Author Question: What would the correlation coefficient be if all observations for the two variables were on a curve ... (Read 605 times)

jCorn1234

  • Hero Member
  • *****
  • Posts: 545
What would the correlation coefficient be if all observations for the two variables were on a curve described by Y = X2?
 
  What will be an ideal response?

Question 2

For the exercise, use the first 500 observations only. Using data for average hourly earnings only (ahe), describe the earnings distribution. Use summary statistics, such as the mean, median, variance, and skewness. Produce a frequency distribution (histogram) using reasonable earnings class sizes.
 
  What will be an ideal response?



Jayson

  • Sr. Member
  • ****
  • Posts: 350
Answer to Question 1

Answer: The correlation coefficient would be zero in this case, since the relationship is non-linear.

Answer to Question 2

Answer:
ahe

Mean 19.79
Standard Error 0.51
Median 16.83
Mode 19.23
Standard Deviation 11.49
Sample Variance 131.98
Kurtosis 0.23
Skewness 0.96
Range 58.44
Minimum 2.14
Maximum 60.58
Sum 9897.45
Count 500.0

The mean is 19.79. The median (16.83) is lower than the average, suggesting that the mean is being pulled up by individuals with fairly high average hourly earnings. This is confirmed by the skewness measure, which is positive, and therefore suggests a distribution with a long tail to the right. The variance is 2131.96, while the standard deviation is 11.49.

To generate the frequency distribution in Excel, you first have to settle on the number of class intervals. Once you have decided on these, then the minimum and maximum in the data suggests the class width. In Excel, you then define bins (the upper limits of the class intervals). Sturges's formula can be used to suggest the number of class intervals (1+3.31log(n) ), which would suggest about 9 intervals here. Instead I settled for 8 intervals with a class width of 8  minimum wages in California are currently 8 and approximately the same in other U.S. states.

The table produces the absolute frequencies, and relative frequencies can be calculated in a straightforward way.

bins Frequency rel. freq.
8 50 0.1
16 187 0.374
24 115 0.23
32 68 0.136
40 38 0.076
48 33 0.066
56 8 0.016
66 1 0.002
More 0

Substitution of the relative frequencies into the histogram table then produces the following graph (after eliminating the gaps between the bars).



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question
 

Did you know?

Approximately 70% of expectant mothers report experiencing some symptoms of morning sickness during the first trimester of pregnancy.

Did you know?

Most strokes are caused when blood clots move to a blood vessel in the brain and block blood flow to that area. Thrombolytic therapy can be used to dissolve the clot quickly. If given within 3 hours of the first stroke symptoms, this therapy can help limit stroke damage and disability.

Did you know?

The most destructive flu epidemic of all times in recorded history occurred in 1918, with approximately 20 million deaths worldwide.

Did you know?

Hippocrates noted that blood separates into four differently colored liquids when removed from the body and examined: a pure red liquid mixed with white liquid material with a yellow-colored froth at the top and a black substance that settles underneath; he named these the four humors (for blood, phlegm, yellow bile, and black bile).

Did you know?

People with high total cholesterol have about two times the risk for heart disease as people with ideal levels.

For a complete list of videos, visit our video library