Author Question: What would the correlation coefficient be if all observations for the two variables were on a curve ... (Read 690 times)

jCorn1234

  • Hero Member
  • *****
  • Posts: 545
What would the correlation coefficient be if all observations for the two variables were on a curve described by Y = X2?
 
  What will be an ideal response?

Question 2

For the exercise, use the first 500 observations only. Using data for average hourly earnings only (ahe), describe the earnings distribution. Use summary statistics, such as the mean, median, variance, and skewness. Produce a frequency distribution (histogram) using reasonable earnings class sizes.
 
  What will be an ideal response?



Jayson

  • Sr. Member
  • ****
  • Posts: 350
Answer to Question 1

Answer: The correlation coefficient would be zero in this case, since the relationship is non-linear.

Answer to Question 2

Answer:
ahe

Mean 19.79
Standard Error 0.51
Median 16.83
Mode 19.23
Standard Deviation 11.49
Sample Variance 131.98
Kurtosis 0.23
Skewness 0.96
Range 58.44
Minimum 2.14
Maximum 60.58
Sum 9897.45
Count 500.0

The mean is 19.79. The median (16.83) is lower than the average, suggesting that the mean is being pulled up by individuals with fairly high average hourly earnings. This is confirmed by the skewness measure, which is positive, and therefore suggests a distribution with a long tail to the right. The variance is 2131.96, while the standard deviation is 11.49.

To generate the frequency distribution in Excel, you first have to settle on the number of class intervals. Once you have decided on these, then the minimum and maximum in the data suggests the class width. In Excel, you then define bins (the upper limits of the class intervals). Sturges's formula can be used to suggest the number of class intervals (1+3.31log(n) ), which would suggest about 9 intervals here. Instead I settled for 8 intervals with a class width of 8  minimum wages in California are currently 8 and approximately the same in other U.S. states.

The table produces the absolute frequencies, and relative frequencies can be calculated in a straightforward way.

bins Frequency rel. freq.
8 50 0.1
16 187 0.374
24 115 0.23
32 68 0.136
40 38 0.076
48 33 0.066
56 8 0.016
66 1 0.002
More 0

Substitution of the relative frequencies into the histogram table then produces the following graph (after eliminating the gaps between the bars).



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
 

Did you know?

Medication errors are more common among seriously ill patients than with those with minor conditions.

Did you know?

Cytomegalovirus affects nearly the same amount of newborns every year as Down syndrome.

Did you know?

Immunoglobulin injections may give short-term protection against, or reduce severity of certain diseases. They help people who have an inherited problem making their own antibodies, or those who are having certain types of cancer treatments.

Did you know?

A cataract is a clouding of the eyes' natural lens. As we age, some clouding of the lens may occur. The first sign of a cataract is usually blurry vision. Although glasses and other visual aids may at first help a person with cataracts, surgery may become inevitable. Cataract surgery is very successful in restoring vision, and it is the most frequently performed surgery in the United States.

Did you know?

About one in five American adults and teenagers have had a genital herpes infection—and most of them don't know it. People with genital herpes have at least twice the risk of becoming infected with HIV if exposed to it than those people who do not have genital herpes.

For a complete list of videos, visit our video library