJkMvuTCn50VzWB2lIEBAEBAFBQBCwH4FBgwbhlVdeQUpKir6I7u9Ue1HyQ+IxJUT8o0cYiWVoB0dbOdrJuSsJA+SyO1NKfjSX9UEaEgQEAUFAEBAE7EeAOfg6dOiAPn364I477kD//v11MnB+MjYW81HymHY+tAMi8TvzU06ZMqUwjIX9LbqupDBALsO6lPxoLuuDNCQICAKCgCAgCDiGABNdMwUGA5GSGSIZgRCNOEDt2rXTsYAoEeK5lStXFhpKO9aa60qLDZDrsJaWBAFBQBAQBAQBj0Pg/vvv13ZA9957L+gBZhANpA0yDKPXrVuHYcOGaelQq1atjJ/d8lMkQG55W6RTgoAgIAgIAoKA+yDwzjvv6GjQTINBzy7a+MyZM0fnBmP8HzJAZJQYMfqtt97Cgw8+6D6dt9ETkQDZAEZOCwKCgCAgCAgCgsANBGgM/dVXX2lGh0zQ0qVLdQLj1q1bg8bSbdq0wY8//ogJEybcuMiNjyQQohvfHOmaIFCVEXDXQIhV+Z7I2AUBA4G0tDTMnj1bf2Wi4vDwcLc2eDb6bf0pEiBrNCrbsfkSju2OQ8yaddi85zDOZl5AYmIKLiTuwIadp2Gyc7z5mSew5+P3sflkrr7CfH43Vn90AJctdlbgQDHbdZtw4dB2xO0+Y3e/HWhWigoCgoAgIAg4gEDdunV1CpouXbro+D9G0mIHqqjwosIAVfgtKI8OWHA5YRFGd+6Hv+3MRsM/tEBAciyiOjbBgFc3IOZvEXjsnV9wzZ6mLVdx+sBGLJgxB2tP5OgrcpO+wrpP4nHWXg7Knnaul7FVt/n8XrwfeT8eW3sKeQ7UJ0U9CwGK1f/1r3/pjNO5ubk6k/STTz6JS5cuedZApLeCQ

Question 7

BVAgPM1ODjYY0cqDJDH3jrbHTcnf4RJI19BemQcPn5xPAb17IGBD8/Hx1v/id6BjdG7Ryjszr3qHYiWvQbij/WrFzYY2ONlfBH7BNr7F55y2oGtuquFdkf/zvXg6yOPrNPAdqOK8vLyMHPmTDRt2lQnFh0/fjyYhJHh9ZcsWQJ6kzz66KOw9jpxo+5LVwSBKolARkaGRzNA4gVW6R7bXBxb9So2mgdj07jWRRgdv7BJWDDlAvJ2Asp8FtsXTMaHCSbcOWsRnrunEfgwmM/uwIrVB3A17wJ+8+mNmU8+gNbWPIflKpK+icXarVcwcl4UOgXkIyX+A3z0fRauJSch8L65iLq7AXyscTWfwba3/we/BIYg4/9y0e/px9Gvvg/yU+LxwUffI+taMpIC78PcGX/EtW+t6wbyL8Tj/Q++R75/Do4dyoIl3LpiOa4MCJjNZpDhSUpKwuTJkzUTRHdbRpb19/dH+/btMW3aNNDOYMSIEdi+fTv8/Pwqw9BlDIKARyPg6QyQ9avNo2+EdN5AIAuJu04AjbuhdU3j3PVP72C069EcvshHxrEf4PPQYrw19iKWPL4UR6jdytiNJ4fNx7UHnsCceXMx8Odp6DYuBmfyrepRFlgyvsa/392pVWBZ372EqTF1EBE1C9P7JyN6yuv44UZoCH1h+pezMHF1Tdw3+REMzVmOJ1b+ClPWd3hpagzqRERh1vT+SI6egte/zypSN67uwwujFyD/gUhMj3wEdwWZUQ5mR1aDk8OKQIDMTXp6OoYMGaKlPYsXL9ZB1vbv368/yfSEhoZi7dq1SE1NRe/evYtkna6IPkubgkBVRoDqabq6cz5GR0cjJibGI+ekMECV8Sn2AqAsUMrW4LwQ0GowBoaFoGHHO1Ev6xQu5gLpu/+J1Rm90a+5L+DdAINnPQz/z1/HZmsOyCcIt7VojCAt4knHrkXrUH14PzT0AULujcF/D7+GOwOKtlt70HIkbBoL0+6N2JV0BWlJl5C6axHWVR+OfgUXIua/h/Faj4ZWdQPpe/6BFZnDMax5NcC7Jpq0rK2lVEVrl2+ejMDhw4exdetWxMXFoXr1G2pWjokut0zCyE9StWrV8MADD2g3W7riCgkCgoDrEcjPz9fzkLnA3njjDUyfPh0LFy7EM8884/rOlLFFYYDKCKD7XV4T4QPbAEl7cMgeNy0vL3ihgFMyZaUhy5QD83Uxi3+zDmjolYXLOTY4KUs2zp++gEsZOdclMz7w879Zq2pOS8DSJ+ZjT51BGBxeCz6w4Nr507hwKQM519vy8fO/ibm5dvYE0nLNsNho3v2wlx45isDbb7+Nc+fOaXUXr1VK4cyZM2jUqJEOqMZFloHVmFWaf2SCuOiuWrXK0aakvCAgCDgBgW3btuk5Sxu9kSNHYuzYsdi1a5eek6dOnXJCC66rQhgg12Htopb80HbySxgXtAPz/7ELadY6o5xT+M/nPyPr+otGd+g6c8GP2p1Hoe3FL7EjqcC9Ky81Cdea34N+jYsxNRQtKQXlHYz23QPxTfSbSEi3APmpSFizHolFVGDZ+OGNp7DWbwzGda4Jc3YeLBYv1GrfHYHfROPNhHRYkI/UhDVYzwuNugHUatsT9X5dg7iT7I+C2ZQPS771gFwEqTRTLghYLBasX79e2/YwiSITKJKysrI0k8MFNigoCN26ddNJFo0yDLJGxoi5iIQEAUHAtQjEx8dj9OjRRSS2derUwcCBA5GQkODazpSxNWGAygigO17u0+hBvLfjHdy9dzL6DJuG+YvewML5z+GZVzcgp6UJ+75OxsXEHdh76hx+2rkXv53/CTsPpMA3fDY+jG6JtVHz8dH/bsDbb/6CsaueRZNDX+Dr0xdwZOc3OJmWhIRte3A69Qh2xKeg/fOr8FTwctzVqAnC+sxCfOshCCuiAvNFaKcOMH00FgPH/R1fmgKQuuVNfOz1OFY+FYzldzVCk7A+mBXfGkOap1nVfRLoNh8rHs3G8717Y/SUZ/D+T9nIOboZXyUVxCNyR+ylT/YjQBdaSnzo9k47HzI0ht0P7YDI8HBnSWKofaPM8ePHERISUiQnkf2tSklBQBAoCwK0xztx4sRNVXBe8jdPIokE7Ul3y+G+5iMr+RgSz+YhpGVb3N7AH/ZwvKa04zh6yoTQDm3RyN+eKyzIvpwB7+AQlFzcgtyMDOTXDEGAjxk5uV7w9yvwE7NkX0aGdzBCSr4QgAU5qeeRUaMB6lazwNvf164xOAyVXOByBJhUkdFjL168qOP+UKpDm5/33ntPJ1NMSUnBY489pv+oEhs1apSW/LBMYmIiNm3aBGagFhIEBAHXIcD5ynlL9fWYMWNAm6BFixZpJwXa9Hl72/POcF1/S2upmG6jtKLym+ch4IOaTdujW1PHeu5btzW61HXkGm8EhISUcoE3/IKN36vB38qD2TsgBMYvJVfgDf/6t6EcQg6V3JycdRkCtWvX1gEO6VFiTfXq1QPtDLiwvvvuuzrKLO2CDKLUiGH4KQUSEgQEAdciwPm5efNmTJw4USdDzcnJQVhYmJ6znsT8EDWRALn22ZHWBAFBwAoBJk986aWXwGSKlPgwqmzXrl11iH0W429UhZHpoXqMZWhoSSPogwcPasNoq+rkUBAQBFyEAOfkr7/+qmNytWjRwkWtOrcZz5FVOXfcUpsgIAi4AQJkbpYvX64NnSnx+dOf/qTVXzSEJtEwmmVINIamUfSyZcv07pNeYUKCgCBQMQhw/lHy46nMD1ETCVDFPDvSqiAgCABgCgwuon/96191LJHffvsNDRo00LF+eEyJT8OGDTXzQ8Docrtx40YdgI3MkJAgIAgIAreKgNgA3Spycp0gIAiUGQEGP6S7OzNKm0wF4RcY64fEAIiGYTQNnrds2aKDJu7evVtLgsrcuFQgCAgCVRoBYYCq9O2XwQsCrkWAdgOffvqpVnudPXtWe3GRCaIhdEBAAO6++24dF4jutAyAOHXqVB10jeJ2X19f7NixAz169HBtp6U1QUAQqJQIiAqsUt5WGZQg4J4IzJs3D7Gxsdq4ma60e/bs0YzOn//8ZzD2D3MK8fPkyZM6ESpVZMwIz0zwkZGRhRGj3XN00itBQBDwJASEAfKkuyV9FQQ8GAHG7hkwYAAYK6R+/fqFI/nxxx8xePBgnD59WkuBKCViclRmmq5VqxboLu9p7rWFg5MDQUAQcFsExAvMbW+NdEwQqFwIfPLJJxg/fnwR5ocj7Ny5Mzp16gQjwSnVXYzxQ+8ShtgX5qdyPQcyGkHAXRAQBshd7oT0QxCo5AjQzseW5xbPM6CakCAgCAgCrkJAGCBXIS3tCAJVHIFBgwaBUiCz2VwECYbWp2dX3759i5yXL4KAICAIlCcCwgCVJ7pStyAgCBQiQPufZs2aISIiAozxQzpy5AiGDx+OadOmeVwixcKByYEgIAh4JALCAHnkbZNOCwKehwBte+gBxsSmHTp00HY+Q4cO1QkVo6OjPW9A0mNBQBDwaATEC8yjb590XhAQBAQBQUAQEARuBQGRAN0KanKNICAICAKCgCAgCHg0AsIAefTtk84LAoKAICAICAKCwK0g8P+/XDl5DTmIlAAAAABJRU5ErkJggg== />
 

(a) What is the conformation of ring A? of ring B? of ring C? of ring D?
   (b) Are the hydroxyl groups on rings A

Question 8

z+8UEv6nPaxGoMg6lVWWaUtauvVjBCrzUKJFlLNkjWQNZA1UE8D6gqh2C3FA7RY1Ng2afPf+973pgKjeiDI70499dTgblN/yGrzUni5h1ioBtxPf/rTRYZaPUu23rX1te05db6vPbG+d72yxXbZZZdYffXVi4QHAMcL8PFOgB8YoNY+Fk9PMYDtuPteywhZ/4eP8Le//W1R4fStR/4YV09aNzZeZtZ23Hc+RtZA1kA/08CZZ54ZSyyxRHhvxpWuMCOgI4vls5/9bLH2n1omCjOqSeT9rrvuir/+9a8F66TWibFJZev+IsDdNddcU7gYf//73xeusd/97nfxta99rb/cYr6PXqQBxRPFCe25557x7LPPFgAI4FlwwQWLau8Y3Zlnnrkomrrddtt9YB+uW/21XdIrGSGB0d///veLBRU333zziBgfN/xg19jp4L/G/3LMdLuefT5O1kC/0YAsMXVGsMfNgCCD6VprrVUEZLJSDc6WlqguzGhQ3n///ePtt9+OO++8s2CcDMZ9Xdw/tyEXhXs27oqvosMtt9wyZp999iKolYswS9ZAuzSJG93xAAAgAElEQVSgr3FZlwUTyy3N0EhMbvl7/6d9xAelZIjqfVr53CtNGrUCKOSGG24oBqjJz/8lTvn98/HiuyfGZU99JXZepFdediv6z7/JGsgaaIMGLJfBgNp+++2bOpoMFTVK1l133aIuUVqhvnqpDvFCtv3sZz8rqPtTTjml2F8gdl8Vk9FXvvKVwrKWqgwQibv4/Oc/H9ggJQauu+66+OUvfxm33XZbEb8x00wz9dXbzdfdizSgv8kS07YwstxgaW077RJLpF/OPffcH9jHeoKyPxtNeGjktnsdomBxoaIFNrLUIibGk3++OoYu+6GI2/8ZJ5/3YGx3+MgY2sjd5X2yBrIG+r0GuHW4wwRZWpG+UWFV3nTTTUUMkUG4mcKM2BJg6OGHH+6R1bEbvadG9zP5rLPOOkW9pYMOOqgobGfsHTVq1NRJSUFFmXbAj0mLfi+44IJiwmr0PHm/rIFaGrBchqzERRZZZCrIBoa0MS8FFRM4AswFUXvZJhlCSQwus3ZJr3ONnXHGGfH0008XabDFTb49Ji6/bbU44uQdY+GIeOjs0+Nfr7Xr9qfvcaTmagzZypq+zyGfvW9rAGvBnfOd73ynqRsBZJZaaqliYm92FftZZ521GKyBiL4oypKIgwLksD8kFbIzESUx+ViGROD5Cy+8EH31ftP95PfeoYE555yzSGrA6lhUVZC0tkbqtUP7YH4VQm13AlWvAkLjx48vKkzuuOOOscwyyxRKmXDHpfHoGl+K5VbZKb4te/W538ZJf/lv9OVQIf723XffvbBeVcvcYostimwV1DsRNZ8KSaEJk3zjG98otluht5ZMfOGOuGHMK7W+inj9kbj+1ucie/prqydv7f0awPxw3QhU1m8MnDKcsEEWUF1xxRUbvolx48YVx7GoIykXXUyf1ScSk5BiEar30W9Vte5r8TPiqY455piici+dNlLI7qqrrorjjjsufvzjH4dA1yxZA13VgJg7CQjmOPF2nbVD7dZLP//ud7/b1dNP8/teBYRYHgaVVDsgYlzc+Kt/xfh/nRIHHHRuPLXoYhHxWvzphN/FE304TlFBqJ/85CdFqq+S4RCwpQIUgLvnnnuKRqGIJClX1E7BZRpDtbz10C/joNP+HQstOkf1V1M+D1skFn3mrDjw7PvifWhVe9e8NWugN2kAEyGIV9VoxoA4IPEstuk/+gwg1MwErQCjlPmvfvWrxa2K9ZEmXy7CaD2jvffee5pt5X0cQz/Vd/uS7LfffkUxO6VJytJZITs65spIDFL5t/n/rIFmNTD//PMXRr/4O9mJ6gaSWu3wvvvuK2LX9HeV4aXPt1N6TYyQ4Cd1PMQHURCZ9NSf4uIZ9ojTT10/5gYK/rdGPHfdJnHZ6JPirDt3iONX6Xup9ILAr7322sIdJihcYag33nijqFHiYVsVm3tQam61ywxLVFNeuyUO3+GiWPqiK2LxmWvuERFDYsRGu8ZKX90kDl766jh5rTnr7Zi3Zw30Gg2ce+65hcuLC1msgLo+5awwsS76zcUXX1y8uMkMlp3JM888U2REGYSJxVqbiRFKvxGvgF3qSwK4WbBWvAXBQGPXuMTStmSMps9pH5llmOutttqqL91yvtZeqgFz/T//+c+CocS+zjHHHPGtb32rAOoSF6xMr3QF1pdRsscee0zT/9t1W72GETr44IOLCPF99tmnuLfJ40fHj7+9f/z5kdFx3UMTYnK8Ho/+8954swCCT8Qpux0alz/d9xw9anQISlxooYUKEORmxRvw2avkessttxRR9I0/4EnxzGWHxNnjV4mVh1PO5Hjt3vPj0H2PiGMP2zk2+NJ2cfS1z0VBoA2aN0at+Xacd/DvYuykxs+Q98wamB4aOO200+Lb3/52rL/++kUq92qrrVZM2tzmqZia2BXACLMDABlMGym9z8goF2VrNkaIPvxG+rl4h74kxhnBqMBNegE+/ifAT71Cdlg3IQxZsgbapQHgR1V4scGyyWSLI0UwQ1zXJ510UhHPpjBqu5mgdA+9ghFiiclG+OlPfxqzzTZbcW2D5vpU7HPlczEFFk253KU2OTT+vEnt+BiWoeBjdUB6swA63F0G7LIo6IaqZ2FCwsSgY8CS0ULuv//+4n3aP6/ErRfdHK/OtV0Mt9vEJ+O8Hb4Zx8xyZjz8ly1ihlWWif23GRqrP3p2rDXb4Jh7kXnjzdG/iVvG7RQjhk97pPwpa6C3aMBSGVxff/jDH4p+jcVIKe2pyGHaZtzwHWDCbSwl3GeB0LUEA2s/KbqqRT/22GPF/uk46bjlgoppW3kf6eX6LDapLwm22UQjIwwAaqaQnXiOMiPXl+47X2vv1gCArt9PD5nujJBgPQMeK2+HHXZoSgfAjwArcQPDhw+Pe++9t1gfqKmD9PDOKY6heh0fsQYAEveXwTWJOAQAqDYIAnxejMefejMGzTJLFBU+Bs8f6+59aOy37ciYMPrvcfdLEfHS2Bj3Hnk2aOhsMeSdZ+ORF95Op8jvWQO9SgPGhB/+8IcFGyRxQoE1Ul3kMG1TfC3tg8kQeKneTxLHw3YI9EW1q01irAGULMZa6ziNnAsTJG5JEHVfEtdbLgbJKGu0kJ2K/4mN60v3nK81a6AjDUx3Rsjia/z6AE0jJeu5lQQ2CtiTscFCUQ/jhBNOKAZKVmFvlhT/JG21LGKkMD+AEqowyc033zx19Wu1S1JAWfo+Bg2LOWeJmDxpclSKjYNj1mFvx+1H7RJP7n54LCm4qhTCUJk8MSbF0Jh9lvYGm029nvxP1kAXNXDppZcWLJC+joHprMhh9T7/93//F4ccckgRQI1mN8bILuOOVhtHPIy1yICgBJgwSNXHwQhJ4AAUUkHFtI8Abm7uBKS6eMs9+nNrPKnCTc/WXmu0kB3jzTh13nnn9ej15pNlDXS3BmaoMJemk2A+PvGJTxTUMjBULxjYgCjNTkAkwMT9tfbaa4flN1huvR38lNXLBcjKRS8///zzU0GOgVtKq3sRTI2yx3gJxJRVRr7whS8U6wEJGFMDZYq8Ebfus0ysccMB8ejo3WLEq5fHRh/dKC4fvl/cdtc345pVl40DH/9C/P65v8Qmc0f899drxML7Lh1/feyc+MwUL+R7x8lvWQO9QwOrrrpqEXejDzQj3F1cWFjUxx9/vOhjirICP14m/fIYY1zBJGOJLLbajAjgZKRYE6m74haauZ5m9zV+igWytpN3gdIAIuYsfXbM8jZZq5dcckkR3Nrs+fL+WQO9WQPTlRFiWWA4BDeWBygKS+AnMT8J/KhlAfwYwPqiyNYQqClOgVUqSFrWi/uig5133rnJ25o1Rm63fXz88rti7JsRI4YMjyU+IhXk5Nhqyxdi1NAhEe88EFdcMzY22WLeGHv3S/GxbXeOlTMIalLPefee0oC6PYAJo+Dqq68Oad7icHzG3Oj/3tO2tA8QxD3OcBBzhwHCetQTTMgvfvGLYmFVFamBmkbOxUABggRz9kUQRB9igwSmYqAtMwII0Vs5c8x+gJD7lDoPY

Question 9

ObU+XqtKW/vyxqYbjFCXFoKA3L3KOtOgB/F0rbddtsC6Gy88cYhzRVIMEhhStC6fRUEuUdxBeIZuAGt38NSVddD/SQUvOw5IvA7xRMVGyKKlML0f/l95o/vFads/r+47JZxMXnYp+P4e56Lh8c8Frdd8Yv41U1j49HH7oyfbDEiJr98e1z2+FfilANWjmHlA+T/swZ6kQaMDamMvkm4XNCwoyKH+o/6QoAKd/mrr77a6V1tuummxWSfJnwuNCKOpvpcxh3XYzu3PFalr8pnPvOZwsUlXkqVXo4BgIgejMGMMq+ddtqpYIGAIKCSXrNkDfQ3DUw319hRRx1VsCGKoaGxE/MDAHz2s58tCiwZpPoy6OmosaCZBW9iw6zwjAkCioj0VGXHie2pnpDYKBkuK6ywQkglnkYmPhvXnHF+PL/2d2KbkVNcadN8//oD8etTroo5tt4zNhgxZJqv8oesgd6kAbWCTNRiUritUoyQIF1ghyGR4nZsq7WPRUTt02gWCoDDMEv96yMf+UgBdFRUlsgB/Mhu5cpnmLm+/iDip3bdddciTZm+1DXjst96662L2wMIGW3qORmXs2QN9EcNTBcgxMKTsbHYYosVKazAj4ElxfzMN998/VHXPXJPgqYHzViD6Js8KSbFjFHrqx65sHySrIEGNQDYqM/DddyKYDfOOuusYgmJZtckEqsI6IwePbpwXzs/QCbFXBC2+KX+JphngFGBV8xPWmjV+AwcYuZzynx/e+r5fsoamC5AiLWB8VhjjTWKCqWYnwx+yo8l/581MHA1INNLEUUp9Gr1NBK3U94HuywrE5PUSCbqwNV0vvOsgawBGpguQMjCidbxEfOTJWsgayBroFoDI0eOLECMsUJgtEBoK8xXFzm0TeXZtI/9MM7LLrts4c6pPm7+nDWQNZA1UK2BGj6U6l3y56yBrIGsgZ7VgLpg4nUAmlQssbMih8pxiG9JxRN79orz2bIGsgb6qgYyEOqrTy5fd9ZAP9aAmlkpVRvAUXUd61Mucuj2bVPkUOapGjf/+c9/CiCUam/1YxXlW8sayBpokwamax2hNt1DPkzWQNZAP9SAoGlZW5tttllRSHTFFVcsqiBbXFWlZ0HRyk6oiWMJGkttyILKIKgfNoZ8S1kD3aiBDIS6Ubn50FkDWQNd04AsLSyPuj1nnnlmEVuonIQaN7KdgB71fNQPEleUJWsgayBroFkNZCDUrMby/lkDWQM9qgGgRwq3l6KrltLYa6+9CjD0q1/9Kqd29+jTyCfLGuh/GshAqP8903xHWQP9VgOWxVBkVfG/c845py0gaNL4e+KKy++Ilya9p7YZZoyhs38kll11jfjEgjNH3UDKyePj3iuuiNvHTY7Zl1ktFnvhX3G3/5dbPzb+1PBo5+A6+eX74srLb4sXJ84Ycyy/fmw8at5oadnk1x+Ki069NN798h6x1cgPVd3b5Bh/7xVxxe3jojLnyPjKRivHPC2dpMnmN/nluO/Ky+O2FyfGjHMsH+tvPCrm/cB537+2ybMvF+tv/KkY3pCCJ8bzN10Q51/3fAwdsXpsvsUasUBH9WRLz3TYkl+Mr66xQMfPsbT/+8/99XjoolPj0ne/HHtsNTI+VLcBNamntHutZ9iQDtMBar13fM2Tx98bV1xxe4ybPCyW/OJXY40FGlL+lBNV62jUTPFg6jfd0Fdq3V2n2yy62tNy5ZVXVj73uc/19Gnz+bIGsgb6iQb+8Y9/VGaeeebKxIkT23BHEysvXrdHZeGISgxdu3LO/Q9XLv/OIpWIuf+/vTMBi6rq//iXAZRNQRTBDVSQRZRU0FdcUFL7p1m9mWZpab6a5KvmimiRC65kiqaJuYWGpZWZ+waK5QK44QZGQKCyyzoDyDLz+z/nDjPMDDNsJurbuc/DM/eee875/c7nXOaeOduXhq27RUU6LUgp6+AoMgfI5qMISlKe/0ZinWkaekNKmb+8Rc0BajfjEknqkU35/YO0cqu8HOKIydQaIPMxJyhfSx7SrIM0yhyEDrMpsj5GtORVnyBp5i/0VnMQ2s2gSzrsKn2z+Yh+qyPgouv+5AIjGrp9N71lbkh9t/5Vq1t5YZPJBiCLsSe1MlLPQPUZqKx3cQRNbg2C+Rg6oQ2yegb1vtJVh3VhqNOYNp/L79PBlVvplvAPkEdhk20IsKCxJ+tbKE1Gmtc6vWq0G393W7XWhhePwAlwApzAkxJgSvJMU4wtsX/yQx8WnZzQimVk1Art2jnC+91X0Ra5OLNpD+4W67IggrGlJYyE26rnuuI/SXjD8pcVRGH1OxOw5Vo+ZADMPAPw454QHPjSG+Za3BEZW8JSXiAtd59eUF3s1iWOuocVeBj+K+JgiGZWvTB5WSD8hrVRj6LlysiyNUy0hGsP0lIvZp4I+HEPQg58CW9tkLVnVOdQXXVYfz4qJjV9lhUgavU7mLDlGvLZgwMjWLauOxWVnAFoMtK8Vo/9LK7q0b/1LNzjNjkBToATqE6AiRd36NABt2/fFuR6qsd4khAZSrLSwCRbbQYMhJ0RIBPfQujaPfjL1BSpF6JR2m8e1vgOhRZVP92GZWLcCl2LPX+ZwjT1AqJL+2Hemnlwv78NvssP4WGLwRjrHIsdP9wEev0XW4P/C9fyKwievxAhsabo2VOCUgCGOiyU/rUfn316Gk26tUdBXCpcfP3RPmg0FkeKoZ+7FvMCizDa6CdsOPIQFtk94DnXASl7l2H1OUKr4jhkv+SL9R/rKXOn4nv4+Ytl+PaONV6btRBTvWyUw0SyvChsWbAChx5YYMj4bojdthc3qAd81s2C2e4F2HihDN2nB




Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
Marked as best answer by a Subject Expert

Pamela.irrgang@yahoo.com

  • Sr. Member
  • ****
  • Posts: 323
Answer to Question 1

(a) The -CH2OH group has higher priority because the FIRST point of difference is the underlined O atom of -
CH2 OH that takes priority over the underlined C atom of -CH2CH2 OH.


(b) The FIRST point of difference is the underlined O atom of -CH2 OH that takes priority over any of the carbon
atoms bonded to the central carbon atom of -C(CH3)3.



Answer to Question 2




Answer to Question 3



Answer to Question 4



Answer to Question 5



Answer to Question 6



Answer to Question 7

 B

Answer to Question 8



Answer to Question 9



Answer to Question 10



Answer to Question 11



Answer to Question 12

 B

Answer to Question 13



Answer to Question 14



Answer to Question 15



Answer to Question 16



Answer to Question 17

 B

Answer to Question 18

The less stable molecule will have the larger (more negative) heat of combustion. Because these molecules are
constitutional isomers with virtually identical ring strain, any difference in energy between them must be the
result of differences in conformational stability. As listed in the answer to Problem 2.39, the cis isomer has two
chair conformations of equal energy, each one with one axial and one equatorial methyl group. The trans
isomer has chair conformations of different stability, the more stable of which is the diequatorial conformation
that has no diaxial interactions. By virtue of having diaxial interactions in both chair conformations, the cis
isomer is higher in energy and thus will have the larger (more negative) heat of combustion.






 

Did you know?

In women, pharmacodynamic differences include increased sensitivity to (and increased effectiveness of) beta-blockers, opioids, selective serotonin reuptake inhibitors, and typical antipsychotics.

Did you know?

Blood in the urine can be a sign of a kidney stone, glomerulonephritis, or other kidney problems.

Did you know?

Drugs are in development that may cure asthma and hay fever once and for all. They target leukotrienes, which are known to cause tightening of the air passages in the lungs and increase mucus productions in nasal passages.

Did you know?

According to research, pregnant women tend to eat more if carrying a baby boy. Male fetuses may secrete a chemical that stimulates their mothers to step up her energy intake.

Did you know?

People who have myopia, or nearsightedness, are not able to see objects at a distance but only up close. It occurs when the cornea is either curved too steeply, the eye is too long, or both. This condition is progressive and worsens with time. More than 100 million people in the United States are nearsighted, but only 20% of those are born with the condition. Diet, eye exercise, drug therapy, and corrective lenses can all help manage nearsightedness.

For a complete list of videos, visit our video library