In Part III of Laboratory Period 1, after treating the crude extract with activated carbon, the solution was somewhat lighter in color, but still quite dark. Knowing that trimyristin is in fact a white crystalline compound, why wasnt more activated carbon used in an attempt to remove most of the colored impurities?
Question 2Propose two syntheses of tert-butyl ethyl ether. One of the synthetic schemes must use an SN2 reaction and the other an SN1 reaction.
Question 3cQbq1nJDzJizf4uFujqYl2xT2cna/e1MLtZL/1gG5lP9lLhgooHLpbO830+WmVQ344pzF3qIhUbEfIDgSgBvu6Rtp0nt/sM3/nac5h/NYitSLhPCxE7NM/QSMHam01S2zCwlhzPvXCndjTL6NC+ePLZZJFkZH75mZvCkj/HDYlnsGJ2xd2t5Q5oqUaoKtn2FLQVe0D6beeCKkdzLKiUmralt+V0Kwz5E3OuZDHE+OyrxFzuwl7s+mxyHyXxtxB54WXQ9lkKKi0uAoHBIQBBVSSuH3zwAXviiSfYBRdcoM6lmjp1KhszZoz6EZ2D2Odzn/scEx8xVyD2GTVqFIt9Ro4cyWIfMScr9hGuSLHPYYcdxsRHdO4Sm/wgS34IpfuuME/ykzlJUBlsLdHsw1yYJSdO3Lkc9tKNLuBYunrHsWK2C8y/Kv5ff0zsXnLJJcXPPGeO2tEpsztlvCltDhoRplikUaqk/Fy58wv57XFBpzM1xwMEaDq9eYxUyOm1nd60RUhzsJJtT1Ocij0UTogUvT2n2CmkmHJbIcXMPD4f83q96T/8nIePIsWeo9q2pe2HFPJiVyviI79XfI069X6KResGW0hZcQ0IDBYBhE3nT4VCtv/+97/EfemJR6Wi559/njo7O9VsREjmYcOG0Re+8AUKh8PqvgilnvwRaZKPyd9znRdpZ82aRb/85S+j5ieFTc+jUEarm36xsj6x3kTvHlo6ci5tUa81UztbT9PyyKcckgge2ECg1AROPfVU4nOu1JDf3E2Fxo0bV2oTqvJ+3/nOd+ixxx4j/pKKLrroopKVsZevxzNy5pLo/fiyEmG+rEQ+ocz72qihbibdr16pkLPDSwtPHE59+7ZR3ZTFkfwUC3W+fAtNzFmaXtq/L0CjJ03UhFGXQ1WT3kah7Q2UbcWL3rZNvCyRUNi80yuFts5pgJqgkm3Pr4TlmKqXdj7URM92ER0eNW/EiI9px4NryekTB/RksdbT4b290bMfEx35FVrZUJ+1LUQTZ/xP07Yypkp/Qtu2+tsPUcgTeJkWSDHaWzctJWVFpBdClFgvs6+nm3rqxtPYbI0+vYk4CgIlIQBBlSdmHnmKeBQw4vOjaNeuXcRd6eJXHn300TRv3jw65phj6JFHHqHzzjuPduzYUeK1buQHmUIW+2qaeRjRJ3EriXre2UvP/WktbXkmcVCxuMl7Sz2pfQZZUPG1KIJ8LYpsi/slcsEeCFQWgeeee44WLFjQb6PFIrRivSTxEQJKfMdWfAJivTAhTsULqo6ODuKu1MW/SZoc5Y4ld7ejl9d/M02qdId66Y8N80h/v9rrJas3SCvnjCY5PzLYKbh5WcHPVE1eipk8W75HR/CXdmk3vk7Wh63/S+cuuV09re30pr0i5aDmfhVme0phKubAQWqqH0erpN/onKbrrHzdqJVZ143KlYemrnMlTjqvbVtyPyQpYYavyS92ZUFlcrbT3Qsr5bVuhgLicM0QgKDKUNXvvvsuPfnkk7Rt2zZ68cUX6f3334+n5OF96eyzz6bLLruMeFQ/Ou6448jn8xF3/yFx7vXXXyfu7hdPX5od+UFmIF94M83K8Ga17Y/raKZ+bdSsxNtUkgSVYnKS9+6FEaFVmgLgLiBQMgLf/va36fHHH895P/GSRAgnIaDESNT06dNL/KIkp4lVm2Dr1q3EXX3ou9/9riqueEAQ4aJO8v9iP/Y9dk4+FjuX6diECRPo4YcfjjPcv2MdTTo/8mzU23y0vWFW/FyundaH+Jv15ZE363weFW26fAZ18/wmxPPjo0QNsQVQc+WWer54nd7UvNMdqWTb05WnMo710Y51F9D5a/uhqPhoZZCPVg7k5ae2bfE+gW8Lfb4gsS73Qwp7sSsLqtiLicqoO1hZ8wQGy5ew0vJ966232K9+9Ss1ZLIILMEbRvxz/PHHs8WLF7NHH3007UKgH374oRqMYvjw4eyVV14ZoqLLvsvZo+sw7oXtkCY+W2OzrqU5VLwzMUTlwG1BYHAJ/POf/4z/bct/52JfzG8UYbvvuusu9tJLLzERJAFbaQi8/fbbrKmpKeUZzD0AMtZXcv3197tY+0re2p1SQAqTWz6Vc1+e+8Hf2qvpvdbEBPvYsZwZZUigmeci/T7lU+ZC7l3JtmdAWDmHw9Hojup/XczKF2dW67kkQSlyz9PKNyiFLxGkMoW932mR/q4TES0Tf0fiWNYILil54gAIDCWBmgxKwd9Wsra2NrZhwwZ2zjnnqJ0o+UeJu/EwEb5XhO49ePBg1voRec2dO1d9MDgcjqxpB/dkfwQVY357IvJUPCqVLKg0q58PruXIHQRKSWDZsmXxH3IR6EWE6L3tttvY3/72N/bJJ5+U0pSavZd4boow9Lfffjvjo/1qgJ7YM5jPh1QD7gghJfZFvYj0g/WRK8EnPRd1jbGgPHKKzPuJjiAxgz3yQirQYo23tYG+pNIKKt7ZLDhwQKQMXe1e5nI2M7HMR7PTzfyd2hjX5Ww7C3Uxr9sp2V7eQZMyt5p8zki/7TwCn7aW8rk+dxpN2xpQwBPJ1hxh0zO92E38HWWPEpi7VEgBAqUlUBOCSrxl5i557NZbb2Vf/vKX1ch5yT/ey5cvZ9zFjwWD/XtcrVq1Sv3B/OEPf1jamku5m/ZBlm1BPcYDr1r1iRE4PqweyQ2CKoUqDlQXAe7Ky/jcKbZmzRr29NNPs48++qi6ClimpRFiSIwM3nLLLeyMM87QPIPr6uoYD7DDfvzjHzM+t42FQiHGXSzV56oYsSrlFvAmBFB/BZVHWt8v9kwNehPhpcnYPKAIbZpObx7R3jKOIoQ7mM2oxIVe7LdQ/G+wuuM2lqXtvDF0uK1MSTNCpzM7B0VslLL9pb+X9Nueh9hJn0f2o5q2lcc95PTa0U/J1pyCKv2L3YSgyuVpk71MOAsCpSZQlYKKR9djfN4T++lPf8pOP/10NcR47EeDR89jfB4EW7FihdqhEu56hW5Op1P9UVIUhYl7Du0mP8j4Wg0ZzcmyeCQE1dBWIe4OAlVCQKzJ9/e//51df/31qlgSyzzEnsHCrfKss85i69atU0VWslvlz372MzUtnztVchrh9ua4nURm1pG3BdrFex3tUVclvkZVovNvYu155Rdgdi54FL2RNdqamT8QeZjLndjC16EKM5cpIaaMjQ7m5iM9jcbEYu9xj4Wys53DC3gSPHUm1ux2M0ejMV5nAx0FzKt6Sp4oyGyxF6ClcPkroqAq5MUuBFXJGxhuWCQCVSOo/vGPf6hvOE877TQm5jLFfrx5lCg2Y8YMtnLlSubxeNS3n8VgJ/z9xZtVsb7UgQMHipHlAPOQBRV/02g0MZNJ+zEa9Ikfo+gbPnnhSAZBNcA6wOUgUJsEhKvkzp072Y9+9CPGQ8lrnsHCdU+sz3fvvfeyd955Jyugp556Sn12izx6e3uzph2ck53MLI1+WDxded2myy3PB5GFWCezxOa/8HwbY/NVs+Qa7pBFHV9QPWpCUQRV0Mv00fI1erRrYnljCxDrrNHFY8vMds4s7qqua5TW+mIsvg5Y3PYsgCvuVIg1G6MeJQMc5cxU9KK0LTVzuR9S2ItdCKpMtYTj5U6gagRV7K2mEFNf/OIX2Q033KD63n/88cdFrwPReZg4cWLcv7/oNygoQ/lBlnDniwnLtP/rraxDHsmSfmy1w/gFGYSLQAAEqpSAcJX8y1/+wn7wgx+wk046iYmRf/GMEXOexBxUHgGV8TX6GF+vL28Cwh1TzGkTC57zdf3yvq7YCf2OxIgHkZHFPKIz3oc/N42SCNPbIgEpYunleVli1Cv7KJV2BEm4CcYe0cXo9CbysLBkqRhoiYpCaYSinGwXPNtdjUzHWZuatRTDscWQB2kEJ1aX1fp/ol3wvoNU/5nKK6fX9hW0/ZBCXuxCUGWijuPlTqBqBFUgEFDd/ErhenfhhReqnQe+qG4Z1a/2QZZWQPEfIkWnZ0ZzI3O2tMd/qOOFCPuZKdoxiE2qjp/DDgiAQM0S6OnpYcLF+Xvf+54qmIRwEs8Y8QLr5JNPZldeeSV3HXMXHNRDPLdPOOEEVZAJT4Kh3To0o1R8cVHm8qcPehDwu5gh+syMPHO5W19MAcUKEfJpBBcZbKw97VRd7o5tk8UcMZsvkVDuxBbe6Q2zYKCLC9bU8nQ6zWqdkjzKU1a2x4Am/x9gzaaoy2IeYiD5anxnLCjNHdTUfwY48vy6bIIqUz9Eczzpxa7PFouMiTlUGfDjcJkSqBpBVSq+IjKgeBgsXLhQjTpVqvviPiAAAiBQKgLiBRVfB4pdcskljK+zF+lo8+feyJEj2ezZs9W5UcLNWgSbKMYmQtWL5+qdd95ZjOwGnEe4w5niHq03NTKXx8v8fj/zelzMaop1/BIeAQ5/+jDPXZ7GOMNYZ9JosTFXi5cHTOLR9hzWuCte7HxyEIviCKoMaAItcWHIF3vXvGwrV9vDnR7WaDZJ3BTWnF6pZig0DscJdLnVkT/R9nRml6b+42mkHfnvQ/vydeAvduPum/xFRs7RYckm7ILAUBOAoOpHDezatUt9g3riiSciOlg/uCEpCIBA5RAQwXxinXq+QLka1lwEkNi3b9+gFOKOO+5Q77do0aKiCbRiGBr0O6XOekI0xdho/9cxhzd11Ee2w+eQ1rjiHVft9drvitHGOpNGuoo3iiBbxfeDvrhnghiNS9eJLUfbO5za0TzB0+HLXgdJJcdXEAABECgaAQiqPFGK9aiEb7/w8X+LLwKMDQRAAASqkcCrr77K7rvvPvaf//xn0IsnAlkI90ExD0uESy+7LRxgLc189EgKLEGUiJJHioFZmz2sK0n8ZCpHqNPH7BZjyuhXTFwpeh65rqUj/eVFG0WQsu9qkdwRxQhP5jooO9uDnXy0sIN1+N3MrIsJ0kQQD6mU2AUBEACBQSdwiLgDf5hjy0KAu7UQD3RB3NWDHn/8ceLuKVlS4xQIgAAIgEAuAu+99x5NnjxZTfbaa68Rn0OV65IhPd9zsJu6DgRpzKQJ9FFXF40aN4HGjx1dmE19vdTddYDeD/bR0ceOpPcPhPj/k3h+IwrLr4Cruvdspa/NXUI+9VodOdufpIXT8rh/GdieWty9tGb2dLqdF4aHTqftDbNSk+AICIAACAwiAQiqPODySFZkt9vpxhtvpMbGxjyuQBIQAAEQAIFMBPjaU3TKKafQm2++STyYBdXX12dKiuODQGD/jg006fzV0ZyN1NJ1D80bP3wQ7lTcLA/ua6PX9+6nI790Ls0Yq7W37aGlNHP5FuJBEmj7yjnFvTFyAwEQAIEcBCCocgDasmULLV26lM4++2zi7inEwwPnuAKnQQAEQAAEshHgYdXp97//Pd1222100003ZUuKc0Um0L27iSbMXxXJ1WClTvtKmqjVJkW+Y7Gy66FNs8fQCj4KZXD4afPlM6SMe2lrw0hacj8foYKgkrhgFwRAoFQEIKiykH799deJLxRMRx11FO3du5eOPPLILKlxCgRAAARAIBeBpqYmWrVqFfHlJ+iJJ54gPocq1yU4XywCva20dKRCW9T8jOTtuoOmUh+FwkR1dfxgOEzhutE0cXyBrozFsjNDPrubFtH8VU5+1kCezgdowcSIi2Lr1utIWbJRvYqHmqeGWeVpf4Zi4TAIgEAVEICgylCJfIK06t/Pg1HQSy+9pM6hypAUh0EABEAABPIg8MILL9D8+fPV+VJiTuqoUaPyuApJikUg5haXPT8D+UObaUYe06my5zMIZ3v20NIxc6OCkMsqI1858Y2NtOWZyL0Uk5N2372QytH0QaCBLEEABMqIAARVmsoQcTrOPfdceu6559S5U8uWLUuTCodAAARAAATyJSBeTonAE319fdTW1kZTpkzJ91KkKxKBtq0NNFP4xWXd9NQS3E7zynSQp697D9314+W0eksknEakKAqZ7ffT2mXzIKay1i1OggAIDBYBCKo0ZG+++Wb6+c9/Tt///vfp4YcfTpMCh0AABEAABPIlICKlCvdpEc3vySefVN398r0W6UAgHYFeHnXxQPAj1Vdx3ISJNLoi5oGlKwmOgQAIVAMBCKqkWnz66afp61//Os2YMYN8Ph/3KxeO5dhAAARAAAQKJbBkyRLaunUr3XLLLWSxWArNBteBAAiAAAiAQFkSgKCSquXAgQOqG8qhhx6qBqE49thjpbPYBQEQAAEQ6C+BBx54gIxGoxoaXbywQhCK/hJEehAAARAAgXInAEEVrSHh13/yySfTvn376K9//SstWLCg3OsO9lUhgb7eHurp6eVxt/g2fDiNHj2WRsCVpQprujaKJAL6zJ07l8TLqTfeeIOOOOKI2ig4SgkCIAACIFBTBCCootUdWxdl/fr1ZDaba6oRoLBDTaCHdm/bSr+59166/xl5onXELr3RTAbDlbRowTQabG2170/raMqFa0lnaqYn774ME7yHumlU8P2DwaAahEJETBUR/aZNm1bBpYHpIAACIAACIJCZAAQVZ3Mv78heffXV9I1vfINcLhdcUjK3F5wpNoHevbTuoum0Nhr2N1v2Chc5z3GRM1jBt/r2/4kumHQhqabobBTY0UBjsxmEcyCQgYAIQnH66adTa2srOZ1OWrhwYYaUOAwCIAACIAAClU+g5gVVzCXluOOOo/b2dho5cmTl1ypKUCEEDtKmReNohVinMropBhP96MKv0InjDqPAvpfp0XvXklMatNJZ3PSXW+qLPlLVu/dP9P+mX0hxU7igCnJBNVjiLVZe/F+dBK666ip68MEH6YYbbqANGzZUZyFRKhAAARAAARCIEqhpQSW7pIhwvlOnTkXDAIHSEejeQbMnnE8RvaQjh/d3dPmc8Un376Xdm1bR/BWxtWOKvUZMH7X+8XZS9Gu194Wg0vLAt7wJPPLII3TFFVfQOeecQx6PByP+eZNDQhAAARAAgUolULOCSizee8YZZ9CePXvoscceo0WLFlVqHcLuCiXQs6eJxsxdFbHe7CG2PlMglB56aOkYWr4lktTqDdDKOQN3xuvZu4PW/vB82pjO3RCCqkJb1dCa/eqrr5KiKHT00UerI/6jR2OMc2hrBHcHARAAARAoBYGaFVS9vb100UUXqT/+GzduLAVr3AMENAR6WjfRGGWFekwxu+nl9fWa8/KXvduuo+mLRTtVyO57jpbNGnhHdU9TPc1dFVNTClmsl9G2VWsjI2YQVDJ+7OdB4IMPPqDJkyfzKJU99Morr9App5ySx1VIAgIgAAIgAAKVT6BmBZWoOjFKJT7Dhg2r/JpECSqOQO/erTRy+pKo3VzQNN9P1yyaR2MHO5Rf9I5tDy2lmXzYS2eykXVNA80a30ZLD5lJ6kAYBFXFtaehNFg8R88880zyer306KOP0uLFi4fSHNwbBEAABEAABEpKoKYFVUlJ42YgkEJgP62bPYnWSkEnxAiU0XIlXfyVefSFGSfRiRPHFz0ARcKMHtq/n2jixOhoV88eWjpmLgRVAhD28iRwzTXX0D333EPXXnstNTU15XkVkoEACIAACIBAdRCAoKqOekQpKpXAwT3UMG4uxUJOpBaDCyzzlXTJZRfTeXOmDe66UL1cUI2EoEqtAxzJRqCrq4uOP/54dU7qrl27MOKfDRbOgQAIgAAIVCUBCKqqrFYUqqII9HXTjkft1NS4WhMiPaUMipE8rntowcSYT2Afte18mjo+JDpsgkL1cyamXCIOdLftpF2vH6SxU8+iBbOSowhKl0BQSTCw2x8CL774ojpn6sgjj+zPZUgLAiAAAiAAAlVBAIKqKqoRhagOAn10cH87/ePve+j5Z1y0beOWaEh1uXQGaglspnlqkL8eapo9hlZFXQadHWFaeGJMbCWuiQWfUBpb6OUb5yVOJO9BUCUTwXcQAAEQAAEQAAEQyEkAgionIiQAgaEi0Evde1+lp35/Ny1ZrYaKUA3RWTy04xYRYp2HU1/Ew6nHVuPVWalrx0pKHoNq3bSUlBVbSG/10vaVczIXBoIqMxucAQEQAAEQAAEQAIEMBCCoMoDBYRAYXAI9tPuP/0cvvfsO/ffws2jlsgVZ50ft39lEk86NrlnFhVOAC6exyYKKG2yw+2jzslka0yGoNDjwBQRAAARAAARAAASKSgCCqqg4kRkI5EmAR9Sr5xH1IqtAmamTraf0M6Bi+ckRAfXUEtxO80YnjVCpSRVq7vDSZZLrHwRVjCH+BwEQAAEQAAEQAIHiE4CgKj5T5AgCeRDYR2sOmUK3R1Na3J10S30WScXd8RbxCHyqd5/SSF0v38hd+xKCyt7SQv8yzo+EYI+fj2QOQZVHdSAJCIAACIAACIAACBRIAIKqQHC4DAQGSmDPpkU0d0VsAhSR1d1OK+unpWbbu482/XAK8WlQkc3kovDd3+TrUyUElc0foivpYaqbuUJNY7Bx17+GiOsfBFUqUhwBARAAARAAARAAgWIRgKAqFknkAwL9JdDbRteNnEkb5esUA1l+dCGdefJxdNgnAfrni0/Rg2vvl6L9KeTkLn2RaH4JQWX1BmnlnNG0Y109nb9WOBJy17/23XTZtBEEQSUDxj4IgAAIgAAIgAAIFJcABFVxeSI3EOgXgb79O2n5pHMpNviU62Krp4tWLojF8ZMFVYALKh5LvW8vXVc3PSLSoq5/7/MofzMLiPIX2NHAA19gAwEQAAEQAAEQAAEQyEYAgiobHZwDgVIQ6N1Pf/rtg2S7e23GhX0NZhtdd80VNGfiCMmiNIKKn+1p3URjlKjrn8NHN9GvaeaS+/sXNt3goODmy2m0dDfsggAIgAAIgAAIgAAIpBKAoEplgiMgMGQEeg9204FAkELhMLehjkaOGUPHThhPI4anMym9oBIpd3LXv3Ojrn96nY+c3Asw5zpU6W6BYyAAAiAAAiAAAiAAAlkJQFBlxYOTIFDOBDILKo3rX7QIEFTlXJewDQRAAARAAARAoFIJQFBVas3BbhCQovxZvdE5VBIV2fVPHIagkuBgFwRAAARAAARAAASKRACCqkggkQ0IlJ5AD22qH0MruDtfOkEl7Nm5gbv+rY4sHwxBVfoawh1BAARAAARAAASqnwAEVfXXMUpYtQT6eJj0C9Qw6TYeNr2Bh01P2XjUvzVzp9PtPiKDna9NtSyyNlVKOhwAARAAARAAARAAARAoiAAEVUHYcBEIgAAIgAAIgAAIgAAIgAAIEEFQoRWAAAiAAAiAAAiAAAiAAAiAQIEEIKgKBIfLQAAEQAAEQAAEQAAEQAAEQACCCm0ABEAABEAABEAABEAABEAABAokAEFVIDhcBgIgAAIgAAIgAAIgAAIgAAIQVGgDIAACIAACIAACIAACIAACIFAgAQiqAsHhMhAAARAAARAAARAAARAAARCAoEIbAAEQAAEQAAEQAAEQAAEQAIECCfx/9u3jAqu93c8AAAAASUVORK5CYII= />"
Question 4Write rational arrow-pushing mechanisms for the following reaction to show how each of the products is formed.
Question 53dWOrrWkCA5LquXoUjQIAAAQIECBAgsDcFLr35ajz95BPx/GC6Je9KXiutHfHkyW/FkUOCI3uz9q6BXM29nq818pnltUaquW3r6Ix445l8C+iVvG+2LfA1UDpZ3CEBAZIdgnVbAgQIECBAgAABAgSuLDB36WJM/exn+eKb1det8ZGPfjwOfNi3+leWk+JKAkuXzscz3zwaJ0+nQbhKdA/0xTePHIrGlUmudDefl0FAgKQMtayMBAgQIECAAAECBAgQKKnA3OVLMTP7TsRNt8Zt+e4369ZsLamKYhcJCJAUqThHgAABAgQIECBAgAABAgQIlEpAgKRU1a2wBAgQIECAAAECBAgQIECAQJGAAEmRinMECBAgQIAAAQIECBAgQIBAqQQESEpV3QpLgAABAgQIECBAgAABAgQIFAkIkBSpOEeAAAECBAgQIECAAAECBAiUSkCApFTVrbAECBAgQIAAAQIECBAgQIBAkYAASZGKcwQIECBAgAABAgQIECBAgECpBARISlXdCkuAAAECBAgQIECAAAECBAgUCQiQFKk4R4AAAQIECBAgQIAAAQIECJRKQICkVNWtsAQIECBAgAABAgQIECBAgECRgABJkYpzBAgQIECAAAECBAgQIECAQKkEBEhKVd0KS4AAAQIECBAgQIAAAQIECBQJCJAUqThHgAABAgQIECBAgAABAgQIlEpAgKRU1a2wBAgQIECAAAECBAgQIECAQJGAAEmRinMECBAgQIAAAQIECBAgQIBAqQQESEpV3QpLgAABAgQIECBAgAABAgQIFAkIkBSpOEeAAAECBAgQIECAAAECBAiUSkCApFTVrbAECBAgQIAAAQIECBAgQIBAkYAASZGKcwQIECBAgAABAgQIECBAgECpBARISlXdCkuAAAECBAgQIECAAAECBAgUCQiQFKk4R4AAAQIECBAgQIAAAQIECJRKQICkVNWtsAQIECBAgAABAgQIECBAgECRgABJkYpzBAgQIECAAAECBAgQIECAQKkEBEhKVd0KS4AAAQIECBAgQIAAAQIECBQJCJAUqThHgAABAgQIECBAgAABAgQIlEpAgKRU1a2wBAgQIECAAAECBAgQIECAQJGAAEmRinMECBAgQIAAAQIECBAgQIBAqQQESEpV3QpLgAABAgQIECBAgAABAgQIFAkIkBSpOEeAAAECBAgQIECAAAECBAiUSkCApFTVrbAECBAgQIAAAQIECBAgQIBAkYAASZGKcwQIECBAgAABAgQIECBAgECpBARISlXdCkuAAAECBAgQIECAAAECBAgUCQiQFKk4R4AAAQIECBAgQIAAAQIECJRKQICkVNWtsAQIECBAgAABAgQIECBAgECRgABJkYpzBAgQIECAAAECBAgQIECAQKkEBEhKVd0KS4AAAQIECBAgQIAAAQIECBQJ/D9Bm+zIK0COigAAAABJRU5ErkJggg== />"
Question 6Explain why 2-bromopropane reacts with sodium iodide in acetone over 104 times faster than bromocyclopropane. Hint: Examine the transition state for each of the reactions.
Question 7The reaction of 1-bromopropane with sodium iodide to give 1-iodopropane is endothermic. Explain what strategy you would use to obtain a good yield of product from this reaction.