Refer to the information provided in Figure 5.7 below to answer the question(s) that follow.
![](data:image/png;base64, /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAE8AXEDASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9U6KKKACiiigAooooAKKKaGDZwQccHBoAdRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRTJJFijZ3YIijLMxwAPU0APor54+Kf7Vdrpt4dA8B248Q67K3kpdIpkgR/RFXmZvphe+cV6j8IH8YN4Gsz44Ef9vbmLsmzeyE5UuEAUNzgheOBTsBg/tLL42Hwnv5/AUU93q9rc21zc2FlMYbu+sUlVrq3tpRzHNJEHVWHIJ+UhiCOH+Gfxg8O26+DtW8Majr3inQviPeuthDq2oSSvoaW1sftKt57M42yRS71LEhyRnaFA9d8XeDdU1vXtI1nSfEc+jXmmRzRpayW4uLO48zaCZo8qzEBRt2umCTnPSvOG/ZO0Yy6I6+JNXU2MWsfapQsCzX1zqUpmurlmWMBHMjMcIoXadmNnylAQ6L+1ZH4vsvh9P4b8I3mqt44bVX0uOS6SDFtZvII7mTcPljmRY3U8kecgwTVLw5+10fGul+Cbjw74Lu9RuvE2g6nrYt5dQhhFkLGVIZVlcgjY0siqko4bOcYzjG8IfALXLX4kNoUera3pPhPwn4Hs/CWlaw0MSTXQmkL3bWroQIWSK3sYg+wkYcjLDebOgfAafX/AIjeP7D+zpfBngez0LS/BWjizh2zXOlwpLNceRKXPlCSS48pjt3FbZCCCQ1A9CK1+Mt38YvH3wu17wimsC1tvBuoeMrzw/FdvALxphFbWNrPhvLbcxvHUsrYa1BGOa9W+FPxmg+LMWn3enaRc22mXmh2urrdyyofLkllnje2dB8wdDAfm6Hnpt5yrb4ZwfCTxVq/i/QbbVdYhvbLSNDtvDWn+WkVlb2zSxoUyRmNBdSyFSeC0jfMdmzofg58LrP4S+En0q0aQvc3c19MHfcsbyuX8uPgYjTO1R6DJJJJoEeX+OfCfifRPjV8Ob7QfGuu3/iTUtZkk1rSJryQ6OuhrDJ5xNoP3cRR/s6Ry48xpZBuZgW2/RlePj4G+Im8cahr5+K/iWGz1C6Sa60i2stOjjeBTlbVZ/sxuEiwSuVlDjcxVlY7q9goAKKKKACiiigD4r8bftK+NPCHij4+wweNNIjufANxaHQdB1XTkmfWPOs1uDbbYTHMzmRxHG8f3eC6ycmvWdf/AGl9MvPCvizTlXXfCnifSNInk1W9TRnvofD10NPW8/eEgRysiSB1XOJNhHer3wr+C2teD/jZ8VPGesx6LdWXi6/tL2yFvI8lxZ/Z7cW6g7ogCXVQ5II2klfm+9VTU/gn4o1TSv2grJptJiHxG8xdPcXMp+yhtMh0/Mw8oc7YBLhc8sUzxvIM6K8/aC8L+HNDsJ7261HWGXS7LUr640/TJJDbQXPywzTxoCYg5WQheSAjdhkrdftL+ALPx/p/hCXWMalqGoyaRbzhQbdr5AS1sXB4kyrLgj7yleoxXC+EvgT8SPh54rt9U8MeIfDlpba3oul6Z4kt9QtZ7qS1nsYTCtxYOGRW8yNgpjlUBWRXy2WQ6/gn4MeOfBHjHWLSDXPDl34Hu9cuvEFtc3Oll9ZtXubmS5uLVWyIynmyyFZmy6qxXYcKygHcfELx3eaX4x8G+DNHwmteI5bmdrl49y2lhaqjXM2DwW3S28Sg/wAU4YghSD478PfjZ4z8XfH3xR4Q1TWtN8L63p8tuIfCGqWJRbvTxd3gkuLSXeHmlNuttJ5o3R5yhiU/OvqPxJ8N39p8Uvh949s99xaaLHqGj6napHvcWd8IG89e+Y57O23Af8s5JW/hAPA6t8A/F3jn4m6fqHi+80a4stEuNG1Oz8SWsBS8leyvL2fyI4c4ty6XEccsm91aPeqoDJmEEen/AA5+IM+u+KPGHhDVWjfXvDFxCss0K7EubaeMSwTBexxuRgONyNjgisL9n7/kI/Fb/sdr3/0Rb1L8KvB12Pib8RfH95DLZp4ils7Owtp12SC1tIygkZeo8yR5WAODtK5ANRfs/f8AIR+K/wD2O17/AOiLegD12iiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKinnjtYXmmkWKJAWeSRgqqB1JJ6CvnX4nftUlr8eHPhxaHXdamYxfb1iMkSN0/dIOZW9zhBwfm5FO1wPXviL8VvDvwu037Vrd6EmdcwWUPzzzn/ZT09zgD1r5vu9Y+I/7Vl61pp0R8OeCA+HZifKcDn9445mbp8i4QHGeRurqfhz+y1d65qf/CTfE69l1fUZj5n9ltKWB9POkB+bH/PNcKMclgdo+kbSzgsLWK2toY7e3iUJHFEoVUUdAAOAKNhHCfCz4I+GvhNZ/wDEtt/tWqyJtn1S5AM0nqF7In+yuB0zk816CRmlopDCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvIv2fv8AkI/Ff/sdr3/0Rb167XkX7P3/ACEfiv8A9jte/wDoi3oA9dooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooqC6uobG2luLmZLe3iUvJLKwVUUdSSeAKAJ64f4l/GHw38KtP8/WLzfdupMGnW+HuJj7Lngf7TED3ryD4j/tS3Os6mfDHwyspdY1OVvLGppEXUnv5CfxY5/eNheMjcDmp/hn+ys09/wD8JJ8SLttb1q4YTHT2lMkaN1/fP/y0Yf3RhAcgbhg07dxXON3fEn9q6+wMeGPBavgn5jCRn/gLXD/98oPbPP0R8Mvg54b+FOn+TpFp5l64An1G5w9xMfdscD/ZXAHpXa28EVpBHDBGkMMahUjjUKqgdAAOgqWi4BRRRSGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUV8pftgfETW/hx4rsLq7ub1/CN74dvYrb+xrhkn0bU1kQrqt2ifObKMPEjS4ZImcB1PnLQB9W0VxckniY/CJG0W703X/FraMn2a9efyrO7ujCMS+YqthGb5gQp4I4r5J074keK/BHhjV/COrXnjbQ/iXqfinw54bv5Nb1aPVYrO0v7p0W+0+ZYkTZJGl0oyoZJECkAoBQB91V5F+z9/yEfiv/ANjte/8Aoi3rN+E2v6ho/wAe/iZ8PHu7i80HSrLS9Y0v7VK00lstysySw+YxLMu+3LjJJG8jOMUfArxFp1r4j+Kelf2hZDWZfGV88GnSXSJNL/o8B4T72MKTnB4BPagD2+ivljwz+09r/gTxtqHhz4mWcSlLkl57DEjWSvyvyrkyR4IIP38dieK+iz428PLoltrLa7p0ek3WPIvnukWGTOeFcnBPB49jTtYDcorH0bxfoPiOaSHStb07VJo13ulldxzMq5xkhScDPeqA+J3g4vsHizQy5O3b/aUOc9MfepAdPRWPrHi/QvDskMeq61p2mPMpeNby7jhLqOpAYjI5HI9aWz8WaHqWmXOpWms6fdadbEie8huo3hiIAJ3ODhcAgnJ6EUAa9Fc7Y/ETwrqV1Da2fibR7q6mbbHDBfxO7t6ABsk/Sn6l498M6LevZ6h4i0qwu0xvgub2KORc8jKswIoA36Kx5/F+hW+kQ6tLrWnRaVMdsV893GIJDzwHJ2noeh7Gm6P4z8P+ILprbStd03UrkLvMNneRyuF9cKSccjmgDaormZ/iZ4QtZZo5vFeiQyRMySLJqMKlGBIIILcEEEH6Vf1jxbofh0wf2rrOn6Z54Ji+2XSReYBjJXcRnqOnrQBr0Vj6b4v0LWLS6urDWtPvba1GZ5re6jkSIYzlmBIXgE8+lVLP4jeFNQuoba18T6Nc3MzBI4YdQid3Y9AoDZJ9hQB0dFYWq+OvDeh3j2epeIdK0+7QAtb3V7HE6g8glWYEZqU+LtCXRhrB1rTxpJO37ebqPyM7tuPMztznjr14oA2KK522+IfhW9W4a38TaPOttC1xMY7+JvKiXG6RsN8qjIyx4GRXgXxA/ae1Txdqo8LfC2wuNRvrjMY1IQ5Y9i0SNgKozzJJhR16c0LUD1/4pfGzw38J7InU7n7TqjoWg0u2IaaT3PZF/wBpsDrjJ4r5/t9L+I/7Vd8lxfufDfggPlQoPlOAf4FODM3+2cIDnHTbXb/C79lWCzvRr/j65HiHXJXEzWsjmSFX9ZGPMp+vy9sEV9CxxpDGkcaqiIAqqowAB0AFPYRyPw4+FHh34XaYLbRbMLOygT3s3zzzn1ZvT2GAPSuyoopDCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAry34gfBD/hLfG0virS9em0HVLvQpPDl/m2S5iubNpDIuEYgK6O8hDcghyCDxj1KigDy23+DureHfDT6B4Q8a3nhnSrXQbPR9JgFlDciwlgkcm6+f8A1jSIyIyHC4jBGCag1z9n+z8XaFraa/rVze+JtUbT5Tr1vEsD2kthL59k0EeSEEcxeTGTuaSTJw2B6zRQBwXw9+FcXgvxF4m8SX2ovrfifxE8BvtQaEQr5UEeyGKOMEhVUFj1JLOxPWuH+A/g3QLzxp8TfEU+h6bN4gtvGd7HBq0lnG13En2eBdqykbwMOwwD0Yjoa91ryL9n7/kI/Ff/ALHa9/8ARFvQB1Hij4NeCvF8epnUPDenfa9Rw1xqEFskV07gYVzKoDFhgYyT0x04r5f8c/CPxF8CGlu006x8deAjMLiey1azS5gjbpvliYEIwHHnIOnBr7VpOtO4HjfwD8S/DHxLHNdeDvDmjeFtdMQW8sbSxgtrjZnP3kUeZHnuOOmQCRXV/wDCifhsJRKPh74V83dv3/2JbZznOc7Ouec15Z8Vf2WY5L3/AISP4eTHQNcgczrZwSGKMv6wsP8AVN1GB8p6YHeH4YftQz2Gpnwt8S7ZtG1m2YQtqEsflKW7ecvRCRg7x8h6jANFuwrnuHiX4ceE/Gk1vL4g8L6Lrstshjgk1PT4bholOCVUup2g4HA9KXTPh34V0bQr3RNP8M6PYaLfFmutOtrCKO2uCyhWMkaqFbKqAcg5AA7VvQypPEkkbrJG6hldTkMD0IPcVJSGcbpfwZ+H+h6jb6hp3gbw3p9/buJIbq10i3iliYdGVlQFT7g1Jrnwk8DeJ9Tl1LWPBfh7VtRlwJLu+0uCaZ8DA3OyknA46111FAHN3Pw48J3vhy28PXHhfRp9Atm3waVJp8TWsTcnKRFdqn5m5A/iPrUfhv4Y+DvB1+17oHhPQ9DvWQxtcadpsNvIUJBKlkUHHA49q6iigDhrv4GfDe/uJ5rn4e+Friad2kmkl0W2dpGYkszEpySSSSeua1/Evw78KeMja/2/4Y0fXfsqlbc6lYRXHkg4yE3qdoOB09BXRUUAc3ovw58J+G9Pv7DSPC+jaVY367by2stPihiuVwRiRVUBxgkc54JrP034LfD3R7+2vrDwJ4Zsby2cSwXFto9vHJE46MrBAVI9RXaVS1bV7LQdOuNQ1G7hsbKBd0s87hEQe5NAGBr3wo8EeK9Sk1LW/BugavqMiqr3d/pcE8zADABd0JOBwOa4H4s+Mfhf8KfCP/CL33h3RtQtj+9i8K29lAYQd28O8RXZGN2G3EZzyAcGuF8cftKa/wDEHWG8LfCvT7iaeTIbU/LzJs6FkDcRrk/6x/bAya6L4U/sp6doNyNb8Zyr4j1yRvOMExMlvHITks+7mZ/duOTweCHbuI8g8GfA3Vfjrq8GtnwzoXgTwuDmGTTNJhtnlQkZEW1A8mcD53O3gYBr6B/Ze8Kw+G/hijPpbWGpy399FcTT25iuJ0iu5o4WfcAT+7VCO3OR1r2CuI+DnjW9+IHgWLWdQihiuXvr+2KwAhdsN5NCnUnkrGpPvmhsZ29FFFIAooooAKKKKACiiigAooooAKKKKACiiigAorjvD/xd8H+KdVttN0rXbe8u7sSvaIisFvEix5skDEBZo03KGeMsoLoCcsuexoAKKKwvGvjXRfh14W1HxJ4ivl0zRNOiM13eOjOsKDqxCgnH4UAbtFFYniTxnoPg82A1vWLLSm1C6jsrNLudUa5ndgqRxgnLsSegz3PQUAbdFFFABRRRQAUUUUAFFFFABXkX7P3/ACEfiv8A9jte/wDoi3r12vIv2fv+Qj8V/wDsdr3/ANEW9AHrtFFFABXCfFH4OeHfixpoh1W28q/jUi21KAATw+2f4l9VOQfY4I7uigD4+sdc+IH7J+pJYapE3iHwPJJiJlJ8uPJ/5ZseYW/6Zn5CSSOWJr6Z8AfEfQfiXo51HQr1blEws0LDbNAx/hdOo7+xwcE1vajp1pq9jPZX1tFd2k6lJYJ0Do6nsQeDXzF4/wD2cde+G+sf8JX8K7y5haLLPpivuljHXbHuyJU/6Zvk8cE54e4j6norwv4PftP6X43lj0XxJGnh/wASKfLIkJSC4ccEKW5Rv9hufQmvdKQznPHnxA8P/DHw5Nr3ijUk0jR4pI4pLyVGZEZ2CIDtBIyxVR7kDqRT/CfjrQfHEV4+h6lFfGym+z3UIDJNbyYztkjYBkOMEBgMggjivB/2t9fh1zxv8HvhsmuWOiSarr//AAkV9NflZIRaaXGbpFmiMiFke5W2H3h9xueDVz9j2VvET/FDxdfONV1zU/FE1lceI7T93p+rwWqLFby2cXPlwqpZMb5SWVz5sgI2gH0ZRWdrmv6d4Z0ybUdVvYdPsYRl553CqP8A6/tXzN4y/aI8U/FXWJPC/wALdPuY43+WXVNu2YqeNyk8Qr/tt83pt600rgesfFv9oTw38KY5baWUanrgXK6bbuMrnoZG6IO/PPTjmvFdJ+H/AMQv2m9Tg1nxddy6D4VDb7e0RSq7R/zyiPUnJ/eyZPJwMYFeifCP9lnSPB00es+J5E8ReIt/mjzMtbQN/eAbmR88739sAEZPu4GBRtsI5vwL8PdA+HGjjTdA0+OyhODLL96Wdv70jnlj9enQYGBXS0UUhhXG/Cax8Oad4Ljg8K3j3+jfbb1lnkYsfOa6ladckD7spkXp279a7KvPvgZ4V1PwZ8PIdL1eAWt6uo6jcGNZFcbJb6eWM5HHKOp9s4oA9BooooAKKKKACiiigAooooAKKKKACqWqavY6HZPd6jeQWNqpAae4kCICTgcnjk15r8W/2i/DfwsSS13jWNdA4063kA2H/pq/IQfgT7V43o3ww+IH7Seowa346vptF8OZ3QWaR+Wdh5xDE2duQf8AWSbm+oAAdhH10Dketc94+1bQtH8JajJ4lu47LRZ0+x3EssnlriYiILuyMElwAc961dI0uHRNKstOtjK1vaQpBGZpWlcqqgAs7EljgcknJpNW0aw1+yey1OxttRs3ILW93CssbYORlWBB5pDPiq28R+JfgB4H+JfgJtSsdU1/4eadYWngrxPEsT3KWuqTmK2s7qNlKCZHtYwxI+ePy2IGct0Hij4+eNdY0r4qReGPFcFveWWt+H/BfhWY21sXm1GeSNbm8dGRw0btcH5cbQlo5Xadxr6bi+F/g6LQbjRE8KaKujXE63M2njT4vIklVgyyNHt2lgyqQSMgqPSuV+IHwJ03xz4v8H6mU0m20jR9Zl13UtKl0eOb+17o2ctrE8km4YMazuwJVyWWM8beQZ4jq3xR+JM+teKdD8P+Mb3ULfUPHOj+HPDOuHSrORg2z7RrMZURKkkENvDdEMQXDRkeYcZrM1nxzr/xDnbwVrOsp4h8Ja78SrWy0rUtTghjluNM08LfXo/cpGksRuLUWittJbz9pLHmvoLxf8DLLxf8QPAur3Emnr4Y8KwXqxeGX00PDNPcRiITbvMCqY4/MVV8thiaTuQR29x4Q0S5k0mV9H09p9HLNpkklqjGxYoUJi4+T5TtO3HHFAaHjPhjxd40uPjn4j8BXPieW4XStWttchklsrffPo09rKrWrlY1AVLkLtkGJDwCzANl37YDKNB+GWSAT8QdDAz3PnmvVfA3hC78OWf2rWtSi17xPcQwxahq8VmLRbgxrtG2IM3lr95tu5uWPOMAaXiDwlofiyO3TW9GsNYS3kEsK31skwjcdGXcDhvcc0Aa9FRfZYf+eSf98iigRLRRRQAV5p8TP2jPh98INZh0nxXr40zUJLX7aIFtZpisG5lEjGNGCglHAzjO1vSvS68k/aT1CWy+HNxo+llLfXPF13beHLaYLls3D7GY45KpEZWOOgBNAHbxfEHw9L4Hi8Y/2nFH4bktFvlv5AyoYWXcGwRnkEYGM89KwvBHx58DfEPw9rus6Nrsb2Wgsy6qt1FJbS2O1N+ZY5FV1BT5gcYI5Gan1nxR4D8DaRcaPq+qabYWfhnTLbU57a7lGbO0R2WCdgecb4GCnuyYHNeFaBefCb4o2/xW1fxJ4w00W/jVtOg1KGw1cW50+yjbyLCCa4hceXNK7SsRuyS7oCyxmgD3n4X/ABi8KfGTTr2/8JahLqdnZzC3mlktJrcLIVDbR5iKTwRnHrXMfs/f8hH4r/8AY7Xv/oi3rP8A2bbfX9DvfH/hy/8AEmp+MfDWkaukeg65rEwuLmSF7eOSWFp+s3lSs6bzk9j92uf+EF74/g8efEaHQtE8NXvhhvHE/wBsvdQ1i4t72JTHbed5cCWro5CcrmVdxwCV60AfRtFcD401L4n2utbPCXh3wlqek+Wp8/WtfurOfzOcjy47KZdvTB35PoKswX/xDPgee4m0LwynjEPiLT01q4bT2XcOWuTaCQHbk4EJ5AGecgA7WivPvCGp/FS512KPxT4b8H6bo2x/MuNH8QXd5cBsfKBHJYxKQT1O8Y9DVHW9X+MsWr3qaR4T8C3WlrMwtJ73xPewzyR5+VpI1091RiOqhmA9TQB6fRXF+I7/AOIcHh3SZNA0Pwze664X+0bbUdauLa1hOznyZUtJGk+bgbkTjng8UngrUPiJdDUv+Ev0LwxpZSNTYjRNauL3zX+bcJfMtIdg+5grvJy3AwMgHN/GP9nfQPitDJeRAaN4jAGzUoUyJcdFmTjePfhhgYOMg+R+FfjH4z/Z/wBah8MfEWyuNR0T7lvqEZMksaDo0bnHnIP7hw6jPXAWvXrfWfjgbmMT+D/h+kBceY0fiy+ZwueSAdNAJx2yPrVP9oS61yLRpo5NA8E6p4QMANzceKNeubCVJdx4jWKzm/2cMGDZOAPV3FY7JNZ8DeLLPT9ckn0S/iu/3Vrd3XlFnP8AzzUvznnlevPSuR+Kf7Qfhb4PWf8AZdnFHqWrwrsi0qyYRxw+gkYAiMewBPtX4gftGajqTfFzXY76Rra1hnzp8Ed1LJBHBgbDE7xxMw/2iit6gGv0k/4Jq6P4Y8SfDXS7/wAWy/2j47R5WtLfVSS32UNiOVAww7dRuJLAAdB1Cuh6DoXwp8f/ALRmpw67481CbRNAB3wWkUflsVPOIYmyEGP+Wkm5jxwe3034P8D6H4B0hNM0DTotOtF5ITJaQ/3nY5Zm9ySa3qKGxBRRRSAKKKKACvN/2ftf1HxN8NIb/VLyW+vG1PU4jNKcsUjv7iNF+gVFUewFekVx/wAKde0TxL4NjvvD2mPo+lm9vYltZI0jIkjupUmfCMw+aRXbOcndkgHIoA7CiiigAooooAKKKKACiivHfjB+0p4f+GaTafZbdd8R/dWxgf8Adwk95pBnb/ugFicDAB3AA9P8Q+JNL8KaVPqesX0OnWMIy887bVHt7n2HNfMni79oDxf8YtXk8NfC/Trq2tjxLqeNk7L/AHtx4gT3PznjG3oYPD3wd8dftBatD4i+IWoT6RoefMt7GNdkjKegijOREuP423OR253V9NeE/B2i+BtIj0zQtPh06zTnZGMlj/eZjyx9ySaeiFueUfCD9lzRPATxarrzJ4h8Q/fDyLm2t2/6ZqeWb/bfn0C17lRRSGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFQTWcFzJBJNBHLJA2+J3QExtgjcpPQ4JGR2JqeigDNvfD2lalJcSXmmWd1JcRJBM01ujmWNGLIjEjlQzMQDwCxI61SPgLwydNvNOPhzSTp95t+02hsYvKn2nK7024bB5GQcVv0UAV7KyttNtIrW0t4rW2iXbHDAgREX0CjgCvKv2fv+Qj8V/8Asdr3/wBEW9eu15F+z9/yEfiv/wBjte/+iLegD12iiigAooooAKKxfFfjDRvBGjy6pruoQ6bYx8GSY8s3ZVUcsx7KASfSvmTxH8Z/HPx91ebw58OtPudM0gfJcX7HY4Rs/NLKMiEEA4UZc4OM9A0riPUPjB+0v4f+Gvnabp+3XvEY+X7JA/7q3b/ps46H/YGWPGdoO6vMfDXwW8b/AB71eDxJ8Rr+40zRs77fT0GyZl7COM8Qr/tNlyM8DIavT/hB+zR4f+Gph1G+K674hX5/tkyfu4W7+Whzg5/iOW+leyUXtsB4544/Zt8JeIYfAdra6To1naeHdbi1Bo7yxS4a6iWGZWh3NzlmkVyTn7nT0x/i/wDst2HiqZtb8Iyx+H/EcZEgRCY7eZh0Py8xN/tKD7jvW5+0BFLJrPwhMaSOE8cWrOUBO1fsd5ycdB0r1+i4z5f+Hf7S2r+CtX/4RT4qWdxYXUBEY1SSMbk7AzBchlP/AD1TIPU8ZavpizvbfUbSG6tJ47m1mQSRzRMGR1PIYEcEH1rmfiH8L/D/AMT9JNjrdmJWUHyLqP5ZoG9Ub+nQ9xXzXLafEH9k3VDLbk+I/AskmeciJcnowGTBJz94ZRj7nbRuI+wqK4r4ZfFvw98VtJN3o11tuIuLnT58LcW5/wBpc8qezDKnnnIIHa0hhRRRQAVxvwm8FSfD7wVHo0l9FqLpe31z9ohjKKRNdyzBcZPK+ZtPPJB6V2J6V5Z+zPHJF8J7dZUdH/tbVztkBB51K5I6+1AHqlFFFABRRRQAVj+KPFuj+CtIm1TXNQh02xiHzSzN1PooHLE9gASfSvLPi/8AtPaF8O5JtK0nZr/iJSUaCJv3Fs3TErjq2f4Fy3HO3Iz514W+BfjP43avD4l+Jl/dWGn53W2mfcmKHnATpAp6c/Oe+3Ay7dxXI/E3xu8bfHfV5fDXw306507TD8k9+52SlD/FJJyIV/2Rlzg9ztr034Rfsy6B8Omh1LUyuv8AiIHebqZP3ULHr5aHPPX52yx68dK9R8NeFtJ8HaRFpei2MOn2MX3YoVwCe5J6k8dTzWtRcLBRRRSGFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFeRfs/f8hH4r/wDY7Xv/AKIt69dryL9n7/kI/Ff/ALHa9/8ARFvQB67RRRQAV4z8bv2jdP8AhXcHRrK0l1LxK8ayJA8bJDGrZCMzY+fJBAVM8ggkGvZqyLzwpo+o69Za1dabbXGq2UbR213JGGeJWIJ2k9OnXqMnHU5APmjwr8BfGPxo1iLxP8Tr+5srT71vpZ+SbYecBOkCnjj75/ixivpnw54Y0rwhpEOmaLYQ6dYRfdhgXAz3J7knuTkmtWim3cQUUUUhnB/FDx7e+B9Q8CQWdvBOmv8AiOHR7gz5zHE9vcSFkx/FmFRzxgmu8rhviZpnhvUr/wADt4h1CSwmtfEMNxpKxtj7RfCCcJE3ByCjSnHH3Rz69zQAVDc20V3BLBPEk8EilHjkUMrqeCCDwR7VNRQB8zfEr9mK/wDD+qf8JV8MLuXTNTtyZP7NSXZ9RCx4Ge6N8p9q1PhH+1Lb6vef8I946iXQNfifyPtEqGKKSQcFZFbmF89jwfUcA/Qtea/Fz4EeHfi1aGS7iFjrKJth1O3QeZjssg6OnsenYjJy733FY9JByKWvkPRPiB47/Zg1a30Dxfay634UdvLtLlGLBR6QyH0HPlPggD5eK+n/AAd400bx7ocWraFfR31m52kp96N+6OvVWGRwfUHoRQ1YDdrivhD42vPiH4Hi1q+ghtrh76+tTHb52bYLuaFTzzkrGCfcmu1rjPhJp3h7SvBUdv4Xv5NS0gXt663ErZJma6ladc4H3ZTIo47d+tIZ2dFFeF/Fz9qTRvBUsukeHVTxD4g3eTiEloIZDxtJXO988bFyc8Eg8U9wPVvGPjbRfAWjSapruoRafaKcAuctI3ZUUcs3sAa+Ztd+Lfj39ofV7jw/4BsZ9H0JW2XF8zbG2H/nrKMiPI5CJljz1xVzwh+z34r+Lesx+KfijqFzFHIN0WmbtsoQ8hMDiBenyj5j/EQc19M6B4e03wrpNvpekWUOnafbrtjggTao9T7k9STySSSc09EI8z+EH7N3h34XLDfTqus6+oB+2zp8kLd/KTov+9y3vXr1FFSMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK5H4j/Fnwb8INJttT8a+JdN8M6fczfZ4bjUpxEskm0ttXPU7VY/hXXV4D+0t4UfVTdeKPD3xOvvBfjfwjoF1d21hbyWs9rLbysrE3dpLGzSRyPaqgYMuCh2nIIIB7fYa1Zano8Gq21wr6dPAtzHcNlFMRXcH+bGBjnntXFeFP2hfhr4503xBqOgeNtG1XTvD6LJql7bXStBZq2/Bd/ujPluevb3GaVx4l0vx78If7O8Wa/F4L1XVvD9vcapHaajHaXWmrcps3oXJMY8zciMwPzLjkgivmf4i6d4u8DWOoeB9W8Vv4x8AeFvGHgq+n1bVreFbm306S+/f2d48SIkvkmC0mLlQfLnBbigD7M8K+NNG8bWlxcaNei7W2mNvcRNG8U1vKMEpJG4Do2CDhgDgg9DXn/7P3/IR+K//AGO17/6It6wPhgskn7XXxtntA39mDTdBhuWXOw3wiuC/sWELW+fbbWF8Ob34n2/in4pp4M0jwjf6SfGF2Wl1zVrq2uPN8m33DZFbSLt6YO7J9BQB9M0Vwz3fxIHgVZU0nwsfGRkw1o2qXP8AZ3l7uom+z+ZnHby8Z71V8E3vxVn11U8X6N4OstG8tiZdE1e7ubjzONo2SWsa7euTuz04NAHodFeU6xqPxuj1a/XS/D/gCbTFuJBZyXmu30czw7j5bSKtmwVyuCwDMAcgEjmt/wAXXfxGh0vSG8L6V4XvNSZM6lHq+p3MEMb7RxC0du5cbt3LKvAHHOAAdvRXEeDLv4jz2WrnxbpXheyu1jU6amjanc3Ecj4fcJjJbxlBny8FQ3BbjgZ53TdS+OT39sNQ8O/D2KyMii4e21++eRUz8xRWsgCcdASPrQB6zRXn3je9+KdvrW3wfo3hC+0jyx+91vVrq2n39xsitpFx0wd2farMN38Rz4AuJpdK8LL43EgENmmp3J01o/MXJac24kB8vccCMjcAM4JIAMr4z+FdU8S6p8M5dMs2uo9K8W2+oXhVgPJt1tbpGkOTyA0iDA55r02vnXxd41+MuheLfhrBr1p4U0TRtU8UQ2F3JoGp3F3PPG1tcv5RSa0RQhMaksGDDaMdTXca7qHxpj1m9XRdA8B3GkiUi1lv9cvYp2j7GRFs2VW9QGI96APUqK4fxNd/EeLw9oz+HtK8LXWuvGp1SHU9TuYbaJ9g3CB0t3ZxvyAWVOMHGeKPAl18Rria9HjPSvC9hEIwbU6Fqdzcs79xIJbePaPcZ+lAHcUV5Ja6l8dDeQi58O/DxLQyKJXi1++ZxHnkqDZAFsZwCQM963vHl58TrfV4V8F6R4Sv9LMCmSXXtVurWcTbmyAsVtKpTbswSwOSwxwCQDrdc0LTvE2k3OmatZw6hp9yuyW3nUMjDr09QcEHqCARzXy/4v8AgZ4t+CGuSeLfhneXF1ZKM3GnH95IIxklGQ8TIOcfxr1HPNe9aTdfER/BOoS6npfhiLxerN9itLTU7iSwdcLt8yZrdZFOd2cRt0HXPGX4T1D4vS+ILVfE+ieCbPQjv+0zaTrN5Pcr8p27EktUU/NtBywwMnk8U07CMf4N/tIaH8TxFpt7t0bxGRt+xyN8k5HXymPU8H5T8w98Gqvwy8U6X8HfgxFP4pvreyxqeqSRxxTJO02++nkRY9hO4lXU4HTPOK+E/wDgpd4mOoWWpHw/aaFHZPqKR6lqnh+/uHmnt9rfLcxmFYhl9u545G6ANkHj5t/YYudNX462Vvrr3beCnglbWo7Nm24C/uS23kfvNoyuG2s2DTsVbQ/S/WPiN8Qv2l9QuND8HWcuheFw3lXV2zlNynqJpR2I/wCWackcNkGvZ/hF+zz4c+FMcV0kY1TXgu06lOgzHngrEvSMY4yOT3OOK7rwh/Yf/COWH/CNizGieX/oy2AUQhf9kLwPf3znmuJ+MXiW9urjTvBOhW0uo6tqw8/ULe1nSGWLS1YCdg7EbDJkQqwII3sykMgpXJO+0DxBpnirR7XVtGv7fU9Mul8yC8tZBJFKucblYcEcdRWlXz1+w1Pb2PwUvvCcCSQt4N8T634daGV1doViv5nijyvHywywjjjjjivoWkMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACuc1X4eeFtd8TWXiLUfDmlX+v2Ufk22qXNnG9zCm4sFSQjcBkk4Bxkk966OigDB1vwH4a8SPqT6t4f0zVH1KzTT71ryzjlNzbIzukMm4HdGrSSMFOQC7EDJNS6Z4P0HRdAbQ7DRrCz0VkMZ0+C2RIGUjBUoBtII4xjpWzRQBleHfDGj+EdOGn6HpdnpFiGLi3sYFhj3HqcKAMn1rzf8AZ+/5CPxX/wCx2vf/AERb167XkX7P3/IR+K//AGO17/6It6APXaKKKACiiigAooooAKKKKAOH+Jet+HtHv/A6a/pX9qTXviGG10t/KV/sl6YJ2Wb5iNuESVdwyfn6c13FcH8T/AV5441DwJcWlzBbroHiOHWZxPnMsSW9xGUTA+9mZTzgYBrvKACiiigAopkkixIzuwRFGSzHAAr58+Kn7VNtpt2fD/gO3HiLXpW8oXSIZIIn6YRRzM/sMKO5OCtAHrvj74leH/hppX27Xr9LZW4it1+aaY+iIOT9eg7mvmnUvGPxF/aj1CXTPDls/h7werbZpWcqrjp+9lHLn/pknH97OARv+AP2Y9X8Z6sPFPxT1Ce+uZvnGlmXLt6CZxwq4/5Zx4HTJ6rX0tp2m2mkWUNnY20VnaQrtjggQIiL6ADgVWiEed/C39n7wv8AC+xbyrZdW1WePy7jUb2MMzqfvIi8hEP90deMk4rN8FfD74afEf4WyWekeDrHRfD897eItvbWkdrJHPFcSRPKhj+6xdGIIPIODwSK9grivhB4Ju/h74Ii0W9uILq4S+vrrzLfOzbPdzTKOQDkCQA+4NSM+ddU8IeP/wBljVptX8N3L+IPB7NvuLeZSV2/9NkX7jD/AJ6oMcZIx8te1/Cj4leB/ivqB13TbO1s/Fv2YQXKXESC9WIHOwSAZePPIwceoBr1F0WRGVgGVhgqRkEV87fFb9lpZ77/AIST4eTnQtcibzvsMMhhikfruiYf6p/b7p9uTVb7iPdPD/hLQ/Cgu/7F0ew0j7XKZ7n7DbJD50h6u+0Dc3uea2K+bPhb+1FPaakfDHxKt20jWIW8r+0pIvKVm6YmTGEP+2vyH0Xv9HRTR3EKSxOssTqGR0OVYHkEEdRSasMlooopAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAV5F+z9/yEfiv/wBjte/+iLevXa8i/Z+/5CPxX/7Ha9/9EW9AHrtFFFABRRRQAUUUUAFFFFAHkPx/aZdZ+EIiaUA+N7USeWTyv2O8+9jtnHXjpXr1cL8TvHt14H1DwLBbWsNyuv8AiKHR5jMTmKN7e4kLpj+LMIHPGCa7aaVIInkkdY40GWdjgAepNAElcf8AEX4qeHPhdpn2zXL3ZI4zDZQYe4nPoiZH5kgDuRXj/wATf2rFa+/4R74c2za/q8rGIahFEZYt3pCg5lP+19z0Ldq3w6/Zavdc1L/hJvifeyanqkx3nTDN5gHcCaQHB/3E+UerZp27iucvca38SP2qr97XTIv+Ea8FB9kkhLeUQOTvcYMz/wCwuFHGSPvH3/4WfBDw18J7JRp1ubvVGXbNqlyAZpPYdkX/AGVwPXJya7qzsbfTbWK2tII7W2iXbHFCgVEHoAOBVii4wooopAIeleW/s0tK/wAJ4DO0jSf2tq+TKSWx/aVzjrz0xj2r1OuL+EXja5+IXgmLWru2htJnvb61MUBO0LBdywqee5EYJ9yaAO0ooooA4T4o/Bzw78V9N8jVbbyr2NSLfUYABPCfr/EvqpyP51882Wu/EH9lDVVsdVhbxH4JeTZDKhIj29R5ZOfJkx/yzYlTzgn71fYNVNS0201ixnsr63iu7SZSkkEyhkdfQg00wMLwD8R9A+JeirqWhXy3MfSWB/lmgb+7InVT+h6gkc11FfLXj/8AZz1/4c6yfFvwrvLiJ4hul0lXzKF6kR54kT/pm3PXaTwtdj8G/wBp7S/HM0eieJETQPEobylWTKQXTeiFuUfP8Dc8jaW5APQVz3SiiikMKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvIv2fv+Qj8V/8Asdr3/wBEW9eu15F+z9/yEfiv/wBjte/+iLegD12iiigAooooAKKKKACiobm5hsreW4uJUgt4kMkksrBURQMliTwABzmvm74j/tTXGr6mPDPwys5NZ1W4JjS/SEyZI5JhT+IAZJdsKBk9BmmlcDuP2g/EXhDQYfC194j1OeO+0TVk1qw02x2tPdyJFLEFKnpHiZiWJAyBzng+OtJ8Sf2rrx1jH/CNeBw+GJJ8lwD07G4b8kB64PFLB+zN4qj1jwjr/iPzPEuqX/iCD+2rUyLKkFj5M7O0rsRv/eCAYXgdACCa+u7e3itII4IIkhhiUJHHGoVUUDAAA4AA7UbCOK+GXwc8N/Cux8vSLUyXsihZtQucNPL/AMCxwP8AZGBXdUUUhhRRRQAUUUUAFcb8JdE0Pw/4LjsvDuqrrWmC9vpVu0lWQGR7qV5UyvHySM6Y7bcHmuyrzn4A+HdT8L/DWHT9XspLC9GpanMYJSpbZJfzyRt8pI5R1Yc96APRqKKKACiiigAryX4xfs66D8VI5LyMLpHiAKdt/Cg2ynsJl/jHv1HrXrVFAHyT4W+MnjT4Aa3F4Y+Itjcajo/3bW+Q+Y4QY+aKQ/61QCMocOuR9D9Q+HPEul+L9Ht9V0a+h1HT5xmOeBsg+oPcEdwcEdCKi8V+EdI8b6NLpWuWEOoWMhz5co+63IDKeqsMnkYPJr5g8SfCzxt+zhq9x4m8CXc+r+HB893ZupkZUH/PWMffAH/LRRuXGTwCarcR9c0V5b8Hv2gPD3xZt47aORdN17ZufTZnGXAGS0R/jXvxyO47n1EnFSMWiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvIv2fv8AkI/Ff/sdr3/0Rb167XkX7P3/ACEfiv8A9jte/wDoi3oA9dooooAKKKKACiiigD5g8d/Dj4o/Gvx5f6Lrc8eh+DLG4HlvDzDOvDKwTOZXxj72FU9BnNe2fDf4T+Hfhdpv2bRLILcSKBcX02GuJz/tP6eijAHp1rs6KdxHmnxl8War4X1T4aQ6Xdm2TVvFlvp16uxW823a1unZOQcZaNDkYPFel1w3xMv/AAxZX/gZfEljLeT3HiGGHR2jUnyL8wTlJGwRgCNZRk5HzDj07mkMKKKKACiiigAooooAK88+A/ibU/F/w5h1PV7o3l62palAZSip8kV9PFGMKAOERR+Feh1xnwlvvDuoeCo5/CtlJYaN9tvlWGUEHzlu5Vnbkk/NKJGHPft0oA7OiiigAooooAKKKKACiiigDwP4wfsu2Piq5fX/AAjImgeJI3+0BYiY4ZpQdwcFeYpM87178kZ5rm/h7+0vq/grVf8AhFPinZ3FleQAKNTeL5wOzSqvDKe0iZB7jOa+oK5H4ifC7w98UdKFjrtmJWjyYLuEhJ7cnuj449wcg8ZBpp9xHTWl5BqNpDdWk8VzbTIJIpoXDpIpGQysOCD6irFeQ/Ab4Nax8IW1q2vPEL6npc0g+xWaArGg6mQqc7XOcEKccZ54r16kMKK+a9M+MfxG8R6X8YPFGiy6JPofgnW77TNP0++06WB9TWzhQ3OZxKwTExmiVghBMOSBk49C0b9o7wVffDXwt4z1LU10Wy1/R4tbitrhWkmitnWMl3VASEVpY0LkBdzqM5YAgHqVFeeXfx+8A2GqyabceIY4r2PW18OyI1vNiO/ZI3WFm2YXKyx4ckISwAbPFW9K+NHgzW/D1rrVjrS3Fjd6i+kW4W3lE014jOrwJCU8xnXy5GYBeFjdzhVLAA7iivMh+0j8ODFo8q+JFZNYS9k08rZ3B+0i0bbcBMR8lWKrt6szKqglgDrRfGjwXP4d0TXItehm03WraS809445GeeCNN8kojC7wiDG5ioCllBwWAIB29Fed/s++L9d+IPwb8LeKfEf2b+0dbtjqSfZIjEn2WV2e1Ows21jA0JYbj8xb6V6JQAUUUUAFFFFABRRRQAUUUUAFeRfs/f8hH4r/wDY7Xv/AKIt69dryL9n7/kI/Ff/ALHa9/8ARFvQB67RRRQAUUUUAFFFFABRRRQBwXxS8B33jjUfAU9lNBCmgeJIdYuROSC8KW9xGVTAPzZmXrgYB5rva8h+P9xNb6z8IhFLJEJPG9qkgRiNy/Y7w7TjqMgcH0FevUAFFFFABRRRQAUUUUAFcT8HvBV78PvA0Wi6hNBPcrfX91vtySm2e7mmUcgHIWQA+4NdqeleW/s0zy3Pwngknkklk/tbVwXkYs2BqVyByfYAUAep0UUUAFFFFABRRRQAUUUUAFFFFABVHWpL+LSL19LhhuNTWF/s0Vy5SJpcfIHYZIXOMkAnGcA1eooA+XvBX7PfxD039nLSfhBcarpuiWtxb3MHiLxJa3cl3e3BuZpJrtrVGjVVMzTSgPIf3YckI2BVvw7+zE/h34ra28ujafrPgea20S10aC71O4EWmWenwGNLN7Mfu5gsry3EZbI3zMThlUn6WooA+ZfDv7MOuwX/AIXu9Ym0e7lHi7U/HHiIrJOftd+6TJp0KE/8sYROCQcDMCYU7mzi+Bf2dviZ4H13wxqHnaDf3ll4Y1PTVujPIRpup3d75898oaMNM0saxL1UqYtudrk19aUUDufKng/9mPxp4e8N2k32/SoPEmh/Dyfw74fInkljtdZumeS8vHYxjG90thvUZwsny4ODl6n+zF8RNE8O+N9G8NTaOTqfgXT/AAhot9Peyq2lwQxNHcQoAnLSb2dZcj58Mw+UKfr+igLmb4e03+x9C0+wW3trNLWBIUtrMHyYUUYWNM4JVQAoOBnGcDpWlRRQIKKKKACiiigAooooAKKKKACvIv2fv+Qj8V/+x2vf/RFvXrteRfs/f8hH4r/9jte/+iLegD12iiigAooooAKKKKACiiigDhviZ46/4Qq/8Dwf2ZFqX9u+IYdI3Sy7Psu+CeTzl+VtxHlbccfePPHPc1w/xK8M6N4iv/BEmr6x/ZMmmeIYb+wTei/bLlYJ0WD5uuVkkbC8/J9a7igAooooAKKKKACiiigArjfhL40/4T/wVHrP9nRaVvvb22+zQyb1Hk3UsO7O1eW8vcRjgsRk9a7KuN+E3h7SfC/guPT9E1X+2tPW9vphd70fMkl1LJImU4+R3dPX5eeaAOyooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACvIv2fv+Qj8V/8Asdr3/wBEW9eu15F+z9/yEfit/wBjte/+iLagD12iiigAooooAKKKKACiiigDyv446DqOt6v8K5NPsZ71LDxjbXl00EZYQQi0u1Mj+iguoz6sPWvVK84+L/jHVfCWp/DiHTJ0hj1nxVBpd6HjD77dra5kZRnod0SHI54969HoAKKKKACiiigAooooAK80/Z50W/8AD3wxgstSsp9PuxqmqSmC4Qo4R9QuHRsHsysrD1BBr0uuA+B3ivU/Gvw8h1XV5VnvW1HUbcukYQbIr2eKMYHokajPfGaAO/ooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK474r/Ei1+FXg2XXJ7SXU7mS6ttPsdOgdVlvby5nSC3hUtwN0ki5PO1dzYwKAOxryXUv2cdIvNf1nVbHxR4t0F9Wu2vrq20nV2ggadlVWcJtOCQi5+lbngH4oDxT4u8V+EdRtF0/wAS+Gmt2u4YZDJDNBPGXhmjYgHadrqQRkMhHNd9QB5B/wAM323/AEUP4gf+D9v/AIij/hm+2/6KH8QP/B+3/wARXr9FAHkH/DN9t/0UP4gf+D9v/iKP+Gb7b/oofxA/8H7f/EV6/RQB5B/wzfbf9FD+IH/g/b/4ij/hm+2/6KH8QP8Awft/8RXr9FAHkH/DN9t/0UP4gf8Ag/b/AOIo/wCGb7b/AKKH8QP/AAft/wDEV6/XnHxK+IHjHwnfmPw34BHiewgtTc3mo3Osw6dDD975BvVi5AXcTgAAjnrgA5rUf2V9H1iSwe+8beOrt7C6W9tGl11iYJ1VlWRfl4YK7j6Mau/8M323/RQ/iB/4P2/+IrA0b9p2+8XaSJNB8HyXOr2vhaDxXqWly3yhoYp1Z7e1RwMNPIiMwyAq/KDy3Bd/tZ6bqWha/wCI/CujTeIvDfhzw9aeJtVuhKIZfstxCbhY4UP3pRbgylSQOAmQWyAZv/8ADN9t/wBFD+IH/g/b/wCIo/4Zvtv+ih/ED/wft/8AEV6lpGrWevaTZanp1zHeafewJc21zEcpLG6hkYHuCCCPrV2gR5B/wzfbf9FD+IH/AIP2/wDiKP8Ahm+2/wCih/ED/wAH7f8AxFev0UAeQf8ADN9t/wBFD+IH/g/b/wCIo/4Zvtv+ih/ED/wft/8AEV6/XAy/FMQ/HKz+HD6TIrXXh248QR6p5y7MQ3MMDReXjOczq27OMDGKAOfH7ONupBHxD+IAI/6j7f8AxFUtI/ZY0fQLFbLTPG3juws1kklEMGvMFDu5d2+71LMzH3JrtviT4v8AEnhq2toPCXhF/F2tXAeRYJbwWVtFGm0EyTsrAMS6hUxlvmPAUmuB8JftNJ8QrLwVaaD4fmg8UeJIdQuJdL1KdUGmR2UvkXJmdc7v35SNNow24tkBSKBmp/wzfbf9FD+IH/g/b/4ij/hm+2/6KH8QP/B+3/xFZPhn9ps/ES70zSPCfh1rzxLJp95f6jpt9drCunta3LWslu8gDZdp43RWxjADkYOK9J+FfxJ0j4wfDvQPGegtI2lazardRJMoWSInh43AyA6OGRgCcMp5NAHGf8M323/RQ/iB/wCD9v8A4ij/AIZvtv8AoofxA/8AB+3/AMRXr9FAjyD/AIZvtv8AoofxA/8AB+3/AMRR/wAM323/AEUP4gf+D9v/AIivX6KAPIP+Gb7b/oofxA/8H7f/ABFH/DN9t/0UP4gf+D9v/iK9fooA8g/4Zvtv+ih/ED/wft/8RR/wzfbf9FD+IH/g/b/4ivX6KAPIP+Gb7b/oofxA/wDB+3/xFH/DN9t/0UP4gf8Ag/b/AOIrb+J/xfh8Ba14Y8OWGmya/wCLfEs8kWm6XFKIh5cS75p5ZDnZGi9TgkkqoHORl6X8dYdK+IF74K8c2lv4U1iLTTrFpfPeK1hf2iOEldJG2lGjZlDI4yAysCQeAZB/wzfbf9FD+IH/AIP2/wDiKP8Ahm+2/wCih/ED/wAH7f8AxFekxeKtFuLu6tI9YsJLq1gW5uIUukLwwsMrI65yqkchjwRSW3ivQ73SodTt9Z0+fTZ5DFFeR3SNDI4YqVVwdpIKsCAeqkdqBHm//DN9t/0UP4gf+D9v/iKP+Gb7b/oofxA/8H7f/EV1OqfGjwJo48Mm68X6MieJpng0eQX0bJfMiln8twdrKoXls4yVXO5lBzbj416L4Us0l8a3+k+GpbvX5ND06Makk32l9+I8kY2OU+ZkP3ADk0DMj/hm+2/6KH8QP/B+3/xFH/DN9t/0UP4gf+D9v/iK9Bh8deG7i2muYvEOlS28FytlLMl7GUjnZgqxMQ2A5YhQp5JIGKu65r2meGdMm1LWNRtNJ06EjzLu+nWGFMkKNzsQBkkAZPUigR5g/wCzdbOjL/wsP4gjIxkeIGyP/HK9bgiEMEce5n2KF3Ocscdye5ryz4tfH/Rfh4PCtjZ6jo1xq/il5BpTX+opBaMi28kwmeTJ/dtsVAwzlpV616Tod1e3+iafc6lYjS9Rmt45LmxEwmFvKVBePzAAH2nI3AAHGaAL9FFFABRRRQAUUUUAFeQ/tN+ANS8c+B9Du9FtJNS1bwv4l0nxPBp0ThGvBaXSSSwgnjc0Xmbc8btv1r16igDxb4U+FNYvfjn8SviHqGm3Gj6dq9ppmj6da3qhLiSO1WZ5JnUE7QZLhlXuQme4r2miigAooooAKKKKACiiigArzT9oTR9Y8V/Da48K6La3U0nia7ttFvbi2C/6Jp80qrfTMWI24tfPCkZPmNHxzkel0UAfOus+GPEPws+MfxG8U6N4YvPEdh4n8O2cOn22mKgEV5aLJEtu+WAjR1eMh8YGH9OfKvAvwD8Z/AX4W/ETwNZaFdeJL7xT4PsNPsLyxZXtk1NdPNnMkzOymOISlZA2MCPd3GD9v0UDucz8NPBq/Dr4ceFPCaXJvE0LSrTS1uCu0yiCFI92OcZ25x7101FFAgooooAK8U1LQ9Yf9sTQtfXRr59Ag8EX2mSaoqL5C3Mt9aSpHnOc7IZD0xwPWva6KAPCfGPx18RXfhPUB4d+H3iqbUxrFzoksllbwXD2kcY5vFHmhXDAgIu4Hd97AU1xfg7wfe+GPiD8PPiBpPgHxBpWg2Wgaj4XudEuUjfUYA08VxFdyIrkMZXjm3ncW3OrHO44+p1RUBCqFyc8Cn0AfG/wO+FXiv4G/ELUPiBqfhnU9Rj8X2Wp3d/pumbbi4064k1CW6ghKlgDuhkVTg4EgIzjmvcP2WPhjqnwe+AXhDwprjRnWrWCW4vkhbckVxPPJcSRq2TuCNKUDd9ue9esUUAFFFFABRRRQAUUUUAFFFFAHhHxr8E61pXxm+H/AMWtH0641+28O2t9peraVZjddG1uVU+dAnG9keNcpnJVjjJGK8k8V6Y37aWra5458ClZfDej+DPEHhfTJbl1imv9VvIvKeJ4id8CRBVyZQrEyAhdoyftKsC38A+GLTxPP4kg8OaVB4inXZLq0djEt3IMYw0oXeRjjk0AfG2s+F/G/iJr3xDH8JtSvoF+G+maB/Y+uIitNdW+pb5kMccys21MyINyh9oGRmr198OfEniA69DqHgTWtRjvPixoPilH1SxtXMmn/YrFJpWC7UVkNtMrqFyuVB3Ek19tUUDPjnwd4E8WeFfEWh6pJ4R1j+ztN+MOu6r9ktokLLp15YX0ENyibwPK8y5Qt0I3MdvWs4/Djxfplha30HgrVTFpXxun8UPZ28UQll0yVJ4xPEu8BgDMhIyDjcccV9r1zY+IegN8QT4IGoL/AMJQNNOrmw8tgwtRIsXmbsbSN7BcA560AeGWfwwv7X9qDVdKtvKPgTVDZ+PNSsC2fJ1WIvBHGU7rLKkN2HHSWwPHzV2Pxk0XxDb/ABb+FfjCw0q58Q+HtDl1G31LTrMh5oJLmBEt7yOJiAxj2yRE53KlzIRwWB6jwJ4f8CeAPFniDw54V0S10TVr7GvamtnZNGty0zunmNLjazZjb5c5UY4ANd9QI+NvCnwk8XeFPHfwxvD4e1IaEvjvX9eSxh2umhWF3byJDHIN2I8yO0hRMhTK3cGvsmiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK+IPDfjXxfda2mrWXj/WtW8R2nxX1Hwz/AMI7PdxPbTaQL2SN1eBUBHlxLvWbqpUDdtOK+36+cP2Obe3uLDx1eSWtu15ceJ7/AFI3PlL5ivdymaVFbGdgY4UHJxjJPWgDzn4WfFvU73UfgzpN14zvJtal8XeK9H1q0n1AyTfZ4ZtR+zR3MbE4ZRFb7C43YUYyCaw/hT428SeNLb9nKTVPiN4guZPHtrrVjr3lamkX2iK2ikli8sRqohkV48GaLbKQ5VnOF2/bkfhfRobya7j0mxjuriUTSzrbIHkk2ld7NjJbBIyecEiiLwvo1qLQQ6RYRC0LfZwlsg8nd97ZgfLnvjrQM+M/hn441X4oeHvhJF4n+Kes6Fp2teD/ABEdQvrDVIbN57ix1Cwht5jMV3CUJNIWKsN23kbS6twTfFbxNYeOPBfiLxfd6il3P8Mni8S63pqiLUdP01tXVW1NIUA+bYsLvtx5aSPKFk8ry2+lfG0NhZftTfD/AEmPSNN/s2DQr61S2NqvlgXk0ckrbem4Np8O0gdHkzncNvvE3h7S7md7iXTbSWd4DbNK8ClmhPWMkjJU/wB3pQB8s/E34o32ieNPiVY+GvHE40TTvhA2vaS8V+lyIrkTXQFykj7zIxWOL53LdRzzXK6P8RfFsP8Ab2j2fxGYXWo+CfC2uxTeJL4tEb+7uhBLCssSh7VLlRHDvix5TT+agDcn7JXwjoUasF0XT1DW/wBlIFrHgw/88un3P9npTj4V0R927R7Bt0aQtm1TmNCCinjopAIHQEDFAHn/AOzj41bxz4FvLqa01vTL611OezvNM1y7W8ksp0CF4YrpSRcwgtlJdxyGwcEYHq1QWtpBYwLBbQx28K52xxKFUZOTgDjqSfxqegQUUUUAf//Z)
![](data:image/png;base64, /9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCAARAM4DASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD9U6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA+Yf2iv2hfFPwo+O/gfwlF4y+H/gnwp4i0u9u5dZ8ZafK/2Wa2KfIHF/bo/meaoCnaV2sctnA6b4HfHu48Zy+OJPEniXwveaZ4bsLC+kv9K03UNNWOKaCSZ7iX7YNnkuiq8ZidwFDbmPBrU8b/A/xD4o/aJ8DfEyx8Xadpth4ZsrmwOiTaI9xJdxXJTz83AukCHEabCIztIJO8HaOY8Q/Ca9+Ff/AAvPxzNfWutaD4i0COCPwzpHhYTzWsdpbSRRIkb3JjuR5bsDEURX4HyjIMNuNPzs/wA3b8PRd7FU4qVT3npdL5NK/wBzv38jR1H9uP4P6Ooa+1fxDZxmyXUhJP4M1pENozqiXIY2eDCzuiiTO0lgAeRXSeI/2ofhz4SsvGF3q+ralY2/hCW3h1xn0DUCbLzgTE5AgJaNgpPmLlBxlhkZ+E/hd4L8efFeeT4d2viL4U+I9G8UaJJYaj4q8D6xqev6h4dt4VEtssguriSG1ieYIBaxeWrkPsCiPcv0v4s/Y98beMNM+KttffFPS5pviJa6dDqM0vhRmW1e1QJm3QXoARwPuPvwTnc3IO048u39a/5de72CFm1z/wBaf5/l5pnpUn7XXwm/sKLWbXxU2raW6zym60fTLy/SKCKVoZLiXyIX8q38yN1E77Ym2NtYgGuS/a1+N3xB+F1h4Zufhw/hiWC8try+v7vxBo2r6pBHbQiEiRf7LjkdFxKSXkXZjHzA4DVviR+x5J8RPHWgeM73UPBWr65aaEmiahZ+KvA8eraXc7HLrPb27XSPauCzjAlYFSARxk+q+NfBPjLVYbGw8LeLNI8MaJ9hawvrGbw8bslTgB7VluIxAyruADrMgyuUOCGxqJ2fLvd29Fe19t9PvHBqM7tXVvnql+Wv3GLqvif4leJPgHoOtfDu48FeIPHepWtlMt7cm4GguJNhnlTa/nGIKWKclvu5HUVk/sqePfin8RPD/ibUPiYnhD/RNXm0zTJ/B0N2ltdLATHPKHuHLOvmho1IVeYnPzAqa0tP+CGv+DfDUvhfwR45bw14TtfCw0DRtMk0pLp9Ouhwt+Z96vK4XjyyQufm9q9D8CeDtP8Ah74L0PwzpcYi0/SLKKygAXGVRAu4+5xknuSTWrs5SktnfT5/ctFf/t7o1ZYxvyx5t+v3f5v/AMl87vdoooqSwooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigD//Z)
The above figure represents the market for pumpkins both before and after the imposition of an excise tax, which is represented by the shift of the supply curve.
Refer to Figure 5.7. Had the demand for pumpkins been perfectly inelastic at Point
A, the amount store owners would have received per pumpkin after the imposition and payment of this tax would have been
◦ $3.00.
◦ $5.50.
◦ $7.25.
◦ $8.50.