Are the following structures chiral as drawn? When placed in solution at 298 K, which structures will show
an optical rotation? Explain.
Question 2DMxt+7nRbmnv8be/avwYs1wlGvTDaFfPY/JXpqE/VToicXWWXNxKKQaaht8F9JxbdMEPFK5GT7aF4/4Q/PQpXIkyrX7CPtuqrYJRmT1+ih0eiE+3HhN/aivziIQuxWz5h5CSLXaZvyprmPLO89j2Kuj8WTTerij6pP48piadgEER6J6/UI4vfBD6KZwtgEy3ovdOgtzD4WgWu0StxcAiYcwv09tVOi4CGdjN2NUoxKo/OQinGQTaOyzB7hL37bEy95Ak9KVcF/HYXhlUG+8/stlM6VqfmYGFCs/mcM6DVf/GI+mdzbCuK0xOPrpo6ja4i1su35L8tFjxQqe6pYprsk4sXgUXvs5Y4699vNL6NRjOv65NQ8HR1ZH/UKnsfDDjfDGLOyfQk/iUaz/IwqIKIvCBgXDdfw5ZTo2nj2Ny6WbovugEeheHriw9m18sD1WtQ7yFCmLCFzHlh/3a98eAyrOfUg8uh4ZzVD49mRryCoUdZ6fg+VrN+Dbp4sBp5diyNBvcT5NPZAHRcpGANe34Mf92rdHoeL4NRFH1/+BKESgrGEw3MSuyR3xzKJjqDPmVTzdviUaFgbOrFyEXXIoaOwdx9lNb5jjZfE7MLn3RPwdG4nuX/+F335agtH1w8wSoPmZWVjM/2gO62u/YmS3N/Fn4v3S43OsAAAG4ElEQVQYOqg7evZrDvz+Gp758D9kKKf1WDEPptGvWXDNiwpPvYfJjxaSD0W2egfffT0GDfLfeidPEWSw/h/hDdbvp0LPeRy8BCBvGPIZalAAdw8ejZ5d+6NLzVDEnTmKC4kE+TrOx9w2cgWHhCMEQNTBC7c6tVHj6Y8OIZB4/iAymiGfmR1xeRFeIDeAQqjbsga4h+vmX8uw64YqIhgh4bIlcPCCie1LPaKvdiCQiPMZgwFhajDE7cTszw8AKIpqdxZAUPi9mLDsayz6cS7aFmGWGns7gPXMI4lZednN/cvx3QkWXxHN6kUACEFkMTVjZCZL87PMeFj9Zgbr2H++wo9UouWKwebFc7HglzPgtLF/zWZckgs0PVasYsqbZnC1+k5wCDJY/0F4g/VzVvLDFIzccie0oMfsrZQbpR4bgdHX3sWUp5vh24b3IcFgTbn9FHDrnVzqPX11GoHg3FKYgTDGN2tueSOKIBRAXEJMJnu5ek83RVbMHPklOGMwKDiBhHM4GMUcUpCYwrbJi1IPPYmnjDO91WYae2NQvPE5Ky9Lvnwc0SQlVygK5jM98sGURs3PTBGx/D0r1inXzuE6X0gFIstXQrUaL2Lpry8iqEBlFFGDQ48Vy5DKO1lxtfHCLV6lALb1tGvvG/Qkrs3WzbmFlkXdOyhhxiJRmUvSL+PHQQ3RsPfb2NN8Nr5+uxtqmNnGnpYYKzU8JWuXkRofN1Oao7MPLVsXGc2QCNUM5iqclnA9Q6tWvDpKUbkjUxoSY6nhKYnaZQw/qpv6ajcCoSibMRgQqwZD3qIoQwUBrmD7ptNmNJoae7vhdfeDZnhZ7gJFIfU6IgE3VJtaoEPzMwvAmPvZDNZ5IstADpWb0chVrQmaN28u/5reUx5hcnbUY8UclJl+M4NrpvumX9ISkcH6a8MbrN8/hZ6QO9GiVVkg5gyuptxCNHYXFiw/Kb+ERYYhLeogjkgRHrdXwFz7Xj2NGBTGQ62rw7yV3LSF9HdLCITc2QIZzXAVqhluP5uGJKlluIkT24/L+1V6P4OGBkE0BVdPxwCFH0Lr6rolbuPm6KcQ3NmiFcoiBmfUYIi4B889WUZmdOC9V/HVUQqXSTi5bhH+uEjxVGPvKMpue94MLwuv3REtpBnyOH7bcx1Iu4YjhzJcPkVKUqaxpvmZAy1jBuuw+t3xWFHmsQfvv/09TielIfbfRXj9rd9xVfoy67FiE+H/t3MGIW1DYRx/OwykvShswpBduw48iLTOsUOrt82x0rHtVNlph0EvBaVCRfEwkDE8zW3s6M4i7lCHK8jmQKvQuWktRYbGg3Vl66RV0pKY/0ibVrtWm0hnW/qdmqTvvbz3++f754W8fEW4ynUk5QWAJBwtL0m3JfxmGeu/zSpi/Sd+d1/lfySDo2jXGzGymsz0VODwzn5ZxgzG9LjW48RT08X0foO5H76onA9GxOa4CTrDAJYPqnyANdG9JIKj7dAbR5CVAX+8eHTVANuTh+i6P4g3r/phadLD6HiLtf1jgxI3MW7SwTCwDJLiGJezbCaDGG3XwziyCiUacLi3hBd3W3LxcMVwC49ffkU8HQbE/iyY/1edAi+DiMgHN27oGZjOgJtdPXjQdQmMNaD5+h143m8rucnIz7RqUoz1r8/P0NOSXimRZtzSPYiPu2KmafIpVYjzuYqIzj/HvWaFaVM3XK/n8TOHdBwmnQEDFboJM1UjqspCCSx6OtExFDi6aR4msLXix3cuDpnv4f4WAv417PBKArxUCGNWM1xzMUpOWC5NE4vwdHZgKKBMXcQ9bEcO0nyFWBj++QWs7fAFvFOhMVjNLszFKDlhOaRILHrQ2TGErAyZNgXEwn58+vIN23HFcQAQ+3IQL2cbRbxM9i8+guBSAD/2BPC7HKLZGW321ORnWRIafouzhhjH1soC/KFo7sFBbpRiRS3aE7gWVE8hNGaF2TWHSll/DU965CuSw2SfA+4prnRWZiGC2eFeOCc28i7qAk3ogGYCKW4SfQ43pjh1ubGFyCyGe52Y2PjXxTWfmirkCKTATfbB4Z7CaTIQ+xyw6trQ4mVyz8nPzq6fStYUKxoRl+QqIDI7jF7nBCpp/RfkYZV8Z1fNBaQEW/f6mGS1s9bcepHCDifD02yGtzBbW2ORz6sLy9MRbQSkxDrz+iRmtbeyU2SQV5+z8PQM4y021tZYm0vKtJE5z9ISS6x7mU+yMnvRYCD256mG5nOp9DK5XfIzzXTzK5RkTbGSD0zl3mlck2E2PcMzi62NVdL6a3/So1ILKkYEiAARIAJEgAjUNwF61K5v/Wn0RIAIEAEiQATqhgBNeupGahooESACRIAIEIH6JvAXBRIdpmCJi7sAAAAASUVORK5CYII= />
Analyzing the planar structures reveals that compounds (b)
Question 3
Will the following compound show any optical activity if there is restricted rotation along the central C-C
bond? What will happen to the optical activity at elevated temperatures as the rotation becomes less restricted.
Question 4Which of the following compounds are chiral? Which, if any, are meso? Which, if any, does not have apossible diastereomer?
![](data:text/plain;base64,iVBORw0KGgoAAAANSUhEUgAAAeMAAABvCAYAAADfcqgvAAAgAElEQVR4Ae2dB3hUxdrHXyAQOqEKCIpKVYqCSlVEBaRYUAEFERuooIAIoleEKwJyVeTSi4h4VUT8xAYCikoTKQEECVV66L0npMz3/CacsNnsbjbJlrObmedJdk/Zc2b+78y889bJpZRSYopBwCBgEDAIGAQMAkFDIHfQ3mxebBAwCBgEDAIGAYOARsAwY9MRDAIGAYOAQcBvCFy4cEEuXbrkt+eHy4MjwqUhph0GAYOAQcAgEDwEYLpbtmyRTZs2yY8//ihnzpyRbdu2ya5du2Tz5s1SrVq14FUuBN4cMGZ88eJFOX36tJQtWzYEYDFVNAgYBAwCBgFvEYiNjZVrrrlG3LkgRUZGevuoHHtfwNTUa9askfLly0vTpk1l/PjxcujQoRwLumm4QcAgYBAIJwSuvvpqqVixotsmGWbsFprUCwFjxqgvWDUtWbJEXnrpJSlXrpw0bNjQMOZUUpgvBgGDgEEgNBHIlSuX3HXXXW4rb5ixW2hSLwSMGWMzcC4rVqzQjLlChQqyf/9+58vm2CBgEDAIGARCBAFfMuPff/9dxo0bFyIt9001A2YzRjJ2V9q2bSuoOUwxCBgEDAIGgdBEwFfMODExUTp37iwHDx6U5ORk6dWrV2gCkslaB1Uyturav39/66v5NAgYBAwCAUEAT9+5c+cG5F054SWVKlXSTlzObUWFnSdPHufTbo8jIiLks88+Ez579+4tY8eOdXtvOF0ICDPGk3r37t0uccNu3LhxY5fXzEmDgC8RoB/u3bvXl480zwphBBYuXCgdOnSQpKSkEG6Ffaruzm6MvZhrGRWk4MGDB8s///wj99xzjyxbtkzy5s2rJeMxY8Zk9POQvx4QZswK1J3Lu5GKQ74PhUwDcB6sUqWKHD9+PGTqbCrqXwSIjTXFdwi4UlV767z19ddfy5AhQ+Smm26S6OhoqV+/vhCFkz9/fi0h//e///VdRW34pIAwY3f2YibGBx54wIawmCqFKwIJCQly4sSJcG2eaZdBIKgIZJUZk4Oiffv28uKLL+psXWhMf/31V6lVq5asW7dOChUqJK+88orMmTMnqO3z58uDyoxfffXVTNkS/AmEebZBwCBgEDAIZA8BV3bjfPnyeXwoWlMY8ciRI3Wo6wsvvCA4cbVo0ULbjqtXry4xMTH6+3333efxWaF8MSDe1K7CmkqXLi1PPvlkKGNn6m4QMAgYBAwCDghYduP//e9/qWczUlMvXbpUfvnlF/13ww03yIQJE7QX9ZQpUzSPIPS1WbNmcu2116Y+Mxy/BE0yfvnll6VAgQLhiKlpk0HAIGAQyLEIOKuqPTHjuLg4ueOOO7RNGMAee+wxbS+eNGmSdty67bbbNCPOCWD6nRnjqbh169Y0WBYsWFB69OiR5pw5MAgYBAwCwUDAnXNpMOoSDu90Zsbu1NRoTGvXri07d+6UUaNGaYaMT0fz5s111MPo0aNl1apV4QCJV23wu5qaUBJWP47lmWeekZIlSzqeMt8NAgYBg0BQEMA+SUyrKb5BwLIbW2GE7iTjN954Q7Zv3y4NGjQQsjHCkEuVKqVDmooVK+abyoTQU/wuGTt7UufOnVv69u0bQhCZqhoEDALhjEB8fHw4Ny/gbbPsxtaLXTFjNKaoom+99VY5duyYVlXv2bNHBg4cKPPnz5eoqCjr5znm0+/M2Nl569FHH5XrrrsuxwBsGmoQMAjYGwGz8b3v6eOoqnZmxmfPnpV7771Xxw//8ccf0qpVK2FBhFSck0s2mHGSHF3zu/x13HP2GmfJ2CT5yMndzbTdIGA/BDxJxiQsKly4sJCtyxTvEXBkxs42Y6TfRYsWSbt27XSGrZ9++kk2bNigcfb+DeF3Z9aZcfIhmf1US+m58JRIcpIkJrsGx5EZQyDUEqYYBAwCBgG7IOBJMsah6Pz580IqVVO8R8CyG/MLyx6Poxx/w4YN03HFq1evlu+++04/1GwUJJJ5Znx6gXSMipL7Jh2V2h3ay+OVN8uguhFS5oU/5LwLWjmqqY1U7AIgc8ogYBAIKgKeJOOgViyEX+5oN8Y+DBMm7/SAAQN0Nq1Zs2bJuXPntHQcws30adUzz4yLNZdp6+dK17jvZHbMflnxzRIp93a0xIxtLIWcqoZhnj8KdmJsA6YYBAwCBgE7IeBJMrZTPUOtLpaq2tIukHt6/PjxsmvXrlBrSkDqm3lmnHhQFk+fINN/PSxR1apI5UJ7ZO6UMfLJkoPibD12VFFjJ/Bm546AtNq8xCBgEAhPBJKOyprf/5IMXFnStN1Ixmng8NmBxYxZ7GB3//3332Xq1KnaTuyzl4TRgzLPjOMPScyektJp5NvSIHajnL37HRnaOlJ2bjshiU7AWMyYTFtPPPGE01VzaBCwGwLeOSXardZ2rw+xpNhdA1GSD82Wp1r2lBRXlkRx48qSpipGMk4Dh88OsBtfddVV2lOah5YtW1Yef/xxqVixos/eEU4PyjwzLlRP+k8bI12rxMvuLTslJjaX3NxzikzteZNEOiFjMWOSgDt71Dndag7DCAHsQyRSCLnipVNiyLUrCBU+evSojBs3TurUqSNVq1bVe5bTL/xVTi/oKFFR98mko7WlQ/vHpfLmQVI3ooy88EfGiwAjGfueKgcPHpQ333xTO2+hlnZO/OT7N4b+EzPPjK0256koz/5xWOa3L22dSfeJ8xZJPt59991018yJ8EOAnVV69eqlJ9/nnnsudBqYSafE0GlYYGuKxzGOOS1bttRSEBmWcN756KOPZPfu3fKvf/3LbxUq1nyarJ/bVeK+my0x+1fIN0vKydvRMTK2sbMnS/oqGMk4PSZZOYN/ECks2WWJP7Y7HD58uN5DvF69em73tM/Ku8LxNz7PAcfqd/ny5fLpp59q5y1UEuXLlw9H7EybRISsOZ9//rmecFkNlylTRu9Rzc4rNWrU0N6TtgfqslPiD9+kOCUevLhEGuOUeF+9dE6Jtm9LgCuYnJwsixcvFnbp+eqrr/SWqKQyfO2116RPnz5aTUmVrrnmGu05y6YArVu39nktEw8ulukTpsuqonfKrVUKSb49c2XKmJNScMQAaV4uj8f3GcnYIzweL7IP8bfffisTJ07UqS0xSbIbX+/evfWCjB936NBBypUrJ0899ZTmCx4fmIMv+owZMykzIKdPn64Tf+fPn18Tg43cSW8WzvtQ5rT+wwoYz0gkHjb+xjnjnnvukR9//FFvBg4eSERIRo0aNdKp7myNkeWUuKqo3HlrFSmUL8Up8WTBETKgeTnxPJXbumV+q9zGjRv1IuyTTz7R9mAm4Yceekgz4Ztvvjnde9mblgm6Y8eOwm99vR1e/KEY2VOyk4wcWEHef/Anee77oRI1cJxsO5GYITM2knE6cnk8gf0fqRfaR0dH6wVY48aNdW7phg0bpnPUhRcsW7ZM6BdNmjSRbt26eXx+jr2oslHOnj2rpk+fru666y6MQSp37twqKipKPfnkk2rHjh36yf/5z39UZGSk2rt3bzbeZH4abASg9eeff66aN2+u6Zw3b15VrVo19dFHH6mEhIR01UtOTla1atVSBQsWVIcOHUp3PRgn5s+fr3LlyqW2bduW9vXnotV7T7+spm8+rBY+00D1XX5YrRvXTT07bqOKS3tnjj46cOCA+uCDD9RNN92kx3SpUqXUHXfcob777jt16dKlDLGhTzRq1EhVrFhRXbx4McP7s3JD4t6pqlGZlmrWkYx/PX78eD1vffbZZ25v3rhxo77nhx9+cHtPTrgAvb799lv16KOPqpIlS2oa3nzzzWratGnq3LlzXkHw8ccfq4iICLV27Vqv7s9pN6HHz1RJSkpSv/76q2a4TLQwYT5vvfVWTSyuO5dWrVqpsmXLupy0ne81x/ZBID4+Xv3444/qscce05MvtC5WrJh6+umn1f79+zOsKAy8SJEiqmrVql5N1hk+MJs3uGXG1nMT96qpjcqolt7M5NZvwvwTGn766afqnnvuUfny5dPjuHr16uq///2vOn78eKZbf+bMGQUTZ06AOQey0J8di8WMYRLuSk5mxiywfvrpJ9W1a1dNsypVqqhKlSqpAQMGpF/QugPQ6XynTp1U4cKF1enTp52u+PfQm8Wif2uQ8dO9ZsZIEwMHDtQrIiZlBma5cuXUv/71L3XixAmPb0pMTFRXX321lqA93mguBh0BFlOLFy9Wzz//vGa80BopmMUW0kFmJ9Do6GgtScPQg10yZMbBrqBN3o+mY968eerxxx/XC+0KFSoo/vr06aM2bdqU7Vpu2LBBL+7efffdbD/L2wcsWbJElSlTRv3111+pP7GY8YQJE1LPOX/JacyYufq3335T3bt3V6VLl1Y33nijuuGGG9RDDz2kGTPXs1OYPypXrqy1apmdS7L6Xhg/79y5c2dWHxGQ33lkxidPnlSTJ0/WqiUmZf6QdNq2bavWrFmTqQru27dPM3CYtyn2QoBBsW7dOtW/f3+9aILOqHOZvF577TWFdJSdMmbMGN13PE162Xm+q9/SP/v27ZvmkmHGaeBId8Cimj6A5MriGQbMJPzzzz+r7E7Czi+bOHGiXuSx8PNnOXjwoH58s2bNdB9s3bp16ussZvz6669rVTvqdutvz549+j5nZrx9+3a1aNEitX79em16Y2wEiqmkVtwPXzAlvfLKK1rzAQOuW7euuuWWW9To0aPV0aNHffpGNCpoU/29QLeExKVLl2ra05cdy7Fjx/Sik4UaQgMLTehOey9cuBBwuuaico4GcxxvfvnlF+2IhZcczg0Y4HG4ePXVV6Vr165ZjhmeO3eu9rQlOfj999/v+Fq/fsepDE8+U9IisHPnTpkxY4Z88cUXYsWEEw+OxyshCbfffnvaH2Tj6OGHH5bvv/9eVq1aJYQ5+KvQncn0RngNO+2cOnVKihQpol+3YMECnZJ1zZo1Urt2be144q96hOJz169frzdyIS6YPcfJD1C0aFG/NYU+8fPPP2svXLxtfVnoB4TZkA8fhzE8/Zs1a6ZpfvLkSd0niPign5OUxDk7YMmSJeXIkSNCuF7NmjXlhx9+0HPWhx9+qOdBx7oSvlmoUCGNVfHixYXfElVQunRpKVGihHDO1R+bI/BbOxR2UWrTpo2e5++++2555pln5JZbbkmHi6/qikNX06ZNNY1eeuklXz029TnMZ8xf7LpF4pEqVaroyA+8vwsWLKjv+/LLL6VLly7a2TT1h05f2P6RPxwU+YPO/DGn4LjK+OCTZ3Lem0/up07OJZUZ0+nonJ999pkcOnRIB2sTosD+w2+99Zb4aleNfv36yZgxYzRIZGjxd5k5c6bO+gLx8fgz5QoCjz32mCxZskTTm9ATBgXhKNYuK1fuzP43QmCuv/56zRx37NihJ6zsPzXtE/DupD18ssjo3Lmznjg/+OADfSNe/YRdkJCCkidPHr3QtAYaA4mBwh+DjYHGpzXAHAebN995figVmDEer/PmzQtI9AMLf3LWs9iHYfoqMRCLrbp160qDBg304u+BBx7QC0GYMUznnXfe0ZvYQxuEDeY7V4Ux4cyMuY++fPjwYaEfEz+9b98+OXDggD5H3yKC5MyZM3LhwgWdfYp38Ed7KfQ3xgJttksBF/BhK8NatWoFpFoshOAt7GkMrXxRYMJWjDMC39NPPy3Tpk3Tnt4sMJnjxo4dm+ZVJCg6fvy4nhf45I8FGwt56w96sg8zm1vgTQ5tiasnmQm5t3kG9OXT8c+iufVCeGqFChVc0l4z49mzZwtJGqgAkwwrIkBq3ry5X1ZG9evX18nC6cTOG09blc7OJ3GDJBgYOXKkbN26VRMHYv/555+pjyUMa+jQoakTrTUBM/laEzCTcGb/8ubN6xfMUivuwy/W5IQmhM2+/V2YwNCwEH9shUT44p0MDOhEWAXPZdBQWH0iIbEaRvLh/NKlSyU2NlYPMs4zyJwHGoOMZzLQnAeW87GTYilNc1jUwGiioqL0IgfNkp1LoJkxWOzfv18qV64sDz74oLBwzk6B4SHRoelhbmEBTvpFxiSTKPkP6PNIrPRFZ2nY1btdMWNX93lzjkmcbFSE96AJcNzRzpvf+/OeYDBj2kPIG8yY0NhSpUplq4lovohhZ5HDYgcNBQsnaA9vI98FfYFxH6iFMu+HobNIIySU+rHotASCNA1GTU14EmFJw4cPz7Z90FEn7+47bvLFixdXDRs29ItennZg98QOSmncuLG2gR45ciXeAfvhww8/rFq0aKGaNGmibSQ1atRQ1113nbaV4f2NAwP1xE5eoEABbfMGJ8t+7uoTW2v+/Pl1iBcObjg/EOLToEEDde+996p27dppb0Rf2+DcYe3pvBWS5ujU4ul+X1z75ZdfNC1wEPFF6datm/Zh4FmEXkCTd955Rz8amzHHnkJXslMHbIXYDHEMWbVqlbY/ffHFFwpb5LBhw7S9/YUXXtB94JFHHsnOqwLyW/oBeOG8FcgC3RhX4JbVQr+CHnXq1NFtwAMYD1rCqGjT0KFD9aMJxeJ44cKFXr3K2Wbs1Y883HTq1Cn9/s6dO3u4K/CXfv/9d10vnOsCWaARc+3111+fpWgbaG7RkigfaEv4JaVLly76mPBLCphzfcSIEfo40P/wweL9RCO4KtqBC2YMEwmku3lMTIzKkyeP9tB0VbHMniOuGcYKcXCwcCTKjBkz9DHE8UUhRALHkL///lt7Hs+ePVvH23344Ydq0KBBuk3PPPOMat++vcJhpGnTpuq2225TNWvWVOXLl9eu/d7G5vmivu6eEQxmTF3wyoc+xC1npYC/5VRSu3Zt3XdhiCxwwBfHM8rmzZv1exjowSzEZVoLhGDWI6N3B4sZU68XX3xRM2QWNZkthF7Rn5gDpk6dqr8XKlRIzwXvv/++Prb6hMV0YMreFF8z4xUrVuj6TJo0yZvXB+weC5dAM2MauHv3bu3M98ADD2S6vcy58K7Dhw9reiNM0RcY+4Rl8p1wLArOghwjZAWjWOOrY8eOLl8fNGZMbQgYB8ivvvrKZeW8OWklnCDsAqC///57PSkDOMwer7i4uDgtqZJ8JJgSKe9GwsZT1Q4lYMw48YiK/m2dOuYQFcFkSAIAJrvMFDCsV6+eXujwO2uhRTICCt6f9APCMyiWJBSMSYb3Izk71kdXyqb/rMki0JKxBQfJRIoWLaocNVjWNedPxvSoUaP0abxhwZgFMOO9RIkS+vjLL79USCMwZq4vX75c3z9nzhw9UTs/09Wxr5nxJ598ouuC966dSjCZMThYWi20mhkVhMaxY8fq2wi3hLZEfVBY5HCM5zR9BK0mPIbQXAQ1+gr9IhjFqqu7hVhQmTGAPPHEE3pSzkr8Ii7rlrs6v4cIqIUBvWfPnmmI9Oqrr+pjVsrBKtbARlVthxIoZpwUO0nVzNtIzTymVFJigiItDAOFEBr+UN1lVMj+xB+0JfMXCy20C0jJZH1jwCEdw/xY8BAXTfnzzz91H+nXr19Gr/DLdSZdFoGB1DpltSHBZsZgBONE1Wwtst21hcmX8U5mP/oEGhFwhv6EKqGethZohGahvbKyArp7pqvz1pj1VQYu+iH1ZtFgpxJsZgwWvXv31uMYk4OnQtIhzBostOgnJCLiD5U3cwLzAVpIjhcsWKC+/vprr5IUeXqnL66xgEAAQRPgqgSdGTOQyNCEbTazExbiPh0blTcF2y/HZI2xVNU8l7J161YdL439NlgFdRpM4//+7/+CVYU07/U3Mz41v4MqVqylGr9uuRrSaayKXvqWqiPFVbdlKenz/vnnH905SZHoKnObVVkmWFRNb7zxhj5lxYe+/PLL+njw4MGa7pYqGBsRizyrMGB5RjAK9momh1AowWbGYMQCm4n2ueeeSwcZpiHS61KIWWesW7Z41NOMdcY99KY/ZXY+SfdCpbTmhvf4ihnffffdtuwPdmDG8AK0Xiyqdu3alYYcMDC0XhT8MaAJiYko7733nl7UW9oGFvrBGu+6Qm7+sRBD80M7XZXAMWMXqkqrQgRnEwROrtOM1Mh0GpxkKJb9hZUSxVIDoO5iQMKcSeFGcLdV/vjjD+trwD979eqliWEHezGN9zczVknn1O5lM9TIwf1Ux6ad1RvDJqjvog+kyfdsqZnRXDgXOi1/0BKnOKQm+geSNKpIVFBMuvQfVI/+ynfsXK/MHLOAsItZIqN624EZU0drcfW///0vTZVxzGGihs5owurXr68dL62b0IL4uvhaMsapk2Qadit2YMZgcv78eS3lMmYc50nsydZ4h84s4JnfreIP2lvP9tUnC0c0Nu5KwJixK1WlY6WWLVumpUbsPp4KREDUZ9XLRI16inSNTMhM1ORNxf5gx8Lkce2119qmav5mxgmxc9W/O7VQrV8YqgY9N1gN7d5GtX5ymPr5gIPxWCmFRzQrXbIfWYUsPZgckJCgM45wLNi++eYb6xY1btw4jxJ16o1B/NKyZUvtvBfEKnj9arswYyrMOMcUgX3PctabNWuW1o54Y9bwutEZ3OhLZozEhmYMT2+7FbswY3DBvwPa33///drOz7zO5hI4+TnnF7cbjp7qg+qcHO/uit/Tv5xe0FGiou6TSUdrS4f2j0vlzYOkbkQZeeGP82lCrEjIMWLECB2gzdZ8joWsN8QMUwjkJtazR48eOk6Q2LInnnhCJ6ogdoxnsJWb3QrB32w3eNddd9mtan6rT+q2dm83kNiNZ+Xud4ZK68idels7x5dOnjxZZzli31OSDlDIWFStWjWdkIF4X2JQiQ9mq0ar9OzZ0zYZjKw6OX8Sp0pctSmZQ4DkMyTHeP7553VcMBnTwJIEHuQECGZJOrpGfv/ruKSk8PC+JmT6Ii6dDHemuEfgxhtv1AmaSD7DFqzEC7/33ns6MQgxu6Fa9u7dq2PM3dYfLu3X0CYvVJWOK4X77rtP24xQQVuFnT6uuuoqfYjDBtcsb1nrHrt/ssJmVcwK1C7F35Kx1U5vtrUj5y/OXEjIhCJhBwr1bTdxIMH+SW7uUCh2kYxxtEIlyd+WLVu0lzTqafoGf9iGyWuMD4a/t+dMLxknqdhJNVXeRjPVMZWkEhPS71LnjtZI9tQ/K45k7p7pq/N2kozffPNNnZeBrXjZrATNp0V7PnHOfOutt1KlZl9h4M/noBWh7p5C9/yupvZWVWkBgX0QewEDEdUkAw6VJedDudAOtg7LyCYeyDYGihln1CbsviREIRYU9ZTjwCNhCw5b3oS7ZPSeQF+3PPzZVCAUih2YMfZgbKp4xBMGZBW8j3HQwwHGsX/wnU0N2IAG5y9fzxNXmPGXan6HYqpYy/Fq3fIhqtPYaLX0rTpKindTl/0Rraq6/Xz77bd1/8bsYrdiF2aM8y12VRIwsd0mBWcs6IuZypn2+I6wMMO/gFhjuxaEDRaUnhxV/a6m9lZVaYnu5A8mbRxqStQUbExB0nWSmE+ZMkWnsbPuDaVP0s2Rji1QadhCCZv3339fpy4ksTu5ZUmNaBVS5aGOLlu2rN78gU0/QkVVRbpDUt/ddNNNVnPMZwYIkD+YtJxt27ZNs7kLKuuBAwfqzRsmTJiQJtH+2rVr9YYPqH9JqcgGFx9//LFOtZnB6zJxuZA0n7Ze5naNk+9mx8j+Fd/IknJvS3TMWGlcyLvH0C7mNW/ScHr3xPC6ixSmbOjD5hlfffWVTktMCzFLDBs2TKeQxGTJ5htWIQ84JixyzjNH3HbbbTJo0CCd+tg5L7T1m2B8sikPaZY9bgzCSsKvaurLSxVvVJW4r6OCwsjN6pHVhJW0wXFFxDk2Nw8lNSb7aVqhOHZZvdlBMsYLEmmY1bC1EgYfYkPZys2R7tZ39tImvnzmzJna+9IueDrXgxSMoRLWRN2DLRlbnvXXXHONjkN3xtPxGBPAxx9/rEPerH7h6pNQRmKSMWtlxfnnimT8rYqd+2/VqUVr9cLQQeq5wUNV9zat1ZPDflZO/oiO1UzznTmA0B07lmBLxtCTlMHkECAZlKeC9gRtGc67rmhunUNqRs1tB6kZrQ4aHE/F72pqTy93vMZAIbUhtmHHUCTuWb16tbYTWCA7fpJmkk3KybBi14JqGg9wu6krg82MCdqHCcOwXGXIQuVIoDwLNEeaO34n3IkBR1gbdhk7lQ4dOtjKez4jbILJjElfiGoaehJ/7m2hjxDLTa4Cx37h6jtmogcffFBnaXKXeMH5vVeY8SwV/d7T6uXpm9Xhhc+oBn2Xq8Prxqluz45TG73odswB2D6feuop51fY4jjYzJjQRnIJYCf2tsAzyCnA71zR2/Ec/jrYmklXjAAQaHMh+yBklI/fNsyYjFlkUXG32TiSMhMuccOOIDt+x3WcGEWYnp3sMjAaJgK7lWAyY+hDhiRwcZcezsKLxdlLL72Uzp7sSHu+w9SfffZZRQafQA82q66OnySEJy95qJRgMWNiS8kNgE0tq5t6QG80JcwBzv3C3TF2yVdeeUVrYdzFqF9hxj9cJmOi2ju1kSrTcpa6su1MxhTGaYt6IM3bsQSTGRPSyCIMTRh9IbMFqRrtrife4NwHyBcfSKmZ/k0mME/FFsyYjFQY5638op4qzEqYyRtnH2eAHY9RCfG8lStXBp0xDxkyRCc08dSuYFwLJjOeMmWK1hZY6Uy9aT8bc5DByJHO7r6jYYGBk+TFk9OEN+/Nyj28E+bSo0ePrPw8KL8JFjMmaQ+SC4442S3gTiw6CYTc9Q1X55l/2rRpozUxjpJ5emac+RriWET2JTzr9+/fn/kHBOAXwWLGluc8OzehHclOYUGGqcOdecsV3TlH30PD6g+pGekdR0QETcckJq7aGXRmjF2YgYCKOjPSDPZFwHPlYecMeoUKFRTZr0iVl5l3uAIsK+fwCMZd324lWMyYCQ67L3TJ7EoYiZqkLoQ/OdPZ3TE2yP79++vEAYHQmPAOkhRQH+csUnbrA471CQYzxj4ITiTDQcLxVYEG7BuPW4IAABZqSURBVNrDJOuuX3g6b/l4WLtAZSYdJu9m+1aSVFhJidhNiGO7lmAwY8xK2FFhxFZWRV/gw4IMKRSe4onG7q5ZUjNamsxGcVi0h98wR7EgR2JHA5NRCSozRjXEKgb1YmxsbEZ1dXmdlSZZmlh1ugPX8Ty7OZHxif2Ms+LQ4bISGZzE5umtjSqDR/n0cjCYMSEqOGmgns7OSpi+g68A6i1H+mb0nXdjysjOu52JQJvIIMcmJG3bttXx0qQ9JPuWv+NgneuSneNAM2PMN0xWLKj9NT6YHBnrZPTKqG+4uo5Ew/mMmDF9gB3jsEnTt7F/I52PHDky0wvO7NAwq78NBjO2TJNWOuOs1t3d72DKqMBxmnNFW2/OeSM1k0d78uTJqlmzZrov05+xT+Nklhk/lqAyY5giFXdMcegO2IzOo8Js1apVpkBnEcAex0haDCZfFdQRTACoptiBhj87lmAwY2hOnmkkDl8UFmOkF/RmYDnfw2TJRuOZYQRM7txPmkbU4NiCmHhZ3SOB4xEKs2dyy0gt5Yv2+/IZgWTGaLZwusKpKRBb2kE3Np+3+rxzX/B0jLe/K2a8b98+PeGS5pZFBTHQPB/bta/jnX1JZ1fPCjQzBiMYHX4V7uz1ruqZlXPQfu7cuXpseqKzN9eQmtmEhvkL/xTGPc65LNrIlQAvyar2NWjMmI3l6eSOu+tkBWjn3yxcuDDT9iKIwKIAhyImhszu9oKETcIB1OaoXfAQRs2FMwkedGzjZcdiTUxMwoEoqI7QYPhjC0l8A5gUvRlQru5p2LChzpTFzkCOhYnCUepFy8FiAp8F1FB4SWITwtzCoA/lEihmDE7Yh6FD586dAw4Ze9qy6YSrfuDqHHMDzJhJFk9cfFHw4OU8WePoz4ROIYmFagkkM2YHPbBjLAUyGxn9DudOV+GyrujufA4/FEyOLLrQyDEHsHMgfim+GPtBYcZkJmJCg2llRoz3tqMzKLDV8XxnQL05xp6JuhF7lnOYFXXg+dgE2c4N4jAgsX+y0id0gbR3oaCeDCQzRpVDBwYnf62EoQt2noziDz31AaRcVrxIvSymWDBaAw8NB3uuImHZcYs2b8eHu/tgxkySaHSyajZy92zH8xMnTtTjEoYWTAkSxorTlqf+wDUmX7zikX6IXaUPo+FhDvDFJOyITbC+s5hgTmZ7Qn86maGBZFyRYZF5MlgF/yHyWWREe64Tq86mNUjFaL+YG9DE+pr2AWfGqO6w2zHoWSH5s0B47IoMJm9Ad3UPkzFEgzFjA0AVwaDE9sxkQiwpKpdQYL7OWMOMkVRRqfu6Yzm+C8ccNAbQHAnS3wVGicMcqkNXNHU+xyBDqrbUptj8YOjQetSoUWEh9XqDOYskNFVIACxKmID69Omj5s2b5zO7J3vOoprm+ah57VCoE179zv2CcY5PC/2BMCi2wyRXdjgW5mV2QUPas5wr2S8YjUBmNYWe8GFXPjvFWyPVsh+CM+1ZLEBz5njSs/773//OVPy7JwzcXUtlxlTGl6C7eiETPjZaiBHI5Pl4xJH9Ct2+M+iejhmIMBEkXxg6EzQSM9JXKDJfZ5rgwUiHY8GBwxEYsUL2pVcr72RbS2ieUWYd5/pl93jnzp1683lPNEbqhbaYFeibOHyEo9SbGSxJxsICEx8MGDMTE2Pnzjvv1DZ2JMKsqGR5Ll7TPCuYUpE7LMhP0L59ey0JYffH5OUPzZ2799vhPHM0ixOcYtEsMj6w7eJfweYM5IHIquMr5hzGIou8rD7DXxixgQN7JsN4CUWlnb6eBzOqeyozZtAh7WHDYaC4Us9m9LCMrhPwDjHwOgtGIUsXGzx7mpxhTIQhsBoGD+JaiWsOB+brCnM6HJIxdi9WxaiqkFqQFLCfM4Fmp5DWksGMbTVYhQWGqzAH2gujMcU9AkzOMF/U89jILS0T9j6SJpBswRu1Js+xpM/MZFlyXzNzJRAIIMh88MEHmklBezRpaJyIFOA8pg1vFmaodfkdzD0zDpOBaKNd3qGZ8YEDB7T9E89QxxAh1HbYj5hQs+ttzKoT9QeDONiSB6oJHHZcMWUmHK6BSU4sJDzAQYXYOBYkLE5w0//www8z7WzBAgaPdTQKwV4JY5vEVolK2qI7mg+3zDjxiIr+bZ06lpgTe4H7NrM4I2ELvhLQlv4BnmhY+vbt61alTf/hPha63kze7mtgrgQLARbu7KpE+BaCimUGYkzhkIeHsStGy3xvmYAC4TkfLHyy+17NjB0fgloGSQkvMSQHa+JCtdSkSRNt4MdzNTPu26i/YXIwYxihHQordbx7UZlYbeQTJsREY0rK1mVIPqgnWUTRB1BdEcC+fPlyj32ACZffMWAdMxoFG9cTJ05oKQ8mQvyhO2acFDtJ1czbSM08plRSYoIKXT9Z/yHOGGI8Y2cmxANTBGOIfoJGCQdHkl/gjQ7eaF1y6iLXf1QI3pMZ1+SUZg5F4rXmUeZ67M3Mr0ePHlXsR881X2RYC15r/f/mdMzY+ZWASeD67bffrgeTBTiTGGonjP44NTAwXRXOEzKEqhIp224FiW306NGpEhMdyx0zTjwSrX5bd0zlRGEJOq5YsULH9LLfNKpsJGfU/sTWOcfUDh8+XE/AgbYTe9u/YmJiVIsWLdIx41PzO6hixVqq8euWqyGdxqropW+pOlJcdfN201pvKxCG9zFXsFMV3qcwXmuuYDzBjEl7a0p4IsD4xwyJwIbjm6UxoQ+g3sYDPZie86GAeobM2LERTMgY9/GIQ0JyVGkzQRPWQ/ywY6wmzBqCoMZyx7Ad3xGs76jfcDSiHa6ZcZKKnVRT5W00Ux1TSSoxIWfLSuTbheFii2VhhjSERzIe56iyWHz5I57Yl/0Dm2c6yTjpnNq9bIYaObif6ti0s3pj2AT1XfQB5cXGPL6sWsg/C80IznA4geEAef/994d8m0wDvEOAeR7NGRoTHEMR5OziOe9dC4JzVy5em9XNluPj4+XTTz+VL774QtatWydnz55NfRQbqrdo0ULGjRsnERERsmvXrjQbgqfeaLMvFSpUkEqVKunN7lOqdloWdLxWOp4eLosGH5f317SWF488K3eMu12W7Zvi9cbiNmumT6uTkJAg8+bNkylTpsiKFSuETb2rV68uS5cu1bT36ct8+LBOnTrJnDlz5MyZM6lPTdz/kwx7bbSsKnqn3JqYIPlyR8vyuEbSZ8QAaV4uT+p95otBwCBgEPAlArmz87DIyEjp3r27LF68WE9omzZtkh49esh1110nO3bskFGjRklUVJRm2FdddVV2XhXE3xaT5tPWy9yucfLd7BjZv+IbWVLubYmOGWsY8WWq5M2bVx544AHN2I4dOybr16+XhQsX2poRu+tQ8YdiZE/JTjLy7QYSu/Gs3P3OUGkduVO2nUh09xNz3iBgEDAIZBuBiGw/weEBNWrUkPHjx+szcXFx8vXXX0vhwoWlXbt2DneF2tdEObh4ukyYvkqK3nmrVCmUT/bMnSJjThaUEQOaixGW0tPzmmuuSX8yRM4UqtdfptUTSdr3sWzZGSOxuW6WnlOmhkjtTTUNAgaBUEUgW5Kxp0bnz59funTpEuKMmBbGy6GYPVKy00h5u0GsbDx7t7wztLVE7twmRljy1ANC+1qeis/KH4fnS/vSod0OU3uDgEEgNBDwqWQcGk3ObC0LSb3+06SeJMm+j7fIzphYyXVzTzHCUmZxNPcbBAwCBgGDgDsEDDN2h0y683mk4rN/yOFn010wJwwCBgGDgEHAIJAtBPymps5WrcyPDQIGAYOAQcAgkIMQMMw4BxHbNNUgYBAwCBgE7ImAYcb2pIuplUHAIGAQMAjkIAQMM85BxDZNNQgYBAwCBgF7ImCYsT3pYmplEDAIGAQMAjkIAcOMcxCxTVMNAgYBg4BBwJ4IGGZsT7qYWhkEDAIGAYNADkLAMOMcRGzTVIOAQcAgYBCwJwKGGduTLqZWBgGDgEHAIJCDEDDMOAcR2zTVIGAQMAgYBOyJgGHG9qSLqZVBwCBgEDAI5CAEDDPOQcQ2TTUIGAQMAgYBeyJgmLE96WJqFQAE2rRpI8WKFQvAm8wrDAIGAYOAZwQMM/aMj7kaxgh06tRJdu7cGcYtNE0zCBgEQgUBw4xDhVKmnj5HIFeuXJI3b16fP9c80CBgEDAIZBYBw4wzi5i53yBgEDAIGAQMAj5GIMLHzwv5x7333nsSGxsb8u0wDTAIGAQMAgaB0EEgl1JKhU51TU0NAgYBg4BBwCAQfggYNXX40dS0yCBgEDAIGARCDAHDjEOMYKa6BgGDgEHAIBB+CBhmHH40NS0yCBgEDAIGgRBDwDDjECOYqa5BwCBgEDAIhB8ChhmHH01NiwwCBgGDgEEgxBAwzDjECGaqaxAwCBgEDALhh4A944wv7JBff4uX+m1vlMJuMI/7Z54sSmgiLWoUEbOicANSyJ6+IDt+XSgniueV7RuPSqLklkJV7pUHG5aVNB027h+ZtyhBmrSoIUVMJwhZarur+IUdv8pv8fWl7Y1uZwH5Z94iSWjSQmqYDuAOxhA7z9j/TeLrt5U0ZI/fIwtnL5YDCSKSK59c3bS1XBuzPKxob7spLPHAHBn08lQ5XfMGt4yY3pW/Uh1RM/vIgFm7JD7EupuprgcEEg/InEEvy9TTteWm60vJ3jFPS9euXaTbuI1y3vln+StJHTVT+gyYJbtMJ3BGJ4SPE+XAnEHy8tTTUvMGd4yY5uWXSnWUzOwzQGaZDhDC9L5c9dSxX1PSkT3vVVKrRpzMfKmrdH2yk7z9Z0LY0d5ezPjsShnSYbhE9BosD1eK9Ny5IspLqzf7S7mJHeX1RScl2fPd5mpIIHBWVg7pIMMjesnghytJwagqUqeSp8k4Qsq3elP6l5soHV9fJCdNJwgJKmdUybMrh0iH4RHSa/DDkvE00Ere7F9OJnZ8XRaZDpARtDa+nnbsp5v9c+eXq6reLDWKX2lCRPnwor2NmHG8/D36eRl5so08WiP/FcQlWS4c3CSrl/8p6/45mlYKzldZ2j2SLJO7j5A1Fxx+Yr6GJALxf4+W50eelDaP1hDHHpDSGCXJp3fJ+tUbZM+5JIf25ZPK7R6R5MndZYTpBA64hOjX+L9l9PMj5WSbRyXNNCAil45ulejlK2XjvvNpFt/5KreTR5InS/cRa8RMA6FJd09jP/7oVlmzbpucSEifLDKcaG8fZnxutYyfsF7yVL9Fyue73KHOrpGRD94kDV+fIxs2zJfBTcpI0Wqd5OOtlk4yQkrVrC2Ft38ko5aeCs1eaGp9GYFzsnr8BFmfp7rcktoBroBzZvUo6f7ks/JYszpSqURt6f7NPkm8fDmiVE2pXXi7fDRqqZhecAWzUPx2bvV4mbA+j1S/pbxY04DE75KvetwqlZq+K0vXfymdq5SSWt1ny/4rHUBq1i4s2z8aJWYaCEmqux77yWcl+oNWck2Z6tLwoU7y8GNDZPEJp/ZFlAob2tuGGcftWCC/HhSJqlhCrE3tTi56Wwb9sEX2xtWSR14YIAM7XyuXtn0pb36wUs5dpkm+EhWluJyUJXM3p7cpOtHNHNoYgbgdsiClA0gJqwM4VDey6jMy/tvfZPnXnaREwib56Jle8t3hy3rpfCWkYnGRk0vmyuZ0hmWHh5ivNkcgTnYs+FUOSpRUTO0EcbL+Pw9Lp4nrpfJrw6V3l4fl9qg42TR9gvx52mpOPimR0gFkrukAFiih8+lm7F9YO1w6958vR4q1k69Wr5LfPu8hVVNXaFbzwof29mHGsTFyWEQii+SXPJdxLnLz0/Lig63l0RbXS/74Y3Lg5CV95VTsCcGpjpIrsrBeQR/ZdCCtCvvydfMRIgjExUpMSgeQ/FYHcKh6ZLEoicwtUrxua7mJ62cWyozoMyl35IqUwgzSI5vkgKU0cfit+RoqCMRJbEonkCJWJzi3WiZM+kuSpbTcWLmo5C5cX96cPkUmfj1eWpW02pVLIlM6gGwyHcACJXQ+XY79C7L5/76SbbSicgupVzK35C5QWsqlcyEJH9qniRQJKvVy50kJUXIwC0RUfFDeGpYko9/rKS1/rCw1z1xMreKV25To7+ryZ+od5ktoIZBb8uil4RXKuqx/ZJSUKiAi5y7I8XPWkkwkZe8xdfnT5S/NyRBAIHdKJ0gZ09T3YqxsOsSXRLmkbYaRUum+bvKCc1subz5nNqFzBiYUjl2N/UtyePtxXflcBaKkgIsFemrLwoT2tpGMC1SsLWVFJP5cnKS45yTL8QU95daa7WXwisYyeuZIebJOkVT8rS8q/ryWkq+qWcGF0491l/m0PQIFKkrtlA4gcY7+Wc4VT46TM1r6LS1Vy8GVRUTFy3n48lU1pUJ6zy/nJ5hj2yJQQCqmdAI5Z3WCfCXk6mJU+Kis/HOfpOjGnBugJD6lA0hN0wGcwbH/scuxHyGFSxTUdVcXz0ic20iJ8KG9bZhx5HX3SosKIif3Hr+sgj4r0Z/MlH8gR+FSUiT5mGzfcdlI5LAF86UT++SkFJc7WlWXQvbvdqaG7hCIvE7uTekAcvyKwJt6d/KlBC0tXdi5UnZw/YbO8mzdyzqrSydk30mR4ne0kuqmE6RiFnpfIuW6e1tIBTkpe61OUKy+dG9/tW7Kpg8GyowdrMTiZe8vX8jiQ9aq7ZKcSOkA0sp0gBAku6uxX1hqtmsmJWjNrkXy9ymRpFM7ZPtJTihJvGR574UP7W3DjKVQXXm+Z11RW9ZKrJZ8Ckn1VneKNgut7SU31+spK8vfoJ274pf8R/7z23FJliQ5tnGDnKvaXV65Myr0OqGpsQMChaTu8z2lrtoia1M6QMq13EWlSttn5d7jU2Xk5Iny735T5Wi1zjLl+yHS4DIvTjq2UTacqyrdX7lTTC9wgDQEvxaq+7z0rKtky9rYyz4gUXLXe/8nI+4rK3LyW3m6ckm5utq9MmjbjVK3zGXdZdIx2bjhnFTt/oqYaSAEiS6ux36JFh/K5/1uk4InvpSOje+U+178Vs4RgJy/jJyaNUF+OpAoEk60V3YqZ1eogQ1uV4PWnr9cqyR1dvc6tXLDHnUmUSmVdFbtil6pNh68qJK4I36zGnnXbarvohMpx3Zqi6lLFhA4q1YMbKBuH7RWpfSARHVq70F1HmInnFBbVy5Vf248oC5q4luPj1ebR96lbuu7SJ1Ic966bj5DDYGzKwaqBrcPUqnTgG5AvDq+ZYVavGy92qsngyutit88Ut11W1+1yHSAK6CE3DfnsW81IEldPBijVq3doU4lXFSH9hxRcdYlzQLCh/bi0C5bfE3Y+6167Yl+atZOR8hdVC1hv5ozsIvqPWNHGuK4uNOcCiUEEvaqb197QvWbtdMLuiao/XMGqi69Z6gdGXSXUILA1DVB7f32NfVEv1kq42lgjhrYpbeaYTpA6HebTI19pRL2hxftc0FBuyk2ks9tlfkLL8kdD9WS9C5bKbWN2/qD/HypqbStVcxsFGE3Ama3PsnnZOv8hXLpjoeklrsOwDvitsoPP1+Spm1rSTH7GFyy23rze41AspzbOl8WXrpDHnLbCeJk6w8/y6WmbaWW6QDh0W+8HfsSfrS3JTMOj15lWmEQMAgYBAwCBgHvEDDyhHc4mbsMAgYBg4BBwCDgNwQMM/YbtObBBgGDgEHAIGAQ8A6B/wfU5kBJbV2BzAAAAABJRU5ErkJggg==)
Question 5A long polymer chain, such as polyethylene (-CH2CH2-)n, can potentially exist in solution as a chiral object.
Give two examples of chiral structures that a polyethylene chain could adopt.
Question 6One reason we can be sure that sp3-hybridized carbon atoms are tetrahedral is the number of stereoisomers
that can exist for different organic compounds.
(a) How many stereoisomers are possible for CHCl3, CH2Cl2, and CHClBrF if the four bonds to carbon have a
tetrahedral arrangement?
(b) How many stereoisomers would be possible for each of these compounds if the four bonds to the carbon had a square
planar geometry?
Question 7Think about the helical coil of a telephone cord or a spiral binding and suppose that you view the spiral from
one end and find that it is a left-handed twist. If you view the same spiral from the other end, is it a right-handed or a lefthanded twist?