Author Question: How to find the valence electron of transitional elements? (Read 1211 times)

stevenposner

  • Hero Member
  • *****
  • Posts: 608
how to find the valence electron of MO?
is there a formula to find their valence electron?



clippers!

  • Hero Member
  • *****
  • Posts: 828
Translation:

How to find the number of valence electrons for a transitional element?

How many valence electrons does MO (Molybdenum) have?

http://answers.yahoo.com/question/index?qid=20071203134233AASWPwh

There are six of them



Related Topics

Need homework help now?

Ask unlimited questions for free

Ask a Question

Melanie

  • Full Member
  • ***
  • Posts: 204
The periodic table tells it all. The transition elements start with their outer electrons being in a 4s orbital in which there are 2 electrons which are donated. Then the whole row has a valence of 2+ to start with.  Then B Groups start with 3d1 electrons, which also can be donated.  That gives Sc two valeneces of 2+ and 3+.  Next is Ti with 2+ and 4+  V tells you its valence!  etc
There is also another factor to consider and that is when the 3d orbitals are completely half-filled it has more stablitlity as all the electrons have the same spin
Cu can be one or two +  and Zn is 2+ only because the 3d orbital is filled, and it can donmate the two 4s2 electrons.  Good luck.  Isn't this interesting?.



bobbysung

  • Hero Member
  • *****
  • Posts: 519
It is easy to determine the number of valence e? a TM metal has (provided you have a PT!).  Just find it in the PT and look which group it is in and that gives you the number of valence e?.  Ti (Z= 22) is in Group 4 and so has four valence e?.  Re (Z= 75) is in Group 7 and has seven valence e?, Ag (Z = 47) is in Group 11 and hence has eleven valence e? , and so on.  Up to Group 7 the maximum oxidation state exhibited by a TM is its Group number.  Ti(IV) as in TiO2; and Mn(VII) is found in [MnO4]^-.  Fe does not form any Fe(VIII) cmpds, but Ru(VIII) and Os(VIII) are found in the tetroxides RuO4 and OsO4.  This is the maximum oxdn number known.
The problem comes in how these valence e? occupy the nd and (n+1)s valence atomic orbitals.  Let's deal with with the 1st Row TM (Ti ?Cu) first. In the gas phase the uncharged atoms have the e? configuration [Ar] 3d^n 4s^2  We will not discuss why the higher energy 4s AOs are occupied first  but it is fully understood.  The exceptions are Cr: [Ar] 3d^5 4s^1 and Cu [Ar] 3d^10 4s^1.  A hand-waving argument of extra stability associated with half-filled and completely-filled d shells is used.  Just be content that it is a quantum mechanical effect called spin exchange.  When the 1st Row TM forms the M^2+ or M^3+ ion (the common oxidation states of 1st Row TM) the higher energy 4s e? are lost first.  Thus Cr(III) is [Ar] 3d^3. Take Fe(0)(g) : Group 8 so eight v e? [Ar] 3d^6 4s^2;
Fe(II): [Ar] 3d^6; Fe(II): [Ar] 3d^5
When you get to the 2nd Row you throw all these "rules" out the window.  You can look up the Wikipedia entries (RH panel) for Ru, Rh and Pt and see if the half-filled d shell works.   So only an expert will know what the configuration is in the gas phase and questions like this should not be given to undergrads until 4th yr.  However Mo is in Group 6 and has an e? config [Kr] 4d^5 5s^1 so the half -illed d shell works here (but W the third row member of Group 6 is [Xe] 5d^4 6s^2 !).  So the best answer quoted by vekkus4 is wrong on two counts.  Once again when forming the cations the 5s e? are lost first: Mo(III) is [Kr] 4d^3.



 

Did you know?

ACTH levels are normally highest in the early morning (between 6 and 8 A.M.) and lowest in the evening (between 6 and 11 P.M.). Therefore, a doctor who suspects abnormal levels looks for low ACTH in the morning and high ACTH in the evening.

Did you know?

If you could remove all of your skin, it would weigh up to 5 pounds.

Did you know?

To maintain good kidney function, you should drink at least 3 quarts of water daily. Water dilutes urine and helps prevent concentrations of salts and minerals that can lead to kidney stone formation. Chronic dehydration is a major contributor to the development of kidney stones.

Did you know?

Disorders that may affect pharmacodynamics include genetic mutations, malnutrition, thyrotoxicosis, myasthenia gravis, Parkinson's disease, and certain forms of insulin-resistant diabetes mellitus.

Did you know?

Coca-Cola originally used coca leaves and caffeine from the African kola nut. It was advertised as a therapeutic agent and "pickerupper." Eventually, its formulation was changed, and the coca leaves were removed because of the effects of regulation on cocaine-related products.

For a complete list of videos, visit our video library